A Three-Dimensional Fully Nonlinear Model in Curvilinear Coordinates for Simulating Waves Interaction with a Bottom-Mounted or Partially-Submerged Fixed Cylindrical Structure

dc.contributor.advisorWang, Keh-Han
dc.contributor.committeeMemberMo, Yi-Lung
dc.contributor.committeeMemberVipulanandan, Cumaraswamy
dc.contributor.committeeMemberMansour, Alaa M.
dc.contributor.committeeMemberQian, Qin
dc.creatorChen, Yu Hsiang
dc.date.accessioned2021-07-15T04:58:42Z
dc.date.available2021-07-15T04:58:42Z
dc.date.createdMay 2016
dc.date.issued2016-05
dc.date.submittedMay 2016
dc.date.updated2021-07-15T04:58:47Z
dc.description.abstractThis dissertation presents a three-dimensional fully nonlinear wave model developed to simulate solitary waves propagating in straight or curved channels and interactions bottom mounted or partially submerged structures. The three-dimensional Laplace equation and fully nonlinear boundary conditions are solved numerically by the finite difference method. In order to have the computational grids fit closely to the curved structural boundaries and the time varying free surface for numerical advantage, the transient three-dimensional curvilinear coordinate transformation technique is adopted to convert the original governing equation and boundary conditions in Cartesian coordinates into the curvilinear coordinate based formulations. The effects of grid size and time step on the accuracy and convergence of the present numerical model are examined and discussed by simulating a solitary wave freely propagating in a straight rectangular channel. Then, the feature of the curvilinear coordinate transformation is tested by modeling the case of a solitary wave propagating in a 180° curved channel. After comparing with the results obtained from the generalized Boussinesq (gB) two-equation model, this three-dimensional model can produce stable and accurate predictions on nonlinear waves propagation in a channel with irregular boundary. The present three-dimensional model is extended to solve the wave and structure interaction problems. One of the cases is a solitary wave impinging a bottom mounted and surface piercing vertical cylinder. The results obtained from the present three-dimensional model shows a reasonable agreement with the experimental measurements and those calculated from the gB model. The other case is a solitary wave interacting with a partially submerged and fixed floating cylinder. Laboratory tests for a solitary wave passing through a partially immersed and fixed floating cylinder were conducted to verify the present three-dimensional model performance. The numerical results of the present model match well with the experimental measurements. It is demonstrated through these comparisons that the present three-dimensional fully nonlinear wave model can provide reliable predictions on wave evolution and loading for a solitary wave interacting with selected cylindrical structures.
dc.description.departmentCivil and Environmental Engineering, Department of
dc.format.digitalOriginborn digital
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/10657/7903
dc.language.isoeng
dc.rightsThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).
dc.subjectThree-dimensional modeling
dc.subjectfully nonlinear wave
dc.subjectWave-structure interaction
dc.titleA Three-Dimensional Fully Nonlinear Model in Curvilinear Coordinates for Simulating Waves Interaction with a Bottom-Mounted or Partially-Submerged Fixed Cylindrical Structure
dc.type.dcmiText
dc.type.genreThesis
thesis.degree.collegeCullen College of Engineering
thesis.degree.departmentCivil and Environmental Engineering, Department of
thesis.degree.disciplineCivil Engineering
thesis.degree.grantorUniversity of Houston
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CHEN-DISSERTATION-2016.pdf
Size:
6.89 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.81 KB
Format:
Plain Text
Description: