Integrating Processing In-Memory (PIM) Technology into General Purpose Graphics Processing Units (GPGPU) for Energy Efficient Computing

dc.contributor.advisorFu, Xin
dc.contributor.committeeMemberChen, Jinghong
dc.contributor.committeeMemberWu, Xuqing
dc.creatorMegharaj, Paraag Ashok Kumar
dc.date.accessioned2019-09-18T02:38:24Z
dc.date.available2019-09-18T02:38:24Z
dc.date.createdAugust 2017
dc.date.issued2017-08
dc.date.submittedAugust 2017
dc.date.updated2019-09-18T02:38:25Z
dc.description.abstractProcessing-in-memory (PIM) offers a viable solution to overcome the memory wall crisis that has been plaguing memory system for decades. Due to advancements in 3D stacking technology in recent years, PIM provides an opportunity to reduce both energy and data movement overheads, which are the primary concerns in present computer architecture community. General purpose GPU (GPGPU) systems, with most of its emerging applications data intensive, require large volume of data to be transferred at fast pace to keep the computations in processing units running, thereby putting an enormous pressure on the memory systems. To explore the potential of PIM technology in solving the memory wall problem, in this research, we integrate PIM technology with GPGPU systems and develop a mechanism that dynamically identifies and offloads candidate thread blocks to PIM cores. Our offloading mechanism shows significant performance improvement (30% by average and up to 2.1x) as compared to the baseline GPGPU system without block offloading.
dc.description.departmentElectrical and Computer Engineering, Department of
dc.format.digitalOriginborn digital
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/10657/4820
dc.language.isoeng
dc.rightsThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).
dc.subjectProcessing in-memory
dc.subjectGPGPU
dc.subjectOffloading
dc.titleIntegrating Processing In-Memory (PIM) Technology into General Purpose Graphics Processing Units (GPGPU) for Energy Efficient Computing
dc.type.dcmiText
dc.type.genreThesis
thesis.degree.collegeCullen College of Engineering
thesis.degree.departmentElectrical and Computer Engineering, Department of
thesis.degree.disciplineElectrical Engineering
thesis.degree.grantorUniversity of Houston
thesis.degree.levelMasters
thesis.degree.nameMaster of Science in Electrical Engineering

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MEGHARAJ-THESIS-2017.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
4.44 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.83 KB
Format:
Plain Text
Description: