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Abstract 

Processing-in-memory (PIM) offers a viable solution to overcome the memory wall 

crisis that has been plaguing memory system for decades. Due to advancements in 3D 

stacking technology in recent years, PIM provides an opportunity to reduce both energy 

and data movement overheads, which are the primary concerns in present computer 

architecture community. General purpose GPU (GPGPU) systems, with most of its 

emerging applications data intensive, require large volume of data to be transferred at fast 

pace to keep the computations in processing units running, thereby putting an enormous 

pressure on the memory systems. 

To explore the potential of PIM technology in solving the memory wall problem, 

in this research, we integrate PIM technology with GPGPU systems and develop a 

mechanism that dynamically identifies and offloads candidate thread blocks to PIM cores. 

Our offloading mechanism shows significant performance improvement (30% by average 

and up to 2.1x) as compared to the baseline GPGPU system without block offloading. 
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1  Introduction 

In recent years, main memory systems have become well known to be the critical 

bottlenecks for performance in majority of modern day general purpose GPU 

applications. This is mainly because memory systems haven’t been unable to keep pace 

with the rapid improvements in GPU processing cores. In conjunction with incredible 

capabilities in handling different kinds of complex computations at high instructions 

per cycle, processing cores have also developed good energy efficiency. These rapid 

developments can be credited to the advent of multi-core and multi-threaded system 

architectures, aggressive pipelines designs and various scheduling techniques. 

Improvement in bandwidth, latency and energy consumption of off-chip memory 

system have not kept in pace with these advances [7, 8]. Hence, the memory system 

often becomes a bottleneck and accounts for significant system level energy 

consumption [10].  

There are two major problems that today’s GPU systems encounter frequently: 

 Insufficient memory bandwidth to meet the demands of GPU multi-core processor 

chips - This insufficiency gets adverse as the number of cores on the chip increases. 

This is the primary reason why memory bandwidth issue is very frequently (almost 

every time by programmers) experienced in GPU systems as their architecture 

commands thousands of cores, all running in parallel. 

 Power consumption - As systems expand in capabilities and multiple systems 

collaborating with each other to speed up application, power consumption by these 

systems become equally important factors in deciding its reliability.  
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With the emergence of new 3D stacked memory technology, problem of 

bottlenecks due to insufficient memory bandwidth can be solved effectively [33]. This 

is possible due to the high memory bandwidth, low memory access latency and low 

energy consumption in this technology. However the most important feature of 

stacking technology is that it enables close coupling of processing logic and the 

memory, hence processing in-memory. This is a very major advantage of this 

technology making it very promising for optimizing a large range of applications [34, 

35]. Coupling logic very close to stacked memory is important because it enables us to 

completely utilize high bandwidth from stacked memory which otherwise would be 

limited to the bandwidth offered by the off chip links. 

To further validate effectiveness of this technology, we explore the industry 

advancements in this technology which is very evident with Samsung Electronics and 

SAP co-developing in-memory technology. Hybrid Memory Cubes (HMC) 2.0 

introduced by Micron which exploits stacking technology and re-architects the DRAM 

banks to achieve better timing and energy efficiency at a much smaller area footprint 

[16, 17]. A JEDEC standard for high performance applications, High Bandwidth 

Memory (HBM) [12]. In addition a number of academic publications have also 

explored stacked DRAM on logic dies [13, 14, 15].  

Hence we believe that enabling general purpose graphics processing units with 

processing in-memory technology can speed up performances and increase energy 

efficiency [1, 36]. Figure 1 shows a high level diagram of integrating processing in-

memory (PIM) technology with GPGPU system. This system consists of host GPGPU 



3 
 

connected with stacks of DRAM memory and PIM logic cores using off chip serial 

links. There can be one or more number of processing cores with stacked memory.  

 

Figure 1: High level diagram of integration of Processing in-Memory (PIM) with General Purpose 

Graphics Processing Unit (GPGPU) 

Offloading parts of execution workload from GPGPU to PIM can speed up 

performance and also ease bottlenecks due to memory access traffic on the off chip 

links. 

In this research work, we want to explore and examine the potential of Processing-

in-Memory (PIM) technology. Through this research work we intend to: 

i. Model PIM enabled GPGPU and develop a technique that dynamically identifies 

and offloads parts of execution to a PIM cores. 

ii. Effectively utilize the stacked memory resources i.e. high internal memory 

bandwidth, in a fast and energy efficient way. 

iii. Evaluate the effectiveness of this technology with GPGPU system and investigate 

how PIM will impact the energy consumption on GPGPU workloads. 
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2. Motivation 

The major challenge in working with PIM technology is deciding which part of the 

workload must be offloaded to the PIM cores. Most prior research in this area 

demonstrate that memory intensive instructions are the most favorable candidates for 

offload [1, 6, 37]. These candidates could be identified with help from the programmer 

who will specify, to best of their knowledge, which part of the code is memory intensive 

and should be run on PIM cores [21, 36, 38]. However, this is not a very good technique 

to identify candidates for offload, because here the programmer must be well versed 

with the underlying implementation and memory interaction. Also, with this technique, 

offloading becomes only as good as the programmer. Another technique to determine 

candidates for offload could be by combined efforts from the compiler and the 

underlying hardware [6, 37].  

These methods only identify memory intensive parts of the code for offload. 

However, offloading parts of code (known as a kernel in GPU terminology) to the PIM 

does not always result in optimal performance benefit. When an instruction is being 

executed on GPU cores, different threads process the same instruction but on different 

data elements (data parallelism). Here we observe that even if a memory intensive 

instruction is being executed, different thread blocks (group of threads running on a 

GPU cores) have different memory intensities. Common examples of application 

constantly running on imbalanced workloads are graph computing applications [39]. 

An example of this is described in figure 2. 
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Figure 2, gives a distribution of thread blocks, Cooperative Thread Arrays (CTA) 

in CUDA terminology, being executed on a GPGPU core at different instances with 

their average execution times. In the figure, there are six blocks running on a core 

simultaneously at six different instances. We can observe that block execution time of 

different thread blocks can be highly imbalanced with fastest thread blocks executing 

at an average of 700 cycles and slowest ones executing in around 4000 cycles.  

 

Figure 2: Execution time of different thread blocks running on GPU core 

By analyzing execution time of each thread block running on every GPGPU core 

we can determine the ones running slower which may be offloaded to the PIM cores. 

Offloading these blocks will not only speedup the performance but also ensure more 

efficient resource utilization across both GPU and PIM cores. 
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3. Background 

3.1  General Purpose Graphics Processing Unit (GPGPU) 

GPGPU units are use of GPU, which are typically used for computer graphics 

processing, to perform complex computations traditionally handled by a Central 

Processing Unit (CPU). Modern graphics architectures have become very flexible to 

program as well as very powerful with high computation speed, increased precision 

and rapidly expanding programmability of hardware. These features have made GPU 

an attractive platform for general purpose computing [4].  

3.2  3D-stacked DRAM memory   

 
Figure 3: 3D stacked memory concept with logic layer and TSV interconnects 

3D stacking brings the primary advantage of increased memory density over 

conventional 2D designs by stacking multiple DRAM dies atop of each other on a 

single chip. Stacked memory technology promises memory access with low latency, 

high bandwidth and lower power consumption [28]. Another advantage with stacking 

technology is that the base die can be utilized to integrate controllers and high speed 

signaling circuits hence bringing them much closer to memory [2]. 3D stacking has 
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been possible in recent years only due to development of Though Silicon-Via (TSV). 

TSV technology facilitates vertical interconnects between the stacked DRAM dies 

hence providing a shortest possible way to connect two DRAM dies [40, 41]. TSV 

based vertical interconnects have proven to have very low latency, high bandwidth and 

energy efficient data transfer between dies in a package. 

3.3 Processing in-Memory 

In Processing in-Memory (PIM) technology, computational/logic units can be 

placed very close to the memory to achieve faster memory access. Integrating 

processing logic with stacked DRAM memory can help utilize the high internal 

memory bandwidth. PIM has been possible only due to inventions in 3D stacking 

technology [3] as discussed before. Stacking technology has enabled to incorporate 

memory and logic very close to each other, hence providing dense and fast memory 

interactions. In our work, we consider Hybrid Memory Cube (HMC) [42] as our 

primary reference platform for implementation and integration of PIM with GPGPU. 

3.4  Hybrid Memory Cube  

Hybrid Memory Cube (HMC) is a concrete example of current advances in die 

stacking technologies. HMC is a closed bank memory architecture with four or eight 

DRAM dies and one logic die (at the base) stacked together using TSV technology. 

This design improves bandwidth, latency and energy characteristics — without 

changing the high-volume DRAM design currently used in various systems. HMC 

storage paradigm is developed by a consortium of memory industry manufacturers and 

consumers. The Hybrid Memory Cube Consortium (HMCC) is backed by several major 
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technology companies including Samsung, Micron Technology, Open-Silicon, ARM, 

Altera, and Xilinx.  

The logic layer in HMC contains several memory controllers which communicate 

with the memory storage elements in the DRAM dies using TSV interconnects. Within 

HMC, memory is organized into vaults. Each vault is functionally and operationally 

independent. Each vault has a memory controller (called a vault controller) present in 

the logic base that manages all memory reference operations within that vault. Each 

vault controller can determine its own timing requirements. Refresh operations are 

controlled by the vault controller, eliminating this function from the host memory 

controller. A vault can be thought of roughly equivalent to a traditional DDRx channel 

since it contains a controller and several independent banks of memory that all share a 

bi-directional data bus.  

Capacity is a clear benefit of HMC architecture. Currently, 4 DRAM die stacks 

have been demonstrated by Micron and future plans to stack 8 dies has been mentioned. 

Furthermore, multiple HMC cubes can be chained together to further increase the 

capacity. However, this will be limited by latency and loading considerations [9]. 
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4 Modelling PIM enabled GPGPU 

4.1 GPGPU Simulator  

In this chapter we discuss, in detail, about the GPGPU simulator system, memory 

hierarchy, and its interactions with the GPGPU cores.  

4.1.1 Background on GPGPU-sim 

The general purpose computations on GPU is modeled using a widely used 

GPGPU-sim 3.x [19], a cycle level GPU performance simulator to model GPU 

computing. GPGPU-sim 3.2.0 is the latest version of GPGPU-sim. This simulator 

models GPU microarchitectures similar to those in NVIDIA GeForce 8x, 9x and Fermi 

series. The intension of GPGPU-sim is to provide a substrate for architecture research 

rather than to implement an exact model of any particular commercial GPU, hence 

making it central to this research. The GPU modeled by GPGPU-sim is composed of 

Single Instruction Multiple Thread (SIMT) cores connected via an on-chip connection 

network to memory partition units that interface to graphics GDDR DRAM. We 

simulate all the benchmarks with default GPGPU-sim’s configuration (for steaming 

multiprocessor, shader processors, and caches) that closely models a NVIDIA GTX 

480 chipset. 

4.1.2 GPGPU-sim memory organization 

The following figure 4 gives a top level view of the organization used by GPGPU-

sim. The simulator uses a GDDR DRAM. Each DRAM is interfaced with one memory 
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partition unit. The memory system is modelled by a set of memory partitions which 

effectively function as memory controllers to each DRAM die connected to it. 

 

Figure 4: Overall GPU architecture modeled by GPGPU-sim [19, 20] 

In GPGPU-sim, the memory partition unit is responsible for atomic operation 

execution, address decoding and it also contains L2 cache. In addition to these three 

sub-component units, memory partition also contains various FIFO (First-In-First-Out) 

queues which facilitate the flow of memory requests and responses between these sub 

units. 

The DRAM latency queue is a fixed latency queue that models the minimum 

latency difference between a L2 cache access and DRAM access. This component of 

the memory partition unit is used to implement the TSV latency in HMC. DRAM 

scheduling is implemented using two different page models: a FIFO queue scheduler 

and a FR-FCFS (First-Ready First-Come First-serve) scheduler.  

The FIFO scheduler services requests in the order they are received. However, this 

tends to cause a large number of pre-charges and activates and hence may result in a 
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poor performance especially for applications that generate large amount of memory 

traffic relative to the amount of computation they perform.  

 

Figure 5: GPGPU-Sim memory partition component [19, 20] 

The First-Ready First-Come-First-Served (FR-FCFS) scheduler gives higher 

priority to requests that will access a currently open row in any of the DRAM banks. 

The scheduler will schedule all requests in the queue to open rows first. If no such 

request exists it will open a new row for the oldest request. 

4.2 Stacked Memory Organization 

We implement a 3D stacked memory which utilizes direct stacking of DRAM dies 

on a processing chip. We closely follow the stacked memory architecture provided by 

the HMC consortium in our work. A concept of HMC memory organization is shown 

in the figure 6. The HMC memory is organized into vaults where each vault is 

functionally and operationally independent from the other. This allows parallel access 

similar to DIMM structure for DRAM. Each vault consists of its own memory 

controller which is known as vault controller in HMC’s vernacular. 
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Figure 6: HMC memory and in-memory processing logic organization [5] 

The vault controller is capable of handling refresh operations and manage all 

memory operations with its vault. High speed serial links are used for communication 

between the HMC and the host GPU. The packets coming from the host via links to the 

HMC for read/write requests are routed to their respective vault controllers using the 

interconnect network. The write acknowledgements and read data follow the same path 

back to the GPU. 

The DRAM dies in the stacked memory organization are connected by a dense 

interconnect of Through-Silicon Vias (TSVs). These are metal connections that extend 

vertically through the entire stack. These interconnect path between the stacks are very 

short with lower capacitance than long PCB trace buses. Hence the data can be sent at 

a very high data rate on TSVs without having expensive and power hungry I/O divers. 



13 
 

Furthermore, to increase parallelism in HMC stacked architecture, the dies are 

segmented into vertical vaults. These vaults contain several partitions and each of these 

partitions contain several banks similar to a DRAM organization.  

According to HMC specifications [5], a single HMC can provide up to 320 GB/s 

of external memory bandwidth using eight high speed off-chip serial links (SerDes 

links). On the other hand, HMC is also capable of providing an aggregate internal 

bandwidth of 640 GB/s per cube, which consists of 16 vaults per cube. Each vault in 

the HMC is analogous to a DRAM partition unit. 

Table 1: HMC configuration 

Configuration 

Number of links per package 2, 4 (SerDes Links) 

Link lane speeds (Gb/s) 12.5, 15, 25, 28, 30 

Memory density 2GB, 4GB (under development) 

Number of vaults 16, 32 

Memory banks 2GB: 128 banks 

4GB: 256 banks 

Maximum aggregate link bandwidth 480 GB/s 

Maximum DRAM data bandwidth 320 GB/s 

Maximum vault data bandwidth 10GB/s 

 

 

 

 



14 
 

4.2.1 Integrate stacked memory with GPGPU 

 

Figure 7: GPGPU Sim memory architecture overview [19] 

We integrate stacked memory with GPGPU by replacing GDDR memory used by 

GPGPU with HMC’s memory architecture. Figure 7, shows the overview of memory 

architecture used in current GPGPU.  

In GPGPU-sim memory organization each memory controller is connected to a 

single DRAM die. This connection can be thought of as organized vertically to 

implement one vault in HMC. Each of these vaults are functionally and operationally 

independent and each vault controller determines its own timing requirements. Refresh 

operations are controlled by the vault controller i.e. memory controller in GPGPU-sim.  
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Figure 8: HMC memory architecture implemented in GPGPU-sim 

Vault controller buffers are implemented by FIFO queues available in the memory 

partition unit. The vault controller also has the ability to schedule references within a 

queue completely out-of-order rather than by the order of their arrival.  

The access between the DRAM dies is facilitated by the TSV interconnects. 

Latency of this access is taken as 1.5 nsec or 1 cycle for a 667 MHz bus frequency [16]. 

This latency is considering the worst case situation, when the data is to be accessed 

from the vault controller to the topmost DRAM layer in a stack of 8 DRAM dies. The 

access latency caused by the TSVs is however very small as compared to the latency 

of 100 cycles to access data from off-chip main memory. In GPGPU-sim, DRAM 

latency queues is used to implement this access latency overhead of TSV (requests in 

the DRAM latency queue wait for a fixed number of SIMT core cycles before they are 

passed to the DRAM channel). The high bandwidth data transmission provided by the 

TSV channels is implemented in GPGPU-sim by changing the DRAM operating 
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frequency in GTX 480 configuration. Figure 8 illustrates the conceptual view of the 

stacked memory architecture implemented on GPGPU-Sim. 

The HMC architecture contains quite a large design space to be explored in order 

to optimize the performance. Within the DRAM memory stack we deal with specific 

design factors to expose a proper level of memory parallelism (implemented by vaults 

in HMC) to effectively utilize the available TSV and off-chip link bandwidth. In the 

DRAM stack we have 2 fixed resource configuration (number of DRAM dies stacked 

and number of banks on each die): 128 and 256 bank configuration. Both of these 

configurations consist of 16 vaults and four or eight DRAM dies. TSV bandwidths 

available are 20, 40, 80, 160 and 320 GB/s [9]. The maximum bandwidth exploitable 

by the core is 640 GB/s [21].  

4.2.2 Off-chip links 

Communication between the stacked memory and the GPGPU is provided by the 

off chip links. HMC architecture provides different choices of off-chip link bandwidth 

available from the stack memory to the host GPGPU. These links consist of multiple 

serial lanes with full duplex operation used for communication between the GPGPU 

processor cores and the stacked memory. The links transmit commands and data, in 

both direction, enclosed in packets called “FLITs” which consist of a fixed number of 

bits (according to the HMC-2.0 specifications, a flit size is 128 bits). Raw link 

bandwidth configurations available are 80, 160, 240, and 320 GB /s [9]. 
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4.3 Processing In-Memory 

Processor architecture for host GPGPU and in-memory cores in our system 

organization are in-order processing units which use Single Instruction, Multiple 

Thread (SIMT) model. In GPGPU-sim terminology, each processing unit is known as 

a shader core which is similar in scope with streaming multiprocessor (SM) in NVIDIA 

terminology [19]. We believe choosing SM as in-memory processor has several 

benefits, firstly, by using existing GPU design we ease the task of redeveloping 

dedicated processing units for PIM and promote reusability of off-the-shelf technology. 

Secondly, programmability of existing SMs in GPUs will provide a broad range of 

applications to completely utilize PIM [1]. Most importantly, using SM will provide a 

uniform processing architecture [1].  

The shader cores used in both GPGPU and PIM has a SIMD width of 8 and uses a 

24-stage, in-order pipeline without forwarding [19]. The pipeline consists of six logical 

pipeline stages which are fetch, decode, execute, memory1, memory2, and writeback. 

Post-dominator re-convergence mechanism is used to handle branch divergence in 

threads. Figure 9 and 10 shows a detailed implementation of a single shader core in 

GPGPU [19] and the in-memory core that we used for PIM. The cores in PIM 

implement the same thread scheduler and SIMD pipeline, however, the PIM cores do 

not have access to L1 cache units, L2 cache and shared memory. This is done to analyze 

PIM cores strictly with stacked memory and without the benefits from caching. 
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Figure 9: Detailed GPU shader core 

 

Figure 10: Detailed PIM logic core 
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Furthermore, having L1 cache with PIM cores would complicate management of 

cache coherency across GPGPU and PIM caches [6]. Deploying traditional cache 

coherency protocols on our system with so many core would potentially require 

additional states and would also consume significant part of off-chip link bandwidth.  
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5. Block Offloading Mechanism 

In this chapter we describe our new runtime mechanism that records and analyzes 

average execution time of all the thread blocks running on each GPGPU cores. It then 

dynamically determines possible thread block candidates for offload and then decides 

at runtime whether the selected block candidate should really be offloaded to PIM 

cores. 

5.1 Identifying block offload candidate 

The main objective when identifying candidates for offload is to find which thread 

blocks need higher memory bandwidth and offload these blocks to improve 

performance and resource utilization in both GPGPU and PIM. Primarily, a block of 

threads could be considered for offload to PIM if its execution is taking much longer 

time to finish as compared to other thread blocks running on the same core. This 

comparison is made between the blocks which were initialized/launched at the same 

time and on the same GPGPU core. Number of times the other thread blocks have 

completed execution further strengthen the identification of slower thread blocks which 

can be offloaded. 

Increased execution time of a thread block could be due to multiple factors such as 

high thread divergence in the block or some of the threads in the block are waiting at a 

barrier or high cache miss rate causing frequent accesses to the main memory. The third 

case is the one we are most interested in. L1 data cache miss rate and miss status holding 

register (MSHR) are the main indicator of this case. So, if the execution time of a block 

candidate on a GPGPU core is found to be higher than other blocks (running on the 
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same core) and L1 cache miss rate of that core is higher than a threshold miss rate 

value, then this block becomes a possible candidate for offload to the PIM cores. 

Chapter 5.4.1 further explains the implementation in detail and describes the steps to 

identify a slower block and determine whether that block is actually offloaded 

depending on network traffic, availability of PIM cores to service the offloaded block 

and number of active warps in the block. 

5.2 Block offload limitations 

Few limitations to offload candidate blocks are –  

1. If the candidate block has divergent threads, then they must first converge before 

being offloaded. Trying to offload a divergent thread block adds large amount of 

complexity for managing SIMT stacks which control the divergence and re-

convergence information GPGPU system. 

2. If any warp in the candidate block is waiting at a barrier, then all threads/warps 

must reach the barrier before the block can be offloaded. 

3. Any warp in the block must not already be issued before offload. If any warp is 

issued, then its SIMT stack information may change or the threads in the warp may 

diverge. In GPGPU-sim, once a warp is issued, it is functionally simulated by cuda-

sim simulator in the same cycle, hence the execution (issue stage in GPGPU sim) might 

cause divergence and will certainly change the SIMT stack for that warp. 

4. No warp in the offload candidate block must have a pending store 

acknowledgement. Since the store acknowledge comes back at the same core that 

requested it, offloading the block before it receives the acknowledgement would mean 
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that now the block is present elsewhere in the system. Without receiving the store 

acknowledgement, the threads cannot finish their execution resulting in a deadlock 

situation.  

5. There should not be any shared memory access within the candidate block. Since 

PIM does not implement a shared memory, the threads in that case will have to make 

access to the shared memory present on the host GPGPU system through the off-chip 

links. 

6. The candidate blocks must have at least two warps active at the time the block is 

offloaded. This is because if a thread block has, for example, only one active warp, then 

there is a possibility that the warp might be near completion. In that case, offloading 

the block would simply add extra cycles to its execution time without any significant 

performance gains. 

5.3 Block offload aggressiveness 

Block offload aggressiveness is a very important factor to ensure proper resource 

utilization across the system. Offloading blocks very aggressively can lead to couple 

of issues in the system. Firstly, offloading very frequently can increase traffic on the 

off-chips links and the interconnect network significantly, making them a new 

bottleneck. Second, offloading blocks to PIM when they are already fully occupied by 

other blocks will make the offload block candidate wait for the PIM resources to 

become available. This is because each SM has a limit on concurrent blocks running 

on it. This limitation is imposed by the GPGPU hardware. On the other side, if the 

offload aggressiveness is too low then most of the PIM cores will be left underutilized. 
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Hence offload aggressiveness need to be tuned to a certain value to get optimum 

performance.  

5.4 Implementation Details 

In this chapter, we describe the implementation of block offloading system. Firstly, 

we introduce all the components introduced into the system and then we provide a 

detailed description of block offloading (chapter 5.4.1). 

5.4.1 GPGPU pipeline with block offloading 

 

Figure 11: Block diagram of our offloading system and its interaction with GPU pipeline 

Figure 11, shows a high level block diagram of how the block offloading system 

fits into the GPGPU pipeline [19]. To support block offloading we add a new 

component namely block offload monitor (BOM). Block offload monitor maintains and 
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records the execution/completion time (in clock cycles) of each block running on each 

of the GPGPU cores. It then decides, at runtime, whether to offload the block to PIM 

through the memory port. 

Block Offload Monitor (BOM) 

The Block execution monitor maintains and records average execution/completion 

time of all the active blocks. It then selects a candidate blocks for offload using this 

runtime information. Analysis is made based on the following two cases –  

(1) If the BOM finds a block running much slower than the others. Details of this 

analysis is described in the figure 12. 

 

Figure 12: Block execution times for different blocks running on same core 

In the above figure, thread blocks 1 to 8 are available for execution on GPGPU 

cores. Assume that blocks 1, 2, 3 and 4 are launched first and blocks 5, 6, 7, and 8 are 

waiting to be scheduled. Among the four blocks, block #2, #3 and #4 are running slow 

and take significantly more number of clock cycles to complete execution than block 

#1. To identify this, the BOM needs to wait till block #1 i.e. the fastest block to finish 
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execution. Once block #1 is completed, the BOM will have a frame of reference against 

which it will check to identify whether other active blocks are running slow or not.  

Once block #1 finishes execution, the BOM checks for multiple number of factors 

to determine if the other active blocks will take longer time to execute. These checks 

are important because there could be a situation, see figure 13, where block #2 might 

finish execution right after block #1. In that case, block #2 should not be selected for 

offload. Hence the final decision to offload a block is made by the BOM after 

performing checks for such situations.  

 

Figure 13: Block execution monitor senario-2 

(2) This case can occur when all the blocks on a core are running slow. Here the average 

execution time and number of active warps in the block helps the BOM to select 

candidate blocks for offload to the PIM. If the execution time of a block executing in a 

GPGPU core is higher than the average execution time of all the previously executed 

blocks on the same hardware GPGPU core, then that thread block becomes a candidate 

for offload to the PIM cores. However, the selected thread block is actually offloaded 
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only after making few more runtime condition checks. These checks are made to ensure 

that the offloading the selected thread block will give performance speedup. Firstly, the 

number of active warps in the thread block must be greater than a statically determined 

threshold which is two active warps in a thread block. 

It then checks the L1 data cache miss rate against a dynamically determined 

threshold miss rate value. The L1 data cache miss rate of the GPGPU core from which 

the block is being offloaded must be greater than the threshold value. Dynamic 

threshold for L1 cache miss rate is determined by calculating the average miss rate of 

all the GPU cores at that instance. After checking for L1 cache miss rate, next the 

candidate block is checked if it has any pending store acknowledgements, if any warps 

in block candidate are divergent, and none of the warps in the candidate block must be 

issued or waiting at a barrier at the time of offload (chapter 5.2). 

After all the runtime checks pass, the candidate block is offloaded only if there are 

hardware resources available at the PIM. If the block is not offloaded, then the block 

execution resumes on the same GPGPU core. If the block is offloaded, the BOM sends 

all the register values associated with each thread in the block, SIMT stack of each 

warp which holds the active threads and the program counters. In our work we assume 

latency of offloading a block is 3 core clock cycles. This assumption is conservative as 

compared to the instruction offload latency which involves creating and offloading new 

child kernels [6, 37]. The penalty of block offloading is however much smaller than 

that of hundreds of clock cycles for each main memory access. After offloading, the 

GPGPU cores can continue execution of other thread blocks waiting in the scheduler.  
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5.5 Simulation setup and evaluation 

5.5.1 Methodology 

We model our system organization by modified GPGPU-Sim 3.2.0 [19]. We model 

and integrate stacked memory and PIM logic layer with GPGPU-Sim. Off chip links 

that provide connection between the GPU and stacked memory is modelled as high 

speed unidirectional SerDes links [41] using Intersim [43], a modified version of 

Booksim [44]. Booksim is a cycle accurate interconnection network simulator used for 

on-chip interconnect simulation. However, unlike booksim which supports only a 

single interconnection network, intersim can simulate two unidirectional 

interconnection network: one for traffic from GPU to memory (uplink) and one 

network for traffic from memory to GPU (downlink). 

In our PIM system organization, we assume inter stack access to allow the PIM 

core of one vault to access memory location present in other vault. This is facilitated 

by the interconnect network present in between the stacked memory and the logic layer, 

and should not incur any performance loss due to high internal memory bandwidth 

provided by the HMC architecture [17, 41]. We assume the internal memory bandwidth 

provided by the memory stacks is 2x of that available to the links between the GPGPU 

and the memory stacks. This assumption is in accordance with the HMC consortium 

and reputed prior works in this domain [1, 6, 21, 38]. We also evaluate the system with 

same internal and external memory bandwidth so as to see that the PIM is not just 

advantageous because it can exploit more bandwidth than the GPGPU (chapter 5.5.5).  
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Table 2 provides the configurational details of our simulated system. To make a 

fair comparison between the baseline GPGPU and PIM enabled GPGPU 

(GPGPU+PIM) system, we take the same number of processing cores across both the 

systems. We consider NVIDIA’s GTX 480, a state of the art GPU architecture, as the 

baseline GPU in our work. 

Table 2: Configuration setup 

Processing units 

Core number 15 cores for GPU 

8 cores for PIM 

Core clusters 1 core per cluster 

Core configuration 1400 MHz core clock frequency, 

48 warps/SM, 32 threads/warp,  

32768 registers, 8 CTAs/SM, 

48 KB Shared memory (GPU cores only)  

Private L1 cache per core (GPU only) 32KB, 4-way,  write through 

Shared L2 cache (GPU only) 1MB, 16-way, write through, 700 MHz 

Scheduler Greedy Then Oldest (GTO) dual warp 

scheduler, Round Robin (RR) CTA 

scheduler 

Links and interconnect 

GPU to memory (off chip links) 80 GB/s per link, 320 GB/s total (4 links) 

Interconnect 1.25 GHz clock frequency 

Memory stack 

PIM to memory (internal memory 

bandwidth) 

10 GB/s per vault, 160 GB/s per stack, 

640 GB/s total for 4 stacks. 

Configuration 4 memory stacks, 16 vaults/stack, 16 

banks/vault, 64 TSVs/vault, 1.25 Gb/s 

TSV signaling rate. 

DRAM timing GDDR5 timing from Hynix 

H5GQ1H24AFR 

DRAM scheduling policy FIFO 

 

Table 3 shows the benchmark applications we use to evaluate our system. This are 

memory intensive workloads from Rodinia 3.0 [18], and GPGPU-sim [19]. All the 
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applications are run till completion and performance metrics, provided by GPGPU-Sim 

at the end of execution, are recorded for each application. 

Table 3: Applications used 

Application Name Domain 

Breadth-First Search (BFS) Graph Algorithm 

LIBOR Monte Carlo (LIB) Numerical Algorithm 

3D Laplace Solver (LPS) Finance 

MUMmerGPU (MUM) Graph Algorithm 

N-Queens Solver (NQU) Back tracing 

Ray Tracing (RAY) Graphics Rendering 

StoreGPU (STO) Hashing 

Braided B+tree Tree Algorithm 

Back Propagation (backprop) Pattern Recognition 

Gaussian Scientific 

 

Power model methodology 

To evaluate energy consumption of PIM enabled GPGPU system, we use 

GPUWattch [22]. GPUWattch is an energy model based on McPAT which is integrated 

into GPGPUSim – 3.2.0. We model power consumption of the processing cores, off-

chip links and the DRAM stacked memory. 

For the power consumed by the off-chip serdes links, we assume the sum of 

transmit and receive energy per bit when real data is being transmitted (Ebit,real|pkt) to be 

2.0 pJ/bit. Energy consumed by the links when no data is being transmitted, i.e. when 

the link is idle (Ebit,idle|pkt) is assumed to be 1.5 pJ/bit [24]. This is because high-speed 

signaling requires sending/receiving idle packets over the channels even when there is 

no data to communicate.  
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The power consumed by the links can be generalized as -  

Network energy = Ebit,real|pkt * Dreal + Ebit,idle|pkt * Didle,  (1) 

where, Dreal (Didle) is number of packets in flits transferred through the link when data 

(no data) is transferred. Using this equation, we calculate the power consumed (worst 

case) by four SerDes links to be 5.04W.  

Now, to calculate the power to access DRAM arrays for both read and write 

accesses, we use the following equation, 

Power to access DRAM arrays (read & write) = Ebit, DRAM layer * (burst length* 

bus_width) * (#reads + #writes), 

(2) 

here, energy per bit for DRAM layers (Ebit, DRAM layer) = 3.7 pJ/bit, burst length = 8, 

bus_width = 16 bytes for HMC, 4 bytes DDR3 

Energy per bit for logic layer (Ebit, logic layer) = 6.78 pJ/bit.  

Hence, total energy consumed by the HMC logic layer and the DRAM layers will be 

10.48 pJ/bit [17]. 

5.5.2 Performance results 

In this chapter, we evaluate the performance improvements obtained from the PIM 

enabled GPGPU and the PIM enabled GPGPU with block offloading monitor against 

the baseline GPGPU by analyzing the effects across 10 benchmarks (table 3). All the 

results have been normalized to the baseline GPGPU architecture. Figure 14 shows the 

performance results for each benchmark: 1) baseline GPGPU, 2) PIM enabled GPGPU 
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(GPGPU + PIM), 3) GPGPU and PIM with block offloading using BOM. Number of 

processing cores i.e. SMs, are kept same across all the schemes and number of memory 

partition units (memory channels) in the baseline GPU is also kept same as the number 

of vaults in the stacked memory. This is done to ensure fair comparison by maintaining 

equal number of resources. 

With PIM enabled GPGPU (GPGPU + PIM), we observe a performance 

improvement of 36% on an average. When block offloading using BOM is enabled 

with all the restrictions imposed (chapter 5.2), speed up in performance is 30% on 

average. Here we can see that PIM enabled GPGPU clearly outperforms the baseline 

architecture. Performance with block offloading using BOM suffers 6% as compared 

to GPGPU + PIM without BOM scheme. This is because of the restriction placed in 

BOM i.e. blocks with divergent threads cannot be offloaded to PIM. Due to this 

restriction, the PIM cores are not always completely occupied with thread blocks. 

Whereas in GPGPU + PIM without BOM, blocks are directly issued to PIM cores 

without any restrictions (described in chapter 5.2) which follows an ideal situation. This 

ensure complete utilization of PIM cores. However, without BOM, non-memory 

intensive blocks are also offloaded to PIM cores. Therefore, even if the PIM cores are 

completely utilized in GPGPU + PIM without BOM, its performance is not much 

greater than GPGPU + PIM with block offloading using BOM.  

Block offloading system is very efficient in recognizing and speeding up 

applications with high global memory accesses, this can be further observed from the 

performance results. Maximum performance improvements are seen with memory 

intensive applications: 2.1x improvement for BFS, 75% improvement for MUM and 
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30% speed up with LIB and b+tree. This is mainly due to heavy global memory traffic 

generated by these applications that can be effectively satisfied by the internal memory 

bandwidth from stacked memory. Furthermore, high L1 cache miss rate with these 

applications makes the process of identifying candidate blocks for offload much more 

efficient. 

 

Figure 14: Performance speed up comparisons 

In applications LPS and STO, performance improvements are 4% and 16% 

respectively compared to the baseline GPGPU. This is due to the fact that these 

applications have been optimized to use shared memory resources [19], hence they do 

not benefit much from block offloading system. However, LPS and STO still have a 

fair number of coalesced global memory accesses which accounts for the performance 

improvements. Performance of NQU is same as the baseline architecture, this because 

of very high divergence caused by a single thread which performs most of the 

computations. The only application that suffers from our system is backprop (back 
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propagation). This is mainly because backprop works on an unstructured grid [18], 

hence it benefits from the locality provided by caches which are not available on the 

PIM cores in our system. 

 

5.5.3 GPU resource utilization 

Figure 15 shows the average block execution times of all the thread blocks running 

on the host GPGPU cores (for clarity we only show graphs for three benchmarks). The 

graphs on the left side, in the figure, show block execution times on applications 

running on the baseline GPU architecture. The ones on the right side, in the figure, 

represent the same for applications running on our system with block offloading. 

Firstly, as mentioned in chapter 2 as one of the motivations for block offloading, our 

system organization helps to provide a more uniform GPU resource utilization. The 

average block execution time on the GPU cores are now in much narrower range. This 

is mainly due to offloading bottleneck blocks to PIM which helps in freeing up 

resources on the GPU in a more uniform and predictable manner. Secondly, we want 

to highlight that the average block execution time also has effectively reduced for each 

benchmark shown in the figure. This is in direct correlation with increased performance 

with block offloading.  

5.5.4 Stalls and bottleneck analysis 

In this chapter we observe the effect of block offloading technique on the number of 

stalls experienced by warps in pipeline. These stalls are caused due to warps waiting 

for data from the global memory. From figure 16 we can see that the number of stalls 
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in all applications except STO, b+tree and backprop, have decreased significantly (up 

to 50% of the stalls in baseline). This is because memory intensive blocks in these 

applications are effectively identified and offloaded which reduces the number of stalls 

experienced. 

 
 

 

Figure 15: Average block execution time for all the GPU cores with and without block offloading. The 

y-axis represents the number of clock cycles 
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In case of STO and backprop, memory accesses in these applications are highly 

coalesced, hence stalls are introduced due to unavailability of cache resources to 

offloaded blocks on PIM cores. For b+tree, further evaluations show that the 

interconnect network connecting to the DRAM becomes a bottleneck adding the stalls 

experienced. This can be reduced by controlling the offload aggressiveness. However, 

this becomes a trade-off situation as decreasing the offload aggressiveness will reduce 

stalls by interconnect network bottlenecks but will also reduce performance of the 

application. 

 

Figure 16: Stalls due to warps waiting for data from memory in block offloading to PIM 

5.5.5 Performance dependence on internal/external bandwidth 

Figure 17 shows the dependence of performance on the internal and external 

memory bandwidth. Here we evaluate block offloading with two cases: 

i.  Internal memory bandwidth is twice as much as external  

ii. Internal and external memory bandwidths are equal to each other  

0

0.5

1

1.5

2

2.5

3

3.5

N
o

rm
al

iz
ed

 n
u

m
b

er
 o

f 
st

al
ls



36 
 

 

Figure 17: Comparison in performance of block offloading mechanism with different combination of 

internal and external memory bandwidths 

Internal memory bandwidth refers to the total bandwidth provided by the TSVs 

whereas external memory bandwidth is provided by the off-chip serial links. PIM is 

often deemed advantageous because the in-memory processing cores can harness this 

high internal memory bandwidth optimally.  

However, from figure 17, we can observe that the performance is not completely 

dependent on high internal memory bandwidth. In fact we get only around 2.5% 

performance improvement with internal memory bandwidth twice of that external. This 

is the case because, GPUs are often bottlenecked by the off-chip links connect GPU to 

the main memory. Ones the blocks are offloaded to PIM cores, memory accesses from 

PIM do not have to be constrained by this bottleneck and hence can completely utilize 

available internal bandwidth form TSVs. 
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5.5.6 Energy Consumption results 

  

Figure 18: Energy consumption in PIM enabled GPGPU with Block offloading monitor 

 

Figure 19: Energy consumption in PIM enabled GPGPU 
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Figure 18 and 19, shows the energy consumption of the PIM enabled GPGPU as compared 

to the baseline GPGPU architecture (results are normalized to the baseline GPGPU 

architecture). We can see that integrating PIM into GPGPU is effective in reducing energy 

consumption of the system. Total energy consumption is reduced by 5% on an average 

(maximum of up to 26%). Energy reduction in off-chip links is better in PIM enabled 

GPGPU with block offload monitor (BOM) because BOM is very effective in identifying 

memory intensive blocks and offloading them to PIM, hence resulting in lower memory 

traffic on the off-chip links. Energy reduction in DRAM is 11% on average and maximum 

of 50%. Reduction in DRAM energy consumption is fairly notable in applications with 

high number of memory accesses like BFS, b+tree and backprop. This is mainly because 

of low energy per bit value for DRAM layers in HMC as compared to GDDR used in the 

baseline GPGPU. Energy consumption in off-chip links is by 5% on average due to 

reduction in traffic for GPU to main memory accesses. Overall reduction in energy 

consumption is due to improvements in performance provided by PIM enabled GPGPU. 

This increased performance reduces the total execution time and hence reducing leakage 

energy. 
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6 Related work 

6.1 Current DDRx systems 

The DDR family of memory is today universally popular with currently DDR3 used 

in majority of systems boards and DDR4 which is ramping up slowly. DDR4 is 

expected to replace DDR3 in coming years. DDR4 allows only a single DIMM per 

memory channel to solve the signal integrity problem been associated with DDR3. By 

limiting channels to a single DIMM, DDR4 is expected to scale at least to 3.2GT/s 

(twice the data rate of DDR3 1600) [11]. Although this alleviates the bandwidth 

problem, it still faces capacity issues. In addition, since a single memory channel 

requires hundreds of CPU pins, scaling the number of channels to increase channel 

capacity is not a favorable solution. Therefore, the low availability and high costs of 

high density DIMMs makes them impractical for big systems. Finally, DDR4 like its 

predecessors, suffers from the trade-off between bandwidth, capacity and power 

reductions. 

Another likely choice to replace DDR3 and DDR4 is LPDDR4. The LP stands for 

low power. LPDDR4 is a type of DDR memory that has been optimized for the wireless 

market. LPDDR’s advantages include its widespread adoption and availability and its 

well defined and stable specifications. The low-power optimization makes it only a 

little more expensive than DDR, and it still uses the I/O pins that DDR uses. Ease of 

migration is also a positive factor, because it runs in the same frequency range as DDR. 

However, the biggest trade-off is its lifetime. Since the wireless market turns over its 

products approximately every 12 months, LPDDR memories change at a similarly 
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rapid pace. If a big company sells products for 10–15 years, it is difficult to 

accommodate a memory device family that changes every 12 months [25]. 

6.2 2D Processing in-memory  

Multiple research teams have built 2D PIM designs and prototypes [26, 27] that 

confirmed a great potential for speedup in certain applications like media, irregular 

computations and data intensive applications [28]. Before 2000, there was great interest 

in processing-in-memory technology or intelligent memory. The designs at that time 

placed many small general purpose cores n the memory system. These cores were small 

in order to minimize losses in memory integration, and numerous, to extract high 

bandwidth [31]. However these works faced a tough road ahead and couldn’t make it 

to commercial markets primarily because the DRAM prices at that time were very low 

as compared to intelligent memory. However, with the fast growth of chip density PIM 

is a very promising way to alleviate the memory bottleneck, and possibly the best way 

to exploit the huge number of transistors available [30].  

Recent work in PIM: There are several studies on developing new and more 

efficient PIM architecture. Pugsley et al. [28] propose a near data computing 

architecture which focus in-memory processing on MapReduce workloads to utilize 

parallelism and the largely localized memory access of these applications. SAP HANA 

in-memory and in-memory database platform [29] is a concrete example that employs 

a cluster of nodes that deliver an in-memory storage space.  

Zhang et al. [1] focus on moving computations closer to the memory to reduce both 

energy and data movement overheads. However, this approach significantly increases 
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programmer efforts to identify compute and data intensive nodes to execute it on local 

host processors or 3D stack logic layer.  

Hsiesh et al. [6] proposes work towards a more programmer transparent near data-

processing. This approach minimizes programmer efforts and identifies the code blocks 

for offloading behind the scenes to in-memory processing. Ahn et al. [21] highlights 

PIM as viable solution to achieve parallel graph processing which is extremely 

challenging the conventional systems due to severe memory bandwidth limitations. 

Zhu et al. [32] introduces logic-in-memory (LiM) system that integrates 3D die stacked 

DRAM architecture with application specific data intensive applications.  

All these works target a very specific set of applications like map reduce, graph 

processing, big data analysis etc. In addition, the work is primarily concentrated 

towards integrating PIM with conventional processing units. Hsieh et al. however 

approaches with GPU as the primary computing unit with data intensive code blocks 

offloaded to in-memory units. Our research targets both general purpose application 

and GPGPU integration to maximize utilization of PIM technology across a wide range 

of applications. 
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7 Conclusion 

GPGPUs are very effective in executing programs with parallelism. Memory, 

however, also plays a very crucial role in deciding the system performance especially 

while executing applications with highly intensive and imbalanced workload. We 

integrate PIM (Processing in-Memory), with an effective technique to identify and 

offload memory intensive thread blocks, in the GPGPU system. Our technique 

dynamically identifies candidate blocks for offload using cache miss rate, block 

execution times and decides at runtime to actually offload based to resource availability 

at PIM. Our proposed solution improves GPGPU performance by 30% on an average 

across major general purpose workloads with up to twice performance increase in 

irregular memory intensive workloads. Block offloading reduces average block 

execution time and ensures uniform resource utilization and reduce energy 

consumption. Our approach also does not burden the programmer to make software 

changes for architectural compatibility. 

Hence, we conclude that our approach with Thread Block Offloading to PIM 

presents a new dimension of solving memory bandwidth issues and efficiently utilizing 

PIM resources in GPGPU system. 
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8 Future Work 

There are three major things we think should be continued in the future to make 

PIM block offloading more effective. First, to continue to further develop candidate 

block identification process by using static analysis using the compiler. Currently block 

identification uses previous block execution history and L1 cache miss rate to analyze 

and determine if a block would be running slow. However, getting recommendations 

from the compiler about all the memory intensive instructions in an application will 

further aid in identification process. 

Second, handle divergence in block offloading. In our current work, thread blocks 

with divergence are restricted for offload to PIM even if the threads in that block are 

experiencing frequent cache misses. This is mainly because offloading divergent thread 

blocks adds complexity in tracking active threads and re-convergence program 

counters. Divergence is wide spread across many memory intensive applications and 

developing an technique capable of efficiently offloading divergent threads could 

potentially bring a lot of performance enhancements. 

Third, dynamic block offload aggressiveness. Block offload aggressiveness 

controls the overall system performance: low aggressiveness will lead to underutilized 

PIM resources and high aggressiveness will make off chip links as a bottleneck also 

leading to insufficient utilization of PIM. Aggressiveness of block offload always needs 

to find a sweet spot to get the best possible performance result. Currently this is done 

statically but in future works this could be implemented in dynamic. 
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