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Abstract

This dissertation presents a three-dimensional fully nonlinear wave model
developed to simulate solitary waves propagating in straight or curved channels and
interactions bottom mounted or partially submerged structures. The three-dimensional
Laplace equation and fully nonlinear boundary conditions are solved numerically by the
finite difference method. In order to have the computational grids fit closely to the curved
structural boundaries and the time varying free surface for numerical advantage, the
transient three-dimensional curvilinear coordinate transformation technique is adopted to
convert the original governing equation and boundary conditions in Cartesian coordinates

into the curvilinear coordinate based formulations.

The effects of grid size and time step on the accuracy and convergence of the
present numerical model are examined and discussed by simulating a solitary wave freely
propagating in a straight rectangular channel. Then, the feature of the curvilinear
coordinate transformation is tested by modeling the case of a solitary wave propagating
in a 180° curved channel. After comparing with the results obtained from the generalized
Boussinesq (gB) two-equation model, this three-dimensional model can produce stable
and accurate predictions on nonlinear waves propagation in a channel with irregular

boundary.

The present three-dimensional model is extended to solve the wave and structure
interaction problems. One of the cases is a solitary wave impinging a bottom mounted
and surface piercing vertical cylinder. The results obtained from the present three-
dimensional model shows a reasonable agreement with the experimental measurements

vi



and those calculated from the gB model. The other case is a solitary wave interacting
with a partially submerged and fixed floating cylinder. Laboratory tests for a solitary
wave passing through a partially immersed and fixed floating cylinder were conducted to
verify the present three-dimensional model performance. The numerical results of the
present model match well with the experimental measurements. It is demonstrated
through these comparisons that the present three-dimensional fully nonlinear wave model
can provide reliable predictions on wave evolution and loading for a solitary wave

interacting with selected cylindrical structures.
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Chapter 1

Introduction

1.1 Practical Significance

Water waves commonly occur in nature. They are routinely generated by many
factors, such as wind, gravitational forces between the sun, moon, and earth, undersea
earthquakes, and others. As ocean covers nearly three-quarters of the surface of the earth,
the consequence of wave motion and its interaction with structures is closely associated
with human activities. The occurrence of extreme waves as a result of undersea
earthquakes, hurricanes (typhoons), or eruptions of submarine volcanoes can cause
devastating property damage and loss of life. In 2011, a submarine earthquake triggered a
tsunami at Japan’s northeastern offshore and has resulted in the loss of nearly 18,000
lives, billions of dollars of property damages, and a world shocking crisis of a nuclear
power plant. A tsunami is one kind of extreme wave that behaves as a nonlinear shallow-
water wave. It is essential to understand the formation and transformation of water waves
under different scenarios, especially shallow-water waves. Thus, detailed investigation of
nonlinear shallow-water waves has become increasingly important. A wide range of
topics related to costal and offshore engineering applications, such as design of offshore
structures, coastal seawalls, breakwaters, harbors, and so on, have been studied in the past
decades. However, as the layout of the costal and offshore structures become more
complicated, it is increasingly challenging to develop proper methods to solve the

complex governing equations and physical boundary conditions describing the interaction



process between waves and structures. Thus, to advance the capability of wave-structure
interaction modeling, the present study focuses on the development of curvilinear
coordinates based fully nonlinear wave model to investigate the interaction between

waves and three-dimensional structures.

1.2 Statement of the Problem

The main fluid body of water waves can be assumed to be incompressible and its
motion irrotational. With this assumption, a velocity potential that satisfies the Laplace
equation can be defined to describe the wave motion. Certainly, the main problems faced
in solving the wave related problems, either analytically or numerically, are mostly
related to the formulation of the nonlinear boundary conditions, especially at the free
surface, and solutions of the nonlinear equations. Linear water wave theory can provide
the simplified and approximate solutions for the fully nonlinear waves by neglecting
some of the nonlinear effects. However, the linear wave solutions cannot truly reflect the
physical impacts caused by the nonlinear waves, especially the extreme waves, on wave
elevations and wave loads on structures. The waves in higher dimensions, such as the
three-dimensional, increase the difficulty of solving the real wave problems.

If the focus of the study is to determine the free-surface elevation and vertically
averaged flow variables, then the three-dimensional problems can be formulated by two-
dimensional equations. A Boussinesq model is a typical example of two-dimensional
models applied to three-dimensional wave propagation. The Boussinesq equations, due to
their orders of accuracy, are best described as the weakly nonlinear and weakly dispersive
shallow-water waves. In the past decades, a limited number of researchers have

developed and extended the Boussinesq equations to engineering applications. The



generalized Boussinesq equations were derived by Wu (1979, 1981). Later, Wu and Wu
(1982) established a numerical model for the generation and propagation of nonlinear
long waves under a moving surface pressure condition. Nwogu (1993) modified the
Boussinesq equations by using the velocity vector at an arbitrary depth as a dependent
variable. This modification makes Boussinesq equations applicable to a wider range of
water depths.

With the advancement of computing power, fully three-dimensional models may
be developed to simulate complex wave propagation problems, as they can provide more
detailed information on wave motion, velocity distribution, and especially the three-
dimensional wave loadings on structures. One way to solve the fully three-dimensional
wave problems is by adopting the three-dimensional Navier-Stokes equations as the
governing equations. In addition, a free-surface tracking technique, such as the Volume
of Fluids (VOF) method, needs to be applied to predict the free-surface elevations.
However, the overall numerical computations are tedious and the VOF method is not
effective for large scale simulations and tracking of the three-dimensional free surface.
The other way of modeling wave propagation and wave-structure interaction in three
dimensions is to solve the Laplace equations of the velocity potentials in various fluid
regions satisfying the associated free-surface, interfacial and structural boundary
conditions. The procedure allows the direct application of the kinematic and dynamic
free-surface boundary conditions to accurately obtain the free-surface elevations in
transient motion. For practical applications, the Laplace equations and boundary
conditions can be solved up to the three-dimensional domain by selected numerical

schemes, such as the finite difference, finite element or finite volume method.



Obtaining the numerical solutions requires the discretization of the governing
equations into a set of algebraic equations of the unknown variables to be solved in the
grid system of the computational domain. For three-dimensional computations, the finite
difference method is considered to be an effective numerical scheme and can be easily
applied to solve the model equations. However, it is limited to the domains with a regular
and structured grid system. To extend the finite difference method to a domain with
irregular boundaries, the boundary-fitted coordinate (or curvilinear coordinate)
transformation technique (Thompson et al. 1974, 1977) has been applied to solve more
complex wave-structure interaction problems. For example, Wang et al. (1992)
developed a generalized Bousinessq numerical model in a curvilinear coordinate system
in two horizontal dimensions to simulate scattering of solitary waves by a vertical
cylinder. The model was also applied to study nonlinear long waves interacting with
multiple vertical cylinders (e.g. Wang and Jiang, 1994; Wang and Ren, 1999). Recently,
Chang and Wang (2011) developed a three-dimensional model using transient curvilinear
coordinate transformation along the vertical direction to investigate the generation of
nonlinear long waves by a submerged moving body. The three-dimensional nonlinear
wave model with the three-dimensional curvilinear coordinate transformation technique
has not yet been developed for simulating wave propagation and wave-structure
interaction.

As the number of structures built in offshore or coastal environments increases,
the study of wave and structure interaction becomes more important, especially under the
conditions of nonlinear waves and floating structures. The wave run-up and forces acting

on the structures are critical information for the design of the fixed or floating structures.



Wave run-up onto the deck, called green water load, can cause damage to the floating
structures. Forces on the main offshore structures affect the overall design of the
supporting structures, mooring lines, risers, and others. Three-dimensional numerical
models can provide effective and comprehensive estimations of wave run-ups and forces
on structures.

In this study, a three-dimensional fully nonlinear wave model, based on solving
the Laplace equation and boundary conditions in a domain with three-dimensional
curvilinear coordinate system, is developed to simulate propagation of solitary waves and
their interactions with a bottom mounted and surface-piercing cylindrical structure or a
floating cylindrical structure. Model results with selected cases will be validated by
comparing the simulated solutions with measured data from Wang et al. (1994), present
wave tank tests, and other published analytical and numerical results. Other results in
terms of wave elevations and forces on structures are also presented.

Following the Introduction section, a Literature Review section is provided to
describe the prior studies of nonlinear waves, especially the propagation of nonlinear

long waves and their interactions with fixed or floating structures.

1.3 Literature Review

1.1 Shallow water waves interacting with bottom mounted cylindrical

structures

The interactions between water waves and cylindrical structures have been
investigated for decades. MacCamy and Fuchs (1954) applied the diffraction theory to

study the interaction of long-crested waves with a vertical cylinder in general water



depths and compared the wave profiles with experimental measurements. Molin (1979)
derived the nonlinear wave solutions to compute the second-order diffraction loads on
three-dimensional bodies. For nonlinear long waves, Isaacson (1983) implemented the
expressions of the free-surface elevation and velocity potential in Fourier integral forms
to derive the analytical solutions on wave force and free-surface run-up for a solitary
wave scattered around a vertical cylinder. Later, Basmat and Ziegler (1998) obtained
higher-order equations for the diffraction of a solitary wave with a vertical cylinder and
accordingly extended Isaacson’s (1983) first-order approximation to second-order
solutions.

For the class of nonlinear shallow-water (or long) waves, the two important

dimensionless parameters, «=H/h, and € = (hy/1)?, are assumed to be small.
However, their ratio, known as the Ursell number, is of order one, or & =O(¢). Here, H

is a representative wave height, hy is a typical water depth, and A is a characteristic
wavelength. The standard expansion method using the two small dimensionless
parameters @ and € can be followed to derive the Boussinesq equations to describe the
so-called weakly nonlinear and weakly dispersive waves. The Boussinesq equations have
been widely applied numerically to study the propagation, transformation, and diffraction
of nonlinear long waves under the influence of variable water depths and the existence of
structures. The associated wave loads on structures have also been investigated.

The lower-order Boussinesq equations were originally derived in a domain of
constant water depth. To extend the applications, the improved Boussinesq equations in
higher order have been developed to describe the higher-order nonlinear long waves in a

wide range of water depth (Peregrine, 1967; Wu, 1981, 1998; Nwogu, 1993; Wei and



Kirby, 1995; Agnon et al., 1999; Gobbi and Kirby, 2000; Madsen et al., 2002). Based on
the concept of layer-mean velocity potentials, Wu (1979) developed a generalized
Boussinesq two-equation model for modeling a three-dimensional nonlinear long wave
propagating in shallow water. In 1998, Wu further derived the fully nonlinear and weakly
dispersive Boussinesq equations for the study of fully nonlinear long waves. Wang et al.
(1992) solved the generalized Boussinesq equations using the finite difference scheme
and curvilinear coordinate system to investigate the three-dimensional scattering of
solitary waves by a vertical cylinder. Later, Wang and Jiang (1994) and Wang and Ren
(1998) adopted the concept of the multiple grid system, which provides a better fit of the
grid system along the surface of cylindrical structures, to simulate the interaction between
a solitary wave or a cnoidal wave with arrays of cylinders.

The finite element method was also introduced into the numerical approach of
solving the Boussinesq equations because of the advantage of using non-uniform and
unstructured grids. Katopodes et al. (1987) and Antunes et al. (1993) constructed the
finite element models to solve the original Boussinesq equations. Fully unstructured
meshes were used in a linear finite element model developed by Kawahara et al. (1994).
For modeling shallow water wave interaction with structures, Ambrosi et al. (1998) and
Woo et al. (2004) investigated the interactions of solitary waves with a vertical cylinder
by the finite element method. Recently, Zhong and Wang (2008) developed a time-
accurate stabilized finite element model to investigate the diffraction processes of both
weakly nonlinear and weakly dispersive waves and fully nonlinear and weakly dispersive
waves by cylindrical structures. Other fully three-dimensional models have also been

constructed to simulate the interaction between waves and structures. Yang and Ertekin



(1992) applied the boundary element method to calculate the solitary wave induced
forces on a vertical cylinder. Simulations of the interaction between a vertical cylinder
and steep waves were carried out by using a three-dimensional finite element model (Ma
et al., 2001; Kim et al., 2006). Later, Eatock Taylor et al. (2008) combined the boundary
element and finite element methods to perform numerical wave tank simulation. Ai and
Jin (2010) applied an efficient non-hydrostatic finite volume model to simulate solitary
waves interacting with a vertical cylinder, an array of four cylinders, and a submerged
structure. Choi et al. (2011) solved the three-dimensional Navier-Stokes equations by
means of a finite difference method to model the run-up of a cnoidal wave around a fixed
bottom mounted cylinder. Experimentally, Yates and Wang (1994) provided a series of
measurements of free-surface elevations around a vertical cylinder and induced forces for

the case of a solitary wave scattered by a vertical cylinder.

1.2  Water waves interacting with floating structures

In recent years, construction of floating structures in offshore applications has
been expanded considerably. However, the studies of wave interaction with floating
structures have been very limited, especially considering nonlinear shallow-water waves.
The analytical formulations to predict wave forces on floating structures can be found in
Miles and Gilbert (1968), Garrett (1971), Yeung (1981), Mavrakoos (1985), and Sabuncu
and Goren (1985). Yu and Chwang (1993) and Chwang and Wu (1994) used a linear
wave theory and an eigenfunction expansion method to study the scattering of water
waves by a horizontal submerged disk. The eigenfunction expansion method was also
applied to investigate the wave interaction with floating structures (Drimer et al. 1992;

Wu et al.,1995; William et al., 2000). For an array of floating cylinders, three-



dimensional analytical methods have been developed to solve the wave radiation and
diffraction problems (Kagemoto et al., 1986; Kim, 1993; Yilmaz et al., 1998, 2001;
Siddorn and Eatock Taylor, 2008; Zeng and Tang, 2013). Zheng and Zheng (2015)
applied the concepts of the analytical solutions of an array of floating cylinders with
eigenfunction expansion matching method to predict the wave diffraction by a truncated
cylinder in front of a wall.

Numerically solving three-dimensional governing equations directly with fully
nonlinear boundary conditions may be utilized to investigate the impinging of waves on
floating structures. The boundary element method with its computational elements
arranged along the boundary surfaces is an approach that has been applied by researchers
to simulate the interaction of waves and floating structures. Isaacson (1982) solved the
integral equations of the boundary element approach based on the Green’s function
theorem to obtain velocity potentials of the fluid domain. He also computed the wave
forces acting on the fixed and floating structures. Isaacson and Cheung (1990, 1991, and
1992) modified the time-stepping procedure to solve wave diffraction around the two-
dimensional and three-dimensional body problems. A higher-order boundary element
model with the mixed Eulerian-Lagrangian method was developed to simulate nonlinear
wave-wave and wave-body interactions (Kim et al., 1998; Xue et al., 2001; Lue et al.,
2001). Boo (2002) used the time-domain higher-order boundary element method to
simulate linear and nonlinear irregular waves and their interactions with a vertical
truncated circular cylinder. Using different time domain scheme, Koo and Kim (2007)
utilized Mixed Eulerian-Lagrangian numerical method and Runge-kutta fourth-order time

integration techniques on the free surface to study the problem of two-dimensional fully



nonlinear waves encountering a surface-piercing body. Bai and Taylor (2009) later
applied the higher-order boundary element method to simulate fully nonlinear water
waves interacting with fixed and floating flared structures.

In addition to the boundary element method, other discretization methods, such as
finite difference and finite element methods, have also been used to develop models to
study wave and floating structure interaction problems. Park et al. (2001) presented a
numerical wave tank study on nonlinear waves interacting with a stationary and vertically
truncated circular cylinder by a finite difference based Navier-Stokes equations solver.
Lin (2006) also solved the Navier-Stokes equations with the finite difference method and
multiple-layered o-coordinate transformation technique to simulate the transformation of
solitary waves by a two-dimensional rectangular floating structure. Later, Kang et al.
(2015) extended the multiple-layered o-coordinate transformation technique to study the
problems of wave interacting with a submerged three-dimensional vertical circular
cylinder. By applying the finite element method, Zhu et al. (2001) solved the Navier-
Stokes equations to simulate free-surface waves over submerged horizontal cylinders.
Wang et al. (2007) investigated the interaction between nonlinear waves and non-wall-
sided three-dimensional structures. Sun et al. (2015) applied the higher-order finite
element method to simulate a solitary wave impacting on a two-dimensional structure.
Recently, Lu and Wang (2015) developed an integrated analytical-numerical approach
for modeling a solitary wave propagating past a fixed two-dimensional floating body. A
series of experimental measurements in terms of reflected and transmitted wave
elevations have also been conducted by Lu and Wang (2015) to compare to their model

solutions.
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1.3 Water wave propagation in a curved channel

As curved channels are easily observed in nature and in engineering applications,
the phenomenon of wave propagation in curved channels is also an important topic to
study. In past decades, only very limited researches focused on investigating the
nonlinear shallow-water waves propagating in curved channels. Rostafinski (1972)
derived a two-dimensional analytical solution by using linear wave equations for the
propagation of long acoustic waves in curved ducts. Katopodes and Wu (1987) developed
a finite element model with a rectangular grid system to simulate a solitary wave
traveling through a 90 degree sharp-cornered channel. However, it is difficult to describe
non-orthogonal boundaries, like curved channels, by using the rectangular orthogonal
grid system for numerical simulations. For this reason, coordinate transformation systems
have been developed and applied in different cases of non-orthogonal boundaries such as
breakwaters, shorelines, and riverbanks (Wang, 1994; Shi, 2005; Wood and Wang, 2015).
Kirby et al. (1994) applied small- and large-angle parabolic approximations in
conformally mapped coordinate systems to investigate linear waves propagating in a
curved water channel. For nonlinear wave modeling, Boussinesq equations with
coordinate transformations can provide solutions to describe nonlinear long waves
propagating in variable topographies. Shi et al. (1996, 1998) adopted the boundary-fitted
curvilinear finite difference scheme developed by Wang et al. (1992) to solve the
generalized Boussinesq equations (Wu, 1981) for modeling solitary waves propagating
through a sharp-cornered channel bend and a smoothly curved channel bend. Then, the
higher-order Boussinesq equations were developed and applied with the curvilinear

coordinate transformation system to simulate waves propagating through a circular
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channel (Yuhi et al., 2000; Shi et al., 2001; Fang, 2012). In addition, the boundary-fitted
curvilinear transformations were combined with the solvers of the Navier-Stokes
equations to investigate nonlinear waves traveling in a curved channel (Choi et al., 2011;
Choi and Yuan, 2012). Different from using the boundary-fitted curvilinear
transformation technique, Nachbin and Da Silva Simdes (2012) applied the Schwarz-
Christoffel transformation into the generalized Boussinesq equations to study the

interaction of a solitary wave with a sharp-cornered and a smoothly curved 90 degree

bend.

Solving equations in an unstructured grid system is another way to model wave
propagation in a domain with non-orthogonal boundaries. Lohner et al. (1984) developed
a finite element model for a computational domain that is constructed by the linear
triangular elements to simulate two-dimensional oblique waves passing through a channel
with a sudden contraction of width. Asmar and Nwogu (2007) solved Boussinesqg-type
equations by the finite volume method with irregular triangular grids to carry out the

simulations of a solitary wave traveling in a curved channel.

1.4  Outline of the Dissertation

It is noticed from the literature review that the applications of Boussinesq models
are limited to the problems associated with the interaction between three-dimensional
nonlinear shallow-water waves and bottom mounted and surface piercing structures. For
the floating bodies, the vertically integrated (or averaged) Boussinesq models face the
difficulty to cover the solutions for the regions beneath the bodies. The development of a
fully three-dimensional modeling approach becomes necessary to investigate the

evolution of waves scattered by three-dimensional floating bodies. In addition, the study
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of nonlinear shallow-water waves interacting with a floating structure by solving the
three-dimensional governing equations has brought only very limited attention, especially
considering solitary wave interactions with floating structures. Thus, the aim of this study
is to develop a three-dimensional fully nonlinear wave model by solving the three-
dimensional Laplace equation and specified boundary conditions on the free surface and
structural surface in order to investigate the interaction process between nonlinear

shallow-water waves and cylindrical structures.

The general introduction, literature review, and the outline of the dissertation are
introduced in Chapter 1. Chapter 2 presents the theoretical development of the present
three-dimensional fully nonlinear wave model. The three-dimensional governing
equation, Laplace equation, and the various boundary conditions, including the kinematic
and dynamic boundary conditions, the open boundary conditions, and solid wall
boundary conditions, are formulated in this chapter. Additionally, the wave considered in
this study is a Boussinesq type solitary wave, where the analytical expressions of the
wave elevation and velocity potential are available to be used as the incident wave
conditions. In order to have the computational grids fitting closely to the irregular and
curved boundaries, such as a circular cylinder surface, and the time-varying free surface
for the numerical advantage, the transient three-dimensional curvilinear coordinate
transformation technique is adopted to convert the original governing equations and
boundary conditions in Cartesian coordinates into the curvilinear coordinate based

equations. The derivations of the transformed equations are also included in Chapter 2.

Chapter 3 describes a finite difference formulation for the governing equation and

a mixed explicit-implicit scheme for solving nonlinear free-surface boundary conditions.
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Moreover, numerically the multiple grid systems with curvilinear grid points covering the
regions close to or beneath the structures and separating from those regular grids for
regions far outside of the structures are used. This requires an iteration procedure to
generate consistent and converged results at grid points in the overlapped regions. Once
the three-dimensional velocity potentials and free-surface elevation around the cylindrical
surface are determined, the pressure distribution on the cylinder can be computed by
means of the Bernoulli equation. Accordingly, the total forces acting on the cylinder can
be calculated by integrating the pressure. In order to validate the stability and accuracy
of the present three-dimensional fully nonlinear model, modeling a solitary wave freely
propagating in a long fluid domain was performed for studying the effects of grid size
and time step. Another case study, a solitary wave propagating through a 180° curved
channel, was also carried out to demonstrate the capability of the present model to

simulate propagation of waves in a channel of arbitrary shapes.

Chapter 4 and Chapter 5 present the application studies of the interaction between
solitary waves and structures. In Chapter 4, the present three-dimensional fully nonlinear
wave model simulates a solitary wave interacting with a bottom mounted and surface
piercing vertical cylinder. The results showing the time variation of the diffracted wave
pattern and hydrodynamic forces acting on the cylinder considered in the simulation are
presented. The model performance is examined by comparing the time-varying wave
elevations at selected locations with those obtained from Boussinesq model and
experimental measurements (Yates and Wang, 1994). In Chapter 5, in order to show the
capability of the present three-dimensional fully nonlinear wave model in solving more

complicated wave-structure interaction problems, the results from simulating the
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propagation of a solitary wave and its interaction with a partially immersed and fixed
floating circular cylinder are presented. In addition, the laboratory experiments of a
solitary wave interacting with a partially immersed and fixed floating circular cylinder
were conducted for verifying the numerical results obtained from the present model. The
detailed data recording and experimental setup including the dimensions and locations of
the wave gauges, the wavemaker, and the circular cylinder are described. The evolution
of the wave diffraction process and wave induced hydrodynamic forces along the

horizontal and vertical directions for the selected cases are also presented in this chapter.

Finally, the key results and conclusions of the present three-dimensional fully
nonlinear modeling studies are summarized in Chapter 6. This chapter also discusses the

future study and potential applications of the developed wave model.
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Chapter 2

Theoretical Model for Fully Nonlinear Water Waves

There are many approaches based on general Boussinesq model to simulate the
long wave propagate. However, the vertical averaged Boussinesq model is hard to
describe the change in the vertical direction while the velocity potentials of each layer are
different such as a solitary wave passes through a floating structure. It is hard for using
vertical averaged method to solve the velocity potentials underneath the floating structure.
Moreover, the Boussinesq model is derived for weakly-nonlinear long wave. In order to
simulate the fully nonlinear long wave interaction with structures, especially with a
floating structure, the equations need to suit for fully three-dimension and fully non-
linear wave. The curvilinear coordinate transformation which can describe the boundaries
fittingly is also applied to this model. The equations used for developing three-dimension
fully non-linear solitary wave model and the curvilinear coordinate transformation in this

study will be presented in the following sections.

2.1 Governing Equations

In this study, simulations of solitary waves interaction with a full (bottom
mounted and surface piercing) vertical cylinder or a partially immersed and fixed floating
cylinder were carried out using a developed three-dimensional fully nonlinear wave

model. For the convenience of model development and results presentation, all physical

variables are nondimensionalized according to hg, \/ hy/g, and \/ ghy as respectively the
length, time, and velocity scales. We have
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X, v,z ¢ ,h) = R
(x,y,2, ¢, h) f
0
= t*
/g
(u,v,w) = oy >,
gho

p=-"—=—T— (2-1)
ch,  h.gh,

(33 33

where a variable with superscript represent the dimensional form of that variable.
Here, ¢ = velocity potential and (u, v, w) = three-dimensional velocity vector. Sketches
showing a solitary wave encountering a full vertical cylinder and a partially immersed
one are presented in Figures, 2-1(a) and 2-1(b), respectively. The Cartesian coordinates
were chosen as the original coordinate system to formulate the governing equation and

the boundary conditions. As shown in Figure 2-1, the x- and y- axes represent the two
horizontal coordinates while z-axis points upward with z =0 being set at the level of the
undisturbed free surface. z = ¢ (x,y,t) denotes the displacement of the free surface
from the undisturbed water level and ¢ = time The bottom of flow domain is horizontal
and is placed at z* = —h;, or in dimensionless form z = —1, where h;, is a constant water
depth. It is assumed that the fluid is incompressible and inviscid and the motion
irrotational. The velocity potential of the wave motion satisfies the Laplace equation,

which is described in dimensionless form as
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Vip =0, at —h<z<(, (2-2)

where V= (0/0x,0/dy,0/0z) is a vector differential operator. The velocity

components u, v, and w can be related to the velocity potential as

u=20a¢/ox, (2-3)
v =09¢/dy,and (2-4)
w=20¢/0z. (2-5)

In addition to the governing equation (2- 2), the boundary conditions at the free surface,
the bottom boundary, the rigid side wall and structural boundaries, and the upstream and
downstream open boundaries need to be formulated to complete the required equations
for the development of a three-dimensional nonlinear wave model that can be used to
simulate the propagation of nonlinear long waves and their interactions with cylindrical

structures. Those boundary equations are addressed in Section 2.2.
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(b)

Figure 2- 1 Coordinate system for the description of the governing equations: (a) bottom
mounted and surface piercing vertical cylinder, and (b) fixed floating
cylinder
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2.2 Boundary Conditions

As described above, providing appropriate boundary conditions is essential for the
development of stable and accurate wave simulation model for the present wave-structure
interaction study. The boundary conditions for each specified boundary are introduced

and formulated in the following subsections.

2.2.1 Free-surface boundary conditions

The kinematic property of the free surface indicates that once a fluid particle is on
the free surface, it remains on the free surface and its normal velocity follows the normal

velocity of the free surface. Defining the free surface function as F(x,y,z,t) =z —
¢ (x,y,t), the condition suggests that the total derivative of the surface function with

respect to time is equal to zero there. Thus, the kinematic free-surface boundary condition

(KFSBC) can be written as

w=¢, +ug +vg, at z=¢(x, 1), (2- 6)
where the subscripts denote the partial derivatives.

Moreover, the pressure is maintained as a constant at the free surface. The
Bernoulli equation is applied at the free surface as the dynamic free-surface boundary

condition (DFSBC), which is described as

b+ W2 +v2+wD)+ ¢ +p=0 at z=¢(x,0.0), (2-7)

where p is a pressure on the surface. Let p = 0, the DFSBC is reduced to
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¢t+%(u2+v2+wz)+§=0 at z=¢ (x,y,1). (2- 8)

2.2.2 Bottom boundary condition

The no fluid penetrating at the flat solid bottom boundary leads to the following
bottom boundary condition

% _,

o atz=-1. (2- 9)

2.2.3 Solid side wall and structural boundary conditions

For modeling the interactions between nonlinear waves and cylindrical structures
in a domain of wave channel with two side walls, the boundary conditions on the rigid
side walls and the circular cylinder surface follow that the normal fluid velocity vanishes
there. We have

% _,

Pl (2- 10)

where n is the unit normal direction to a solid boundary surface.

2.2.4 Open boundary conditions

The open boundary conditions control the waves propagating out of the
computational domain without the adverse impact from wave reflection. The Orlanski
type simple wave equations used as the open boundary conditions for simulating
propagation of nonlinear long waves were firstly applied by Wu and Wu (1982). The

equations in dimensionless forms for velocity potential and wave elevation are given as
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¢ ¢, =0 and (2- 11a)

¢ +6,=0, (2- 11a)

where the + or — sign is referenced according to the downstream or upstream boundary.
The above described open boundary conditions have been proven to be able to propagate
the primary and scattered waves out of the computational domain effectively, including
the cases of modeling scattering of a solitary wave by a vertical cylinder (Wang el al.,
1992), by a breakwater (Wang, 1993) and the interactions of cnoidal waves with cylinder
arrays (Wang and Ren, 1999). Later, the boundary conditions in equations (2- 11a) and
(2- 11a) were extended by Chang and Wang (2011) in their modeling study of generation
of three-dimensional water waves by a submerged moving object. The extended open

boundary conditions for the downstream boundary are given as

¢+ [(1+ ¢ )gx =0 and (2- 12a)

¢, + /(1+g)§x=o. (2- 12a)

The wave elevation effect is included in Equations (2- 12a) and (2- 12a). The
upstream open boundary conditions that control the transmission of the scattered or

reflected waves out of the upstream boundary are expressed as

¢:— [(1+ ¢ )¢, =0 and (2- 13a)
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¢, - (1+§)§x=o. (2- 13a)

2.3 Initial Condition for Incident Solitary Waves

As a solitary wave has a unique property of cohesive balance between the
nonlinear and dispersive effects and can be effectively applied to reveal the nonlinear
behavior of wave-structure interaction, it is selected, in this study, a solitary wave to be
the initial and incident wave condition.

An up to the second-order solitary wave solution as derived by Schember (1982)

is used. This second-order solitary wave solutions in term of wave elevation ¢ and

vertically averaged (layer-mean) velocity potential ¢ are expressed as

= IL [sech? k(x — ct — x,) + asech? k(x — ct — x,)] and (2- 14)
+a
4 1/2

= (505) tanh k(x — ct — x,), (2-15)

where

; 1/2
k=2 and (2- 16)
41+a)

c=1+a)?, (2- 17)
a = dimensionless wave amplitude, and the layer-mean velocity potential

_ ¢
=1 p(x.z,00dz1/(1+ ).
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In order to extend the ¢ equation in (2- 15) to the expression of three-dimensional
velocity potential, a relationship between the original velocity potential ¢ (x,y, z,t) and

the layer-mean velocity potential ¢ (x, y, t) as given in Wu (1981) and Wang et al. (1992)

¢=cﬁ—a<%+z+§>v2<ﬁ+0(55), (2- 18)

is applied. The neglected error terms in Eq. (2- 18) are up to O(g>), where & = A, / A.

The three-dimensional velocity potential for an incident solitary wave can be derived by
substituting ¢ from Eq. (2- 15) into Eq. (2- 18) as
4\ ro2\ (4 \
¢ = ga tanhk(x —ct — xy) — « §+z+7 Ea (2k*) tanh k(x —

ct — x,) [tanh? k(x — ct — x5) — 1] .
(- 19)

Equation (2- 19) can be used as an initial wave condition by setting # = 0 and letting the
peak of a specified solitary wave be situated at x = x,. For modeling wave and cylinder
interaction, the initial wave peak location is selected to be sufficiently far away from the
cylinder (Wang et al., 1992). This will allow the inputted incident waves from Egs. (2- 14)
and (2- 19) to gradually transition into an initial solitary wave that satisfies the derived

three-dimensional model equations before it encountering a vertical cylinder.

2.4  Forces on cylinders

Once the free-surface elevation and velocity potentials are determined from

solving the model equations, the wave-induced hydrodynamic force F acting on either a
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bottom mounted cylinder or a floating cylinder can be calculated by integrating the
pressure on the cylinder surface, where the pressure, p, is computed from the Bernoulli

equation

p=—z—¢ (2 +d2+¢2). (2- 20)

For the convenience of force comparisons with other published results for the cases of a
bottom mounted and surface piercing cylinder, the inline force coefficient Cry(t) is
defined as the integral of the x-direction component of the excess pressure (p + z) over

the surface of the cylinder in contact with the fluid. The form of the force coefficient is

F-e ™ ¢
CjH(t): 2R =-2 .[0 dHJ._h(p+z)c030dz, (2-21)

where e, = the unit normal direction along the x-axis, R is the radius of a cylinder
considered in the study, and 6 is the angle of angular direction measured from the x-axis.

For the partially submerged floating cylinder cases, the hydrodynamic forces
include two parts: horizontal force and vertical force. The horizontal (inline) force
coefficient Cry(t) is similar to Equation (2- 21), but integrated only the submerged
portion of the cylindrical surface. The vertical force coefficient Csy (t), which is acting on

the bottom of the floating cylinder, is computed according to

F-
Cry (1) = o 8132 =[f(p+2)d4A, (2-22)

0

where e, = the unit normal direction along the z-axis and dA is a small incremental area

of the bottom surface.
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2.5 Three-Dimensional Transient Curvilinear Coordinate

Transformation

The traditional Cartesian coordinates are convenient to define with rectangular
grids a regular flow domain with straight-line boundaries. However, when complex and
curved boundaries exist in the physical domain, the Cartesian coordinates based finite
difference models are expected to face the difficulty in representing the irregular
boundaries with rectangular grids and the associated numerical challenge in computing
the values of physical variables there. In order to facilitate the application of the
boundary conditions on the irregular and curved boundaries (e.g. cylinder surface) and to
represent the selected structural surface in the computational domain well, the boundary-
fitted (or curvilinear) coordinate transformation technique is applied in the present
modeling study.

The curvilinear coordinate transformation technique was introduced by Thompson
et al. (1974) and has been extended to the modeling studies of solitary waves interactions
with a bottom mounted cylinder (Wang et al., 1992) or cylinder arrays (Jiang and Wang,
1994; Wang and Ren, 1999) and the generation of fully nonlinear waves by a submerged
moving object (Chang and Wang, 2011). In this study, a fully 3D transient curvilinear
coordinate transformation is utilized to transform the transient rectangular grids in

Cartesian coordinates (x, y,z;t) into transient curvilinear coordinates (5,77,7;2') for

multi-grid modeling application. The transient effect on the computational grids is limited
to the vertical coordinate. This indicates that the physical z coordinates vary at each time
level according to the updated vertical domain at a given location. The transformation of

the governing equations and the boundary conditions are summarized in the following.
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The spatial derivatives of velocity potential ¢ with respect to &, 77, and y are

Op _0pox 0pdy 0f 0z
0 ox OF Oy 6 oz O

d¢ 8¢ ox 8¢ ay 8¢ 0z
877 ox 677 oy 877 oz 877

, and

8¢ O¢ Ox 8¢8y 8¢82
87/ 8x67/ 8y87/ 0z Oy

Solving the above three equations, we have

% _ yf727¢(§ +yézn¢7 _Zéyn¢7 _y627¢f7
Ox J ’

o9 _ X2, + X, 28, — X, 2,0, —x:2,8,
oy J

, and

99 _ XYy — X, VP,
0z J ’

(2-23)

(2-24)

(2-25)

(2- 26)

(2-27)

(2-28)

where J = (x £V —Xp Ve )zy is the determinant of Jacobian matrix. For the time derivative,

1t can be shown

op _0p 0f oz

ot or o0zor

(2- 29)

The terms of d¢p/0x, d¢p /0y, and d¢p/0z in Egs. (2- 26)- (2- 28) are substituted into the

Laplace equation [Eq. (2- 2)] in Cartesian coordinates
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o9 ¢ 0
f ¢ f:o, (2- 30a)

to give

% {(xj +y;)zi¢§§ + [‘2(’“; +y;)zézy +2(xx, + yéyn)znzy]¢§7 -2(xx, + v, )24,

+ [2("5’% +y§y77)chzy _2("; +y§)27727]¢777/ +(x§ +y§) 2y + [(ycfzn _ynZ§)2+(an§ _xézﬂ)z
+(x§yn _xnyé)z ]¢W}+% {[Mi% — 7 + (ynzézﬁ _J%anﬁ)%][(x; +J’$)x¢§

=2 (xx, + v, )x, + (xé +y§)xm7]+ [xnzi% —X:2,8, + (ngnZ; _xnzézi)@][(x; +y$)y:§
_z(xéfxﬂ + yéfyn)yéffl + (xé +y§)y7777]+(x77y-§ _xéyn)[ 2 (xg“xn +y§y77)z-§z}/zm

-2 (xg + yé)znzyzm +2 (xgxn + ygyﬂ)znzyzyf -2 (xi + y;)ziz},zyg + (xi + yi)zizﬁ

-2 (xgxﬂ +y§y,7)zfz§,7 +(x§ +y§)zﬁz,m + (xéz,? +y§z§ +x§y;)zw -2 (xéxnzgzn + VeVyZez,

2.2 2.2 2.2
+x§x77y§yn)zyy +<an§ +yrlch +xnyé)zw ]¢7 }

(2- 30a)
Let
(z 2)2
X +y |z
g“:—” 2’7 r (2-31)
J
2
—Z(xx +yy)z
g, = 5772577 L (2-32)
J
2 2
2(xx +yy)zz—2(x +y)ZZ
g, = cn &7 7772 71 57’ (2-33)

J
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&p =", (2-34)

2 (xgxﬂ + ygyn) zgzy -2 (xé + yg)znzy
83~ 7 , (2- 35)

g, = (yézn Y nZe‘) + (xnze‘ _ ;Cézn) + (xgy n_ e‘) 2 , (2-36)

/= 3 - (2- 37)

A 3 , (2- 38)

(ex+gy) , (xvy e %, n) (gzzzm T 81 T 81 Pee T 81 e T 8y T g332w)

1= :
3 J3 J
(2-39)
x—(yzzz— zzz)Dx 2-40
EX=VnEe, T YAy ’ (2-40)
—(xzzz—xzzz)D 2-41
8V = WeEyE, TN Y (2-41)
2 2 2 2

Dx = (xﬁ + yn)x&; -2 (xéxn + ygyﬂ)xén + (x§ + yg)xm7 , and (2-42)
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(2 2) _ (2 2)
Dy—(x77+y77 ygg 2(x§x77+y§yn)y§n+ x§+y§ ym7 . (2-43)

The governing equation Eq. (2- 30a) in the transformed coordinates can be reduced to

80+ &b+ 8 + b T8 F @b+ [h A Sf + [ =0

(2- 44)

The fluid velocity can be calculated from velocity potential, namely (2- 3) to (2- 5) in the

transformed domain are

u=¢,=y,z,0. +v.2,06, — 23,8, - v:2,4,)]J . (2- 45)
v=¢, = (xézygbn +X,2:0, =X, 2,8 —X:2,0, )/J , and (2- 46)
w=¢ =(x.3,6,-v.x,0,)J. 2- 47)

The free-surface boundary conditions described in Egs. (2- 6) and (2- 8) are transformed

as

Y. —v.4 xXg —xC
L =w—u n78 etn | | 71 nPe | 404 (2- 48)
ey T e ey T e
¢T—W§T+%(u2+v2+wz)+§=0. (2- 49)
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where u, v, and w are three-dimensional velocity components given in Egs. (2- 45), (2-
46), and (2- 47) respectively. Similarly, the open boundary conditions as given in Egs. (2-

11a) and (2- 12a) are reformulated in the transformed coordinate system to have
¢T—wg“Tiw/il+§i(¢§/x§—¢7Z§/xézy):0 and (2- 50)

¢ 21+ 0) (¢, /x.)=0. 2-51)
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Chapter 3

Numerical Method

The numerical scheme and procedure of solving the governing equation and
boundary conditions formulated in Chapter 2 are described in this chapter. Numerically,
the finite difference scheme is adopted for the development of the three-dimensional
nonlinear wave model. The technique of multi-grid system is also used to handle more
complex computational domains. Cases with a solitary wave propagating along a 180°
bend channel and wave interactions with a bottom mounted and surface-piercing vertical
cylinder or with a fixed and partially submerged cylinder are simulated. The model tests
and validation in terms of the effects of grid size, time step and irregular domain are

presented and discussed.

3.1 Finite Difference Formulations

The finite difference method is applied to solve the governing equation and

boundary conditions. Following the usual notations, ¢;';, and g“l,nj are defined as

¢ = (AL, jAn,kAy,nAt) and &', =¢ (iAE, jAn,nAt), in which i, j, and k are grid
indices along respectively &, 77, and y directions, n is the time level index, At is the

time step, and A =An=Ay =1 are spatial mesh sizes in &, 77, and y directions. The

central difference scheme when applied to discretize the spatial derivatives in the

governing equation [Eq.(2- 44)] yields
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(3-2)

(3-3)

(3-4)

(3-5)
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€221 = c001 = —=12 (3-9)
4AEAD
021 = ¢201 = ﬁ , (3- 10)
n
cl22 = c100 = 4Ag—23A , (3-11)
nAy
~ 85
102 = 120 = m . (3- 12)
nAy
21 = izer% and (3- 13)
An n
c101 = %—% . (3- 14)
An n

The value of ¢; j at each grid point and at the new time level is evaluated by
solving Eq. (3- 1) through the iteration procedure. A mixed explicit-implicit scheme is
adopted to solve the nonlinear free surface boundary conditions specified at the grid
points on the free surface. Free surface elevation { and velocity potential ¢ there at the
new time level are determined through the developed numerical algorithm. The explicit

finite difference expressions of the transformed kinematic and dynamic free-surface

boundary conditions [Egs. (2- 48) and (2- 49)] are derived as

R .
Co = A NE (3-15)
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where

n o .n
EC kv = Wijku

(yszrlKM ylleMXé/Hlj 11])
- ”i,./,KM( X )
X jkm — Xict jxm NVijsrom = Vij-1,km

n
(xl+leM leJKMXé/le i1 (z/+1KM xzleMXé/Hlj 4,11/) }

Vi.j.km ( )(
Xivt,jkm — Xicnjxm NVijrkm yz, 1LKM

(y1+leM Yi- 1,KMX§1 i+ é/i,jfl) )}"

Xi kM~ Xi o1 kM Xym kM~ Yiajkm

XijeLgm ~ Xi o lKMXyH—l/KM Yi- leM)

(3- 16)
and
n+1 n n n+l n n
¢ iixm DKM W km (417 - é/i,j)_AtF;‘,j,KM ) (3-17)
in which
1 n
FiT,Lj,KM = [E (uiz,j,KM + viz,j,KM + Wiz,j,KM) + é’ij] . (3-13)

The superscript n + 1 denotes the provisional values at n + 1time level through explicit

computation. The index KM represents the vertical grid points at the water surface layer.
Through the iteration procedure, the updated values of '~ and ¢ - after solving
LJj L.j,

Egs. (3-15) and (3-17) are used to average with the values calculated from the following

implicit finite difference formulations
S =g+ ME, and (3- 19)
Blron =By + W (4’ n=gr ) At (F,nﬁm ) (3-20)
in which
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En+1 _ L n+l
i,j, KM — i j KM

n+l
(yz kM~ Vij- 1KMX§I+1; S (y1+1 kM~ Vi- 11KMX§I i 1; 1)
- ”i,j,KM( )

J
Xivt jkm ~ Xie leMXyz kM~ Vij-rkm )T\ X kM _xijflKMXyHleM Vi km

)-
)-(x
_{v“ (‘xH—leM le/KMX§z/+l 1) ( Xi j+LKM xzleMXé/Hl/ gzlj) }Hl
T RC |

i+1,j,KM le;KMXyz/+1KM yz}lKM Xi jrLkM xz]lKMxyHl/KM Vi km

(3-21)

and

n+1
1 17 2 2 2
F; lnj+KM [5 (ui, jkm T Vijkm t Wi j,KM) + gl j] . (3-22)

The averaging procedures using values obtained from the explicit and implicit

n+i
computations for { and é’ 1n kinematic free-surface boundary condition and for
ij

n+i n+l . .. .
¢ . and ¢ - dynamic free-surface boundary condition are applied to further the
L], L],

determination of the final values of the free surface elevation ¢ :;1 and velocity potential

¢zn,+11<M at (n + 1)At time. The described formulations are shown below

n+l n+1 n+1>
= 2 and
& (4 . / (3-23)
n+l n+i n+l )
o= + 2
¢z,J,KM (¢ i,j, KM ¢ i,j,KM / (3- 24)

Once the values of £ "' and ¢"/”KM at the free surface are obtained from Egs. (3- 23) and

(3- 24), the velocity potential at each grid point below the free surface of the entire
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computational domain at (n + 1)At time level can be determined by solving Eq. (3- 1)

with additional inputs from open boundary conditions [Egs. (2- 12a) to (2- 13a)].

3.2  Computational Domain with Multi-grid Systems

For modeling a solitary wave interaction with a fixed structure (e.g., a vertical
circular cylinder), a single set of curvilinear grids can generally represent well the flow
domain. However, the concern is that potentially the numerical instability and singularity
may appear when applying the structural boundary conditions on the grid points located
around the cylinder surface and the cuts of the grid system, especially at points in front of
the structures that receive the direct impact from the incident nonlinear waves. In order to
avoid the numerical errors caused by inappropriate grid points within a single set of
curvilinear grid system, a multi-grid system and a multi-block computational method as
introduced by Wang and Jiang (1994) for their numerical investigation of the interactions
between a solitary wave and a transversely arranged two vertical cylinders is adopted for
the present study. Polar grids (inner grids) are introduced to cover the region close to and
on the cylinder surface while the rectangular grids (outer grids) are extended over the
remaining fluid domain outside of the polar grid region. Overlapped grids between the
inner and outer grid systems are arranged to allow the interpolation of physical variables
at the grid interfaces for the numerical iteration and check of solution convergence.
Figure 3- 1shows the distribution of the inner polar grids and the outer rectangular grids
with the thick black line representing the inner boundary of the rectangular grids.

After an initial solitary wave introduced in the entire computational domain, to
proceed to the next (or new) time level, the numerical procedure for the multi-grid

systems is to firstly compute the velocity potentials and wave elevations throughout the
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outer rectangular grids. Then, a three-point interpolation scheme using the solutions of

neighboring rectangular grids is carried out to provide the values of ¢ and ¢ at the grid

points of the outer boundary of the inner polar grids. With the boundary values are
determined, the computation moves to the inner polar grids. Once the values of physical
variables within the inner polar grids are calculated, the velocity potentials and wave
elevations of the inner boundary of the outer rectangular grids are updated by the three-
point interpolation scheme using the values obtained from the computation within the
inner polar grids. The procedures are repeated until the converged solutions are obtained

at the new time level. The computation continues until the allotted final time level.

Tt
s

11N

et
TR

Figure 3- 1 Two-grid system with arranged grid points for a bottom mounted and surface
piercing cylinder situated in a computational domain
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For the vertical direction (z direction), the z coordinates are calculated using the

algebraic grid generation method as

z(i,j, k) =2z(i,j,1) + [z(i,j,KM) — z(i,j, D] (k = 1) /(KM — 1) . (3-25)

Again, KM represents the maximum index of the grid points along the z direction and
z(i, j, KM) denotes the vertical coordinate of the free surface. An example plot of the grid

system along the x-z plane is presented in Figure 3- 2.
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Figure 3- 2 An x-z plane view of the grid system in the physical domain
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For a partially submerged floating cylinder case, the computational domain is
separated into the outer region of the cylinder and the inner region beneath the cylinder.
Computation for the flow domain beneath the cylinder needs to be considered. The grid
setup for the outer region (excluding the region beneath the cylinder) is similar to the
case with a bottom mounted and surface-piercing vertical cylinder. In the inner region (i.e.
region beneath the cylinder), the horizontal polar grids are extended from the cylinder
boundary to the inner region, however, ended at an inner boundary slightly away from the
central region to prevent from the occurrence of numerical instability as a result of near
zero grid sizes. Additional rectangular grids are placed to cover the central region beneath
the cylinder. Again, within the central region, the overlapped inner rectangular and polar
grids are arranged to allow the values of the physical variables be interpolated between
the two-grid systems. The arrangement of the grid systems in the region outside of the
cylinder is the same as the bottom-mounted vertical cylinder case as described above in
Figure 3- 1. Overall, the grid arrangement, which consists of two rectangular grid systems
and one polar grid system, for the flow domain including a region beneath a partially
submerged cylinder is shown in Figure 3- 3. As can be seen in Figure 3- 3, the red dash
circle represents the boundary of the cylinder. From Figure 3- 3, it is noted that the polar
grids are extended to the outer part of the inner region beneath the cylinder. Added
rectangular grids are set at the central region to cover the flow domain in that region.
Compared to the thin polar lines, the thick ones represent the polar grid system for region
outside of the cylinder. The interfaces connecting two overlapped neighboring grid

systems are marked in black lines in Figure 3- 3.
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Figure 3- 3 Grid arrangement with two rectangular grid systems and one polar grid
system for the flow domain including a region beneath a partially
submerged cylinder

For the z direction, the algebraic grid generation method [Eq. (3- 25)] is again
applied and modified to calculate the vertical coordinates for the regions beneath and

nearby of the cylinder

2(i, j, k) = 2(i, ) + [20, f,Kyor) — 2 j 1) (k= 1)/ (i =Dk =2 ~ Ky, —1

z(i, j,k) = Z(isjskbot)+ [Z(iajaKM) _Z(iajakbot)](k_kbot)/(KM_kbot)ak = kbot ~ KM

(3- 26)
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where kbm is the index number of the vertical layer representing the level of the bottom

of the cylinder. The values of the velocity potential and free surface elevation of the
interfaces, namely the inner boundary of the outer rectangular grids (for flow domain
outside of the cylinder) and the inner boundary of the polar grids (for the domain beneath
the cylinder), are updated through a three-point interpolation scheme between two
different grid systems to further the iteration procedure. The computational procedure is
repeated to the next time level once the converged solutions at the interfaces and the

entire three-dimensional flow domain are obtained at the current time level.

3.3 Validation of the Numerical Model

Before using the developed three-dimensional fully nonlinear wave model to
investigate numerically the interactions between an incident solitary wave and cylindrical
structures, a series of test cases were simulated to examine the effects of the grid sizes
and time step on the solutions and to validate the model stability and accuracy.
Throughout the tests, reasonable input parameters can be selected. For testing of the
newly developed fully nonlinear wave model, the cases considering a plane solitary wave

propagating in a rectangular wave channel with a constant water depth were used.

As defined above, the x and y axes denote respectively the wave propagating
direction and the transverse direction. The z axis points upward with z=0, namely the x-y
plane, represents the wundisturbed free surface. The computational domain in
dimensionless units along x and y axes are respectively 0 < x <80 and 0 <y < 3. The
dimensionless water depth is set as one and the amplitude of the incident solitary wave a

is equal to 0.4. The rectangular grid sizes in x-y plane and time increment are Ax = 0.25,
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Ay = 0.25, and At = 0.1 for the numerical computations. The grid sizes varying from
0.05 to 0.07 in z direction are determined using Eq. (3-25) with KM = 21. The converged
criteria for the computations are set 107¢. A three-dimensional perspective view plot of
the simulated free-surface elevation (with inputs of & =0.4and x, = 10) at =50 is
presented in Figure 3- 4. Stable solutions showing the incident solitary wave reaching at a

downstream location can be noticed from Figure 3- 4.
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Figure 3- 4 Three-dimensional perspective view plot of the free-surface elevation for an
a = 0.4 incident solitary wave at = 50.

Using the results obtained from the present model, a sequence of time series plots
of the free-surface elevations along the central plane of the numerical channel are
presented in Figure 3- 5. With the inputs of an incident solitary wave from Egs. (2- 14) to

(2- 19), the results in Figure 3- 5 indicate that the present model can produce stable wave
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profles during the long process of wave propagation from upstream to downstream.
Solitary wave solutions satisfying the three-dimensional fully nonlinear wave model can
be obtained. It can be seen clearly that at different time levels the free-surface elevation
of the solitary wave maintains the same shape and wave amplitude even when t =50. The
difference between the computed peak of free-surface elevation and the targeted 0.4
amplitude is within one percent. The stable wave amplitude produced by the present

model is an evidence of the stability and validity of the developed model.
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Figure 3- 5 A sequence of time series plots of numerically simulated solitary waves
propagating in a channel of constant depth (o =0.4)
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3.3.1 Selection of time step and grid size

The grid size and time step set for modeling studies affect the convergence and
stability of the numerical simulation. In order to ascertain the convergence of the
numerical scheme of the developed model, cases for a solitary wave propagating in a
rectangular channel with various combinations of Ax, Ay, and At are selected to test
the sensitives of the grid size and time step on the model results. As mentioned above, the
x-axis represents the direction of wave propagation and the y-axis denotes the transverse
direction. The z-axis points upward with z = 0 plane being located at the undisturbed
free surface. The dimensionless dimensions of the wave channel are 0 < x <80 and

0 < y <3. The incident solitary-wave amplitude « is set as 0.4. The results of the free-

surface elevation at ¢ =30 after the waves traveling from the initial position x =10
(¢ =0) are selected for comparison plots, where the effects of the time step and the grid

size on the modeling performance can be examined.

First, the effects of time step on the wave simulation for fixed grid sizes are tested.

The horizontal grid sizes Ax and Ay are set to be equal to 0.25 and twenty layers are

arranged in the z-direction. The time steps At varying from 0.05 to 0.3 are considered
for model simulations. Figure 3- 6 shows the comparisons of the numerically generated
free-surface elevations with the case of different time interval at # =30. The results in
Figure 3- 6 indicate that similar water surface profiles are obtained for cases with
At =0.05, 0.1, 0.2, or 0.3. The simulation using Af = 0.3 produces the least accurate
results with a nearly three percent error. Certainly the amplitude of the solitary wave best
fits to the set wave amplitude of 0.4 while time step is set as 0.1. The input of Az =0.1

gives the most accurate numerical solutions and the error is less than one percent. With
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the further reduction of the time step to 0.05, the results do not show significant
improvement from those obtained using A = 0.1. Thus, the time step A¢ = 0.1 was used

for all cases included in the present modeling study.
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Figure 3- 6 Comparisons of numerical wave elevation profiles of different time interval
for solitary waves propation with a constant depth (Ax = Ay =0.25, t =30)

The selection of grid size in the wave propagation direction, namely x-direction,
is more critical for generating reliable results. The comparisons of simulated free-surface

elevations under the various conditions of varying grid size Ax, which ranges from 0.2
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to 0.3, are presented in Figure 3- 7. The results that when grid size 0.25 is used, the
computed free surface elevations best fit to the targeted solitary wave profile including
the wave amplitude of 0.4. Also, the overall error is less than 1 percent. The wave
elevations from the case of grid size of 0.2 are in general similar to those from the case
with Ax = 0.25, however, with a slightly overpredicted wave amplitude which has a
nearly 2.5 percent error. The comparisons suggest Ax =0.25 to be a reasonable grid size
used in a Cartesian grid domain. Figure 3- 8 illustrates the comparisons of simulated
wave profiles at # =30 from cases using different grid sizes in transverse (or y) direction.
The grid size includes 0.2, 0.25, and 0.3. Due to the fact of wave propagation along the x
direction, the grid size in y direction does not show an apparent effect on the simulated

results. The grid size Ay is set to be 0.25 for this study, which is comparable to the grid

size chosen along the x direction. Additionally, the effect of the numbers of layers along
the z direction on the results obtained from the present three-dimensional model also
needs to be evaluated. Figure 3- 9 presents the comparison plots of the free-surface
elevations using various grid systems with changes of the numbers of vertical layer. As
can be seen in Figure 3- 9, the results indicate that the wave profiles at # =30 under the
condition of twenty layers match the peak and phase closely with those from the case
with twenty-five layers. The results from using ten or fifteen layers deviate in phase
slightly from those with twenty or twenty-five layers used. The percentage difference of
the phase of the wave peak between the values using ten, fifteen, and twenty layers and
that from the twenty-five layer case are 1.68%, 1.12%, and 0.56%. For the consideration
of the accuracy of the modeling results and computational efficiency, twenty layers along

the vertical direction are selected.
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Figure 3- 7 Comparisons of numerical profiles of different grid sizes in x-direction for
solitary waves propation with a constant depth (A¢f = 0.1)
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Figure 3- 8 Comparisons of numerical profiles of different grid sizes in y-direction for
solitary waves propation with a constant depth (A¢ = 0.1)
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Figure 3- 9 Comparisons of numerical profiles of different grid sizes in x-direction for
solitary waves propation with a constant depth (Ax = Ay =0.25,Ar =0.1)

3.3.2 Mass conservation

Examining the conservation of mass during the process of wave propagation is
fundamental way to check the stability and accuracy of a model in numerical simulations.
When the principle of mass conservation is satisfied, the excess mass of the wave domain
should maintain as a constant value until the wave travels out of the computational
domain with a constant fluid density, the excess mass (M) is calculated as an integration
of the total fluid volume considering only the contribution of the free-surface elevation at

a given instant. Thus, we have

M = [[ Zdxdy . (3-27)

49



Figure 3- 10 shows the time variation of the excess mass for the case of ¢ =0.4. It is
noted from Figure 3- 10 that the calculated total excess mass is kept as a constant value
until the time reaches about 54.5 where the leading tail is about to propagate out of the
computational domain. Further decrease of the excess mass reflects increase of the wave
components propagate out of the downstream boundary. The results suggest the present

model is capable of providing accurate and reliable predictions on wave propagation.
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Figure 3- 10 Time variation of total excess mass within the computational domain
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3.4  Solitary waves propagating in a curved channel

As described in Chapter 2, the curvilinear coordinate transformation technique
can allow its grid system to fit to a domain with irregular boundaries. The present three-
dimensional fully nonlinear wave model that developed based on the curvilinear
coordinate transformation technique is capable of simulating propagation of waves not
only in a standard straight channel but also can in a channel of arbitrary shapes. The
application of the present model in simulating a solitary wave propagating through a
180° curved (U-shaped) channel with results showing the variations of free-surface
elevations is presented in this chapter. The numerical results calculated by the present
model are compared with these from the generalized Boussinesq model for cross

checking of the model performance in simulating wave propagation and transformation.

Figure 3- 11 A vertical view of the U-shape curved channel
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Shown in Figure 3- 11 is a curvilinear grid system for the modeling domain of a
180° curved channel. The width of the channel is 12.5 whereas the length along the
central plane is 95. The radii of the inner wall and the outer wall of the channel at the
curved section are 5 and 17.5, respectively. An initial plane solitary wave with peak

placed at x, =10 is shown in Figure 3- 12. The wave amplitude « is set as 0.3
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Figure 3- 12 Three-dimensional perspective view plot of an initial solitary wave with
a=0.3

A series of three-dimensional perspective view plots and associated contours of
the free-surface elevations at 10 selected instants for a solitary wave of a = 0.3

propagating through a 180° curved channel are presented in Figure 3- 13. The solid and
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dash lines in the contour plots represent respectively the positive and negative values of
the wave elevations. From the plots shown in Figure 3- 13, it is noted that the solitary
wave maintains as an uniform wave profile before it enters the curved portion of the
channel at # =15 . As the solitary wave propagates into the curved channel at 1 = 25, the
nonuniform distribution of the wave peak across the channel starts to form. Owing to the
centrifugal effect, the wave elevation with increased amplitude near the outer wall shows
the decreasing trend towards the inner wall of the channel. The wave encountering
process on the outer wall is shown in results at =30 and ¢ =35, where the wave peak
on the outer wall continues to increases. The water surface can reach up to about 0.48 at
t =35. Due to the length difference between the inner and the outer walls of the bended
part of the channel as well as the wave diffraction effect, a curved wave front can be
noticed. At t =40 and ¢ =45, during the process of main wave propagates towards the
downstream portion of the curved channel, as the effect of wave reflection, the high peak
of the wave is observed to move to the center of the channel. Following the above
described wave transition, the main wave close to the outer wall encounters the wall
again and results in the increase of the free-surface elevation of the main wave near the
outer wall at £ =50. Two high wave peaks coexist along the main wave crest. From
t=50to t=70, the position of the peak of wave elevation near the outer wave
gradually catches up with the peak of the leading wave near the inner wall and the wave
form tends to eventually recover as a solitary wave followed with a series of oscillating

tails.
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Figure 3- 13 Three-dimensional perspective view and contour plots of free-surface
elevation ( for a« = 0.3 at different time steps
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Figure 3- 13 Three-dimensional perspective view and contour plots of free-surface
elevation ( for « = 0.3 at different time steps (Continued)
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Figure 3- 13 Three-dimensional perspective view and contour plots of free-surface
elevation ( for « = 0.3 at different time steps (Continued)
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Figure 3- 13 Three-dimensional perspective view and contour plots of free-surface
elevation ( for « = 0.3 at different time steps (Continued)

59



Figure 3- 13 Three-dimensional perspective view and contour plots of free-surface
elevation  for a = 0.3 at different time steps (Continued)
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Figure 3- 13 Three-dimensional perspective view and contour plot of free-surface
elevation ( for « = 0.3 at different time steps (Continued)
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Figure 3- 13 Three-dimensional perspective view and contour plot of free-surface
elevation ( for « = 0.3 at different time steps (Continued)
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Figure 3- 13 Three-dimensional perspective view and contour plot of free-surface
elevation ( for ¢ = 0.3 at different time steps (Continued)
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Figure 3- 13 Three-dimensional perspective view and contour plot of free-surface
elevation ( for « = 0.3 at different time steps (Continued)
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To provide the verification of the solution accuracy of the computed wave profiles
along the curved channel as given above using the present three-dimensional fully
nonlinear wave model, a well-established generalized Boussinesq (gB) two-equation
model (Wang et al., 1992) is applied to calculate wave elevations of the similar case for
comparisons. The dimensionless gB equations originally developed by Wu (1979) are
capable of modeling propagation and transformation of weakly nonlinear and weakly
dispersive waves in a domain of two horizontal dimensions. The gB equations are given

below

C+V-|h+ SVl=—h + V- H b +v-(vg] -2 —v ¢}w} and  (3-28)

Zt+%(v&)2+g+p0_——[h 4V (hv¢)]——v 4. (3- 29)

where p_is the ambient surface pressure, h is the water depth and 5is the layer-mean

value of the original velocity potential defined as

¢_(x’ y’ t) -

™ {;)j ¢ (x,v,2,0)dz . (3- 30)

For the present case, we have 2 =1 and p, =0. Equations (3- 28) and (3- 29) can be

simplified as

;t+v-[(1+g)v35]=o and (3- 31)
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¢t+5(v¢)z+g=§v2¢7t.

(3-32)

Following the approach introduced by Wang et al. (1992), Equations (3- 31) and

(3- 32) are transformed into the curvilinear coordinates system as

12,608~ B0.C, + 8,8 )+ 78,8,
+(1+§)(5$§§ —2ﬁg§n +yﬁw +a%] +1g§): 0

and

139,468 26,9+ 193 e 012¢

— (60, ~260, 19,4 08, + 5,)
where
SEm =3+,
B =xx + ¥y,
HEm) =x; + s,
Jb(faﬂ) =XV, X e

a(&mJ =y 5(@2&5 —2fx,, + ”sz)_ ’%@55 =2, + Wnn)’ and
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(3- 33)

(3-34)

(3- 35)

(3- 36)

(3-37)

(3- 38)

(3- 39)



wGN =5\ =2, 4, )= 2 Ay =2y, v ) (3-40)

The curvilinear gB two-equation model [Equation (3-33)and  (3- 34)] with
the use of a predictor-corrector finite difference scheme developed by Wang et al. (1992)
is simulated to calculate the evolution of free-surface elevations for a solitary wave
propagating in the 180° curved channel as described above. Computed wave elevations
at three positions along each of five selected cross sections (A to E) throughout the
channel are compared. The locations of five cross sections are shown in Figure 3- 14.
Along each cross sections, three chosen positions as each marked by a black dot are
denoted by “inner wall”, “center of channel”, and “outer wall”, respectively. The
comparisons of time varying free surface elevations obtained from the present model and
from the gB two-equation model at each identified location are presented in Figure 3- 15

to Figure 3- 19.

67



Ty

20

15+

40 50

Figure 3- 14 The location of comparisons of time variation of free-surface elevation

Figure 3- 15 illustrates the comparisons of time varying free-surface elevations
obtained from gB model and the present three-dimensional fully nonlinear model at the
positions of “inner wall”, “center of channel”, and outer wall” in cross section A. The
results indicate that both models predict similar wave variations including wave peak
throughout the entire wave transformation process in the curved channel. There appears
to have a slight phase difference between the computed wave profiles. This is mainly
caused by the fundamental difference of the two models where one is the weakly
nonlinear and weakly dispersive based gB model and the other is the present fully

nonlinear based model. Also, different from the three-dimensional computation, the gB
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model utilizes the vertically averaged velocity potential to determine the free-surface
elevation. As a result, the two models generated slightly different phase velocities. It can
be noticed in Figure 3- 15 that when the solitary wave propagates into the curved section
and encounters the outer wall of the channel, the wave profile at the outer wall shows
higher amplitude than that at the inner wall. After the solitary wave propagates past the
cross section A, the wave amplitude keeps piling up at the outer wall and follows with
wave reflection. Two wave peaks occurred at the channel center and inner wall are

noticeable in Figure 3- 16 and Figure 3- 17.

As noted in Figure 3- 18 and Figure 3- 19, the continuing process of wave
diffraction and reflection between the inner and outer walls at cross sections D and E
suggests the occurrence of transverse wave oscillation and as a results generates multiple
wave peaks at locations across the channel. Again, from the results presented in Figure 3-
16 to Figure 3- 19, both the gB and present nonlinear wave models obtain consistent and
similar wave profiles. The comparison study for simulating a solitary wave propagating
in a 180° curved channel further confirms the present three-dimensional fully nonlinear
wave model can provide stable and accurate predictions on wave propagation and

transformation.

The model is proved to be able to apply for simulating wave and structure
interaction related problems. Two cases are investigated. One is a solitary wave
interaction with a bottom mounted cylinder and the other is an interaction between a
solitary wave and a fixed truncated cylinder. The results are presented in the following

two chapters
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Figure 3- 15 Comparisons of time variations of free-surface elevations obtained from gB
model and the present 3D fully nonlinear model at the positions of “outer
wall”, “center of channel”, and ”inner wall” in cross section A
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Figure 3- 16
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Comparisons of time variations of free-surface elevations obtained from gB
model and the present 3D fully nonlinear model at the positions of “outer
wall”, “center of channel”, and “inner wall” in cross section B
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Figure 3- 17
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Comparisons of time variations of free-surface elevations obtained from gB
model and the present 3D fully nonlinear model at the positions of “outer
wall”, “center of channel”, and “inner wall” in cross section C
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Figure 3- 18 Comparisons of time variations of free-surface elevations obtained from gB
model and the present 3D fully nonlinear model at the positions of “outer
wall”, “center of channel”, and “inner wall” in cross section D
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Figure 3- 19
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wall”, “center of channel”, and “inner wall” in cross section E
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Chapter 4

Solitary Waves Interacting with a and Bottom

Mounted Surface Piercing Vertical Cylinder

In Chapter 3, as a verification of model performance the newly developed three-
dimensional fully nonlinear wave model performed the simulations of a three-
dimensional solitary wave propagating in a straight rectangular channel and a 180°
curved channel. The studies of a solitary wave interacting with a cylindrical structure are
also carried out using this developed model. The case presented in this chapter is a
solitary wave encountering with a bottom mounted and surface-piercing vertical cylinder.
The results obtained from this model are presented and compared with those from other
models and measured data in literatures. The fluid domain with a vertical circular

cylinder for this study is shown in Figure 4- 1.

According to the derivation of model equations given in Chapter 2, all variables
described here for model simulations are dimensionless. The z-axis points upwards with
the plane z=0 being located locates at the undisturbed free-surface. The domain bottom is
assumed to be flat and its location is at z = —1 = constant. The dimensionless radius of
the cylinder (R) is 1.5875 and the cylinder is fixed at the center of the channel. The
amplitude of the incident solitary wave is given as @ = a/hy = 0.4. The values of the
radius of the cylinder and the amplitude of the solitary wave are selected to be the same

as those used in the experimental studies conducted by Yates and Wang (1994) for the
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purpose of comparing the present numerical results with the experimental measurements.
In this case, the two-grid system as introduced in Chapter 3 (Figure 3- 1) is applied for
model simulations. The physical domain is 0 < x < 70 and 0 < y < 35. The sizes of
rectangular grids in outer domain are Ax = Ay = 0.25 and the time step is set as
At = 0.1. In order to capture the important phenomenon of wave interaction with
structures in regions close to the cylinder, finer grids are arranged to cover these critical
areas (see Figure 3- 1). The initial peak location of the solitary wave is set at x, = 10
where its distance to the upstream boundary is sufficient to establish a stable incident
wave before encountering the cylinder. The results of time varying free-surface elevation
and velocity potential during the interaction process are calculated by the present model

for analysis.

Figure 4- 1  Schematic diagram of initial solitary wave incident upon surface-piercing
bottom mounted vertical cylinder
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4.1 Interaction Process

Figure 4- 2 shows a time sequence of three-dimensional perspective view plots of
the free-surface elevation for a solitary wave with amplitude & = 0.4 propagating in a
wave channel to impinge on a vertical cylinder. At £ =10, a simulated stable solitary
wave as the incident wave can be noticed to propagate towards the bottom mounted
vertical cylinder. While the peak of the solitary wave impacts on the cylinder at ¢ = 20,
the solitary wave piles up to the maximum value of the free-surface elevation in front of
the cylinder surface. After the primary wave propagates past the cylinder, as shown at
t =24, the diffraction initiated backscattering and forward scattering waves are formed
around the cylinder. Additionally, as part of the waves emerges as the back-scattered
waves, the wave height of the central part of the primary waves is lower than the other
parts of the primary waves after its impacting on the cylinder. However, it can still keep
the same propagating speed with other primary waves. At ¢t =25, the scattered wave
around the cylinder continue propagating outwards and the wave profile of the central
part of the primary waves is shown the tendency to recover its initial shape of the incident
solitary wave. An apparent secondary scattered wave that follows the leading back-
scattered wave is observed propagating outwards at ¢ =31. While the solitary wave
propagates over 20 water depths beyond the cylinder at # =40, a group of scattered
waves travel further away from the cylinder and expand over the upstream and
downstream regions of the cylinder. Moreover, the central part of the primary wave
transitions back to nearly its original amplitude and as a whole the wave recovers as a

solitary wave propagating downstream. Similar features of wave-cylinder interactions
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have also been found in the studies by Wang et al. (1992), Zhong and Wang (2008), and

Kang et al. (2015).

Figure 4- 2 Three-dimensional perspective view plot of free-surface elevation ( for
a =0.4 at selected instants of time
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Figure 4- 2 Three-dimensional perspective view plot of free-surface elevation ( for
a = 0.4 at selected instants of time (Continued)
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Figure 4- 2 Three-dimensional perspective view plot of free-surface elevation ( for
a =0.4 at selected instants of time (Continued)
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Figure 4- 3 illustrates a contour plot of the free-surface elevation to show the
diffraction pattern at # = 40 where the main solitary wave after the interacting process is
in a position further downstream of the cylinder. The solid lines and dash lines in the
figure represent the positive and negative values of the free-surface, respectively. From
Figure 4- 3, we noticed that a sequence of outward-propagating scattered waves around
the cylinder can be clearly observed and are shown to is nearly have the wave patterns
similar to the circular belts concentric to the cylinder. In addition, the primary wave is

nearly recovered as a pane solitary wave.
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Figure 4- 3 Contour plot of the free-surface elevation for amplitude of a solitary wave
a=0.4 and cylinder diameter R =1.5875 at t=40
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4.2  Comparisons of the Present Model Results with Other Published

Solutions and Experimental Data

The performance of the present model in simulating the interaction between a
solitary wave and a bottom mounted and surface-piercing vertical cylinder is examined
by comparing the model results with other published solutions and the experimental data.
The other published results include the finite difference solutions of the weakly nonlinear
and weakly dispersive generalized Boussinesq (gB-FDM) model (Wang et al., 1992), and
experimental data from Yates and Wang (1994). The selected locations for the
comparisons of free-surface elevation are the same as the gauge locations used in the
Yates and Wang (1994) experimental study. The gauge locations are expressed with the
polar angle 6, and the dimensionless radial distance r/R, where R is the radius of the
cylinder. Figure 4- 4 presents the wave elevations in time series at four selected radial
locations along the 8 = 0° line, where 8 = 0° denotes the direction pointing toward the
negative x direction. The comparison plots at selected radial locations along 8 = 60°,
100°, 150°, and 180° following the clockwise direction are shown in Figure 4- 5, Figure

4- 6, Figure 4- 7, and Figure 4- 8, respectively.

In Figure 4- 4 (a) to 4-4 (d), the wave profiles at the radial location of /R =4.5,
2.61, 1.66, and 1.03 are presented. The incident solitary wave with an amplitude of
a = 0.4 is shown to propagate past the position of r/R = 4.5 and is followed with a
reflected wave and a train of small oscillatory waves after impacting on the cylinder,
[Figure 4- 4 (a) and (b)]. At a position close to the cylinder surface (/R = 1.03), Figure
4- 4(d) reveals that the solitary wave piles up to the maximum amplitude in front of the

cylinder and is followed with a negative wave propagating radially outward from the
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cylinder surface. It can be noticed that the amplitude of the main wave also shown to
increase at r/R = 1.66 [Figure 4- 4 (c)], although is less than the value at r/R = 1.03.
The similar variation trends of the free-surface elevations at the location of r/R = 3.87,
2.92, 2.29, and 1.35 and along & = 60° direction can also be found in Figure 4- 5 (a) to

Figure 4- 5 (d).

The comparisons shown in Figure 4- 4 and Figure 4- 5 indicate that the present
model, and the published finite difference gB model produce similar results. Both model
predictions are also shown to agree reasonably well with the experimental data,
especially the main wave profile. From the figures, it is noticed that the maximum
amplitudes can be accurately predicted by the developed three-dimensional fully
nonlinear wave model while comparing to the maximum amplitudes of the experimental
data at the positions away from the cylinder surface. When at the position nearly on the
cylinder surface, both models overestimate the maximum wave amplitude. The present
nonlinear wave model can capture well the variation trends of the free-surface profile at

position along 8 = 60° direction.
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Figure 4- 4 Comparisons of time variation of free-surface elevation along 8 = (f at (a)
r/R=4.5 and (b) »/R=2.61 obtained from the present 3D nonlinear model,
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang,
1994)
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Figure 4- 4 Comparisons of time variation of free-surface elevation along 8 = (f at (¢)
r/R=1.66 and (d) »/R=1.03 obtained from the present 3D nonlinear model,
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang,
1994) (Continued)
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Figure 4- 5 Comparisons of time variation of free-surface elevation along 6 = 60 at (a)
r/R=3.87 and (b) /R=2.92 obtained from the present 3D nonlinear model,
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang,
1994)
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Figure 4- 5 Comparisons of time variation of free-surface elevation along 6 = 60 at (c)
r/R=2.29 and (d) /R=1.35 obtained from the present 3D nonlinear model,
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang,
1994) (Continued)
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Figure 4- 6 to Figure 4- 8 illustrate the comparisons between the computed and
measured free-surface profiles on the rear side of the cylinder. The wave profiles include
a main solitary wave followed with a group of forward-scattered waves. Figure 4- 6
shows the variations of the free-surface along the radial line of 6 = 100°. The present
model predictions agree well with measured data at the location of r/R = 1.35, 2.29, and
2.92. At the closest location to the cylinder, namely atr/R = 1.03, the present model
again produces a reasonably over-estimated wave amplitude. However, the overall
variation trends of the wave elevation are similar to the measured data. The similar
phenomena in terms of predicted wave profiles can also be found along the directions of
6 = 150° (Figure 4- 7) and at & = 180° (Figure 4- 8). The present model can provide
good predictions on the wave elevations at locations away from the cylinder. The
mismatch of the amplitude predictions for waves at the location almost on the cylinder
surface (r/R = 1.03) may be caused by the measurement errors and potential viscous
and flow separation effects, which are not included in the model formulations. Along the
direction of 6 = 180° (Figure 4- 8), it is interesting to note that the present fully
nonlinear model can better predict at the general trend of wave variation and the tail part
of the main wave. Also shown in Figure 4- 8, when the main wave propagates past the
cylinder, the wave amplitude in the region behind the cylinder decreases until later
recovers to nearly the original amplitude. It is demonstrated from this comparison study
the present three-dimensional nonlinear wave model in general can make similar on or
better predictions on free-surface variations of a solitary wave interacting with a bottom-
mounted and surface piercing cylinder when compared to the results obtained from gB

model.
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Figure 4- 6 Comparisons of time variation of free-surface elevation along # = 100" at (a)
r/R=2.92 and (b) »/R=2.29 obtained from the present 3D nonlinear model,
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang,
1994)
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Figure 4- 6 Comparisons of time variation of free-surface elevation along € = 100" at (¢)
r/R=1.35 and (d) /R=1.03 obtained from the present 3D nonlinear model,
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang,
1994) (Continued)
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Figure 4- 7 Comparisons of time variation of free-surface elevation along # = 150 at (a)
r/R=2.92 and (b) /R=2.29 obtained from the present 3D nonlinear model,
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang,
1994)
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Figure 4- 7 Comparisons of time variation of free-surface elevation along € = 150 at (¢)
r/R=1.35 and (d) /R=1.03 obtained from the present 3D nonlinear model,
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang,
1994) (Continued)
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Figure 4- 8 Comparisons of time variation of free-surface elevation along # = 180 at (a)
r/R=2.92 and (b) /R=2.29 obtained from the present 3D nonlinear model,
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang,
1994)

93



6=180° Present 3D model
08 | 7/R=1.35 - - - gB-FDM
& Experimental data
0.6 -
C 0.4
0.2
0
-0-2 T T T T
0 5 10 15 20 25
t
()
1
6=180°" Present 3D model
os /R=1.03 - -~ gB-FDM
& Experimental data
0.6 -

¢ 0.4

0.2

(d)

Figure 4- 8 Comparisons of time variation of free-surface elevation along € = 180 at (¢)
r/R=1.35 and (d) /R=1.03 obtained from the present 3D nonlinear model,
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang,
1994) (Continued)
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The hydrodynamic forces of solitary waves acting on the surface of cylinder can
be determined by integrating the dynamic pressures on the cylinder surface. For the
convenience of force comparisons, they are presented as the dimensionless force
coefficients calculated by Equation (2- 21). The comparisons of the time varying force
coefficients obtained from the present model, gB approach, and experimental
measurements for different incident wave amplitude a = 0.18, 0.24, 0.32, and 0.4 are
given in Figure 4- 9 (a), Figure 4- 9 (b), Figure 4- 9 (c), and Figure 4- 9 (d), respectively.
In Figure 4- 9 (a), when a = 0.18, we notice the results from both the present three-
dimensional model and gB-FDM match closely with the measured forces. Reasonable
force predictions for the case of ¢ = 0.24 can be found in Figure 4- 9 (b). As the
amplitude of the incident wave increases, namely ¢ = 0.32 and 0.4, the results in Figure
4- 9 (c) and 4-9 (d) indicate that both the present fully nonlinear wave model and gB-
FDM overpredict the maximum force. The smaller measured maximum forces may be
caused by the viscous and boundary layer effects and the small gap set between the
bottom of the cylinder and the channel bottom for wave force measurements. It is to note
the interaction time and associated phase calculated by the present model shows slightly
more accurate than that from gB-FDM. In addition, the maximum negative forces
determined by the present three-dimensional model are close to the experimental

measurements.
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Figure 4- 9 Comparisons of force coefficient Cry in time sequence, (a) @ = 0.18, (b)
a=0.24,(c)a=0.32,and(d) a = 0.4
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Figure 4- 9 Comparisons of force coefficient sy in time sequence, (a) a = 0.18, (b)
a = 0.24, (c) a = 0.32, and (d) « = 0.4 (continued)
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Chapter 5

Solitary Waves Interacting with a Fix Floating
Cylinder

In Chapter 4, the present three-dimensional fully nonlinear model is demonstrated
to be able to successfully simulate the interaction of a solitary wave with a bottom
mounted vertical cylinder. Simulations of waves encountering with Structures having
non-uniform boundary condition in z-direction, such as floating structures, where the
motion within the region below the structures needs to be calculated separately, can also
be carried out by the present model. Thus, this chapter provides the results of the present
model simulating a case of a solitary wave interaction with a partially submerged and
fixed floating cylinder. For the simulation, all physical variables are dimensionless

defined by Equation (2-1) and the schematic diagram is shown in Figure 5- 1. In the
figure, the channel has a dimensional constant water depth hg and the dimensionless gap

(G) is defined as the space between the bottom of the cylinder and the channel bed.
Moreover, two rectangular grid systems and one polar grid system as shown in Figure 3-
3 are applied in the simulation. In order to verify the numerical results obtained from the
present model, experiments of a solitary wave propagating in a flume and the subsequent
interaction with a partially submerged and fixed floating cylinder were performed for
comparisons. The setups for the experimental measurement are introduced in the

following section.
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Figure 5- 1 Schematic diagram of initial solitary wave incident upon fixed floating
cylinder

51 Experimental Measurement

Experimental measurement for a solitary wave passing through a partially
immersed and fixed floating cylinder can be used to verify the simulated results from the
present three-dimensional fully non-linear model. The experiment was conducted in a
glass-walled wave flume having the dimension of length = 762 cm, width = 30.48 cm,
and depth = 91.44 cm. A roughly 50cm long expanded downstream section is connected
to the wave flume for wave absorption. The experimental setup in the glass-walled flume
is shown in Figure 5- 2. A Tolomatic linear actuator drives a piston-type wavemaker to
generate a solitary wave propagating in the channel. The amplitude of the solitary wave is
controlled by the paddle moving distance input into the control software. Both ends of

the flume have energy dissipaters to reduce wave reflection.
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Wave gauge 2

Figure 5- 2 The experimental setup in the glass-walled flume for measuring the wave
amplitude in front of the cylinder

Figure 5- 3 illustrates a schematic diagram of the location of the wave gages.
Only two resistance type wave gauges are reliable to be used to collect data. Thus, one
wave gauge, Gauge 1, was fixed at an upstream location to measure the incident waves.
The other wave gauge, Gauge 2, was positioned in the front of the cylinder to measure
the changes of the wave elevation at a position close to the cylinder as showed in Figure
5- 3(a). While measuring the variations of the free-surface elevation behind the cylinder,
Gauge 2 was moved to the back of the cylinder for the measurements [see Figure 5- 3(b)].
The resistance type wave gauges are constructed by two steal probes with a diameter of

1/16 inches to sense the voltage signals in reference to the free-surface elevations and to
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allow the data be recorded in the computer through the LabVIEW data acquisition system.
The free-surface elevations were obtained by the linear correlation between the voltage
and the free-surface elevation. In order to assure the linear correlation fitting to each
gauge, the calibration of the wave gauges between the voltage and the free-surface

elevation were performed before the experiments.
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Figure 5- 3 Schematic diagram of experiment setup: (a) measurement free surface
elevation in front of cylinder; (b) measurement free surface elevation in
back of cylinder
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The undisturbed water depth (hg ) set for this experiment was 7.62 cm. The radius

of the cylinder, shown in Figure 5- 4, was 5.715 cm (R = 0.75) and its center is located
at 46.75 water depth far from the wavemaker. The cylinder and the wave gauges set
along the centerline of the cylinder. The draft of the cylinder was 3.81 cm, which gives
G = 0.5 in dimensionless. Since there were only two reliable wave gauges, the
experiments with the same wave conditions need to be repeated to measure the free-
surface elevations at different locations. Gauge 1 was always set at 30 water depth far
downstream from the wavemaker to measure the incident solitary waves. Gauge 2, used
to measure the variations of the wave profile around the cylinder, was located atr/R =
1.88 in front of or behind the cylinder. The repeat of the incident wave condition for a
setting of the wavemaker was checked and the amplitude & of the generated initial
solitary wave measured by Gauge 1 was found to be close to 0.31. The experimental
measurements based on & =0.31 are used to compare to the solutions obtained from the
present three-dimensional fully nonlinear numerical model and the comparisons are

presented in the next section.
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Figure 5- 4 The partially immersed and fixed floating cylinder for experiment

5.2 Comparisons of the Present Model Results with Experimental

Measurements and Analysis of the Effect of the Draft

The partially immersed and fixed floating cylinder case is simulated by the
present three-dimensional fully nonlinear model and its results are compared with the
experimental measurements described in the previous section. The selections of the
dimensionless radius of the cylinder, the draft of the cylinder, and the locations of
comparison for the present numerical model simulation are based on the setting of the

laboratory tests. Again, the dimensionless radius of cylinder is 0.75 and the draft of the
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cylinder is G = 0.5. The two selected radial locations (r/R) are 1.88 at the 8 = 0° and
180° lines respectively. 8 = 0° denotes the direction pointing toward the negative x
direction. The amplitude a of the initial solitary wave is set as 0.31 based on the

experimental measurements.

Figure 5- 5 illustrates the comparisons of the free-surface elevation that are
obtained from the present three-dimensional fully nonlinear wave model and from the
experimental measurements at the two identified locations where one is at r/R=1.88 in
front of the cylinder [Figure 5- 5 (a)] and the other is with the same distance but at rear
side of the cylinder [Figure 5- 5 (b)]. From Figure 5- 5 (a), it is clearly indicated that the
wave profile obtained from the present model simulation has a good agreement with the
measured data, especially the main including the peak and trough of the free-surface
elevation. On the rear part of the cylinder, the present model as shown in Figure 5- 5 (b)
can also predict reasonably well the varying free-surface elevations when compared to
the experimental measurements. The good agreement between the present numerical
solutions and experimental data again suggests that the present model can capture the
variation trend of the wave elevations during the interaction process, especially at the
locations close to the front and rear surfaces of the cylinder. Therefore, the comparison
studies presented above demonstrate that the present three-dimensional fully nonlinear
wave model is capable of making a good prediction on the time varying free-surface
variations during an encountering process of a solitary wave and a partially immersed and

fixed floating cylinder.
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Figure 5- 5 Comparisons of time variation of free surface elevation obtained from
numerical and experimental measurement: (a) in front of the cylinder
(6 = 0°) and (b) in back of the cylinder (8 = 180°)
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Figure 5- 6 and Figure 5- 7 shows the comparisons of the time variation of the
free-surface elevation for three different draft conditions at respectively the locations
(r/R = 1.88) in front of and at the back of the cylinder with the initial wave amplitude
= 0.31. From Figure 5- 6, it can be observed that the free-surface elevations especially
at the peak location increase as the gap decreases. When the gap decreases, the cylinder
has more blockage area in the fluid domain to cause the wave to have a higher run-up. At
the rear side of the cylinder [Figure 5- 7], the difference between the free-surface
elevations of the different drafts are not significant. The reason of it is that the blockage
of the cylinder does not produce obvious effect on waves at the region behind the

cylinder, especially when the cylinder radius is small.
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Figure 5- 6 Comparisons of time variation of free surface elevation obtained from the
present model with gap G = 0.3, 0.5, and 0.7: in front of the cylinder
(6 =0°
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Figure 5- 7 Comparisons of time variation of free surface elevation obtained from the
present model with gap G = 0.3, 0.5, and 0.7: at the back of the cylinder
(6 =180°)

5.3 Forces on a Partially Immersed and Fixed Floating Cylinder

Two different hydrodynamic forces, namely the horizontal and vertical forces,
acting on a partially immersed and fixed floating cylinder can be calculated by the
present three-dimensional fully nonlinear model according to Equation (2- 21) and
Equation (2- 22), respectively. In this section, the hydrodynamic forces, induced by the
interaction between a solitary wave of @ =0.31 and a cylinder with a dimensionless

diameter of 1.5 are presented.

In addition to the complete approach by integrating the pressures over a structural
surface for force calculation, Morison et al. (1950) introduced an empirical formula to

estimate without considering the diffraction effect the time varying wave forces on
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structures. The formula as it combines the inertia and drag forces to obtain the total

horizontal wave forces acting on a cylindrical structure are expressed as

F,=F,+F,
o1 0 Du
:.LdECD'OAu |u| dZ-I—Ld CM'OVE dz , (5-1)

where F,, F,, C,, and C,, are the inertia force, drag force, drag coefficient, and

inertia coefficient, respectively. In order to calculate the total wave force acting on a

cylinder, the proper coefficients, C, and C,,, need to be chosen. For the given wave and
cylinder conditions, the estimated Kc =0.82, Re =1.11 x 104, and D/ A< 0.2, where

Kc is Keulegan-Carpenter number, Re is Reynolds number, D = diameter, and A :wave

length. According to the summarized C,, and C,, values suggested by Hogben et al

(1977), the hydrodynamic force of a solitary wave with & = 0.31 acting on the surface
of a cylinder with a diameter of 1.5 is in the inertia force dominant zone while using the

Morrison equation. In other words, the C,, is equal to two and the C), can be neglected.

Hence, we have
FH:J._OdpAu|u|dz : (5-2)

For convenience of force comparisons with the present model, the forces calculated by

the Morison equation are also normalized as force coefficient, C 4, . Although Morison

equation provides empirically based estimations of the force coefficients, it is selected as
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commonly used in engineering applications to calculate wave induced horizontal forces

for comparisons with the present model solutions.

Figure 5- 8 shows the horizontal force coefficients Cj, calculated from the

present three-dimensional model and the Morison equation in time sequence. It is
noticeable that the time variations of the force coefficients calculated by the present
model and the Morison equation are similar. However, as the forces from the Morison
equation include the part of linearized inertia forces, a symmetric profile of force
coefficients can be noticed in Figure 5- 8. In addition, the nonlinear effect from the
present model leads to larger positive force coefficients and smaller negative force
coefficients than the results from the Morison equation. The hydrodynamic force
coefficients in vertical direction with time variation are shown in Figure 5- 9. It illustrates
that the hydrodynamic forces in the vertical direction vary with the propagation of a
solitary wave and are all positive. Thus, the shape of the vertical hydrodynamic force

basically follows the solitary wave profile.
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Figure 5- 9 Vertical force coefficient C ,,, calculated by the present three-dimensional

model in time sequence
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5.4 Interaction Process

The comparison study for point measurements and computed free-surface
elevations described above concludes that the present three-dimensional fully nonlinear
model can successfully and accurately simulate the interaction between a solitary wave
and a partially submerged fixed floating cylinder. In order to show the detailed process of
the interaction between a solitary wave and a partially submerged fixed floating cylinder,
a larger cylinder with a radius of two water depths is considered for model simulation.
The cylinder is set at the center of a computational domain, where the ranges along the x
and y directions are 0 < x < 70, and 0 < y < 35. Again, the computational domain is
covered with two rectangular grid systems and an overlapped polar grid system. One of
the rectangular grid systems with Ax = Ay = 0.25 is used for the outer domain and the
other is applied underneath the cylinder where the grid sizes in both x and y directions are
set as 0.1. In the z direction, the grid sizes changing with time are derived from Equation
(3- 26). The initial solitary wave peak is set at x, = 10 to allow the solitary wave

establishing to a stable wave amplitude before impacting the cylinder.

Figure 5- 10 shows a time sequence of three-dimensional perspective view plots
of the free-surface elevation during the interaction process. Att = 10, a stable incident
solitary wave with amplitude of ¢ = 0.3 is shown to propagate towards a fixed floating
cylinder with a draft of 0.5 (G=0.5). The solitary wave approaches the front surface of the
cylinder at t = 20.6 and the free-surface elevation increases to the maximum value. A
backscattering wave initiated by the diffraction starts to propagate radially outwards at
t = 25 while the main solitary wave have just passed the cylinder. It can also be noticed

the central part of the free-surface elevation behind the cylinder, due to the blockage of
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the existing cylinder, is lower than the other parts of the primary wave. In spite of the
difference of the free-surface elevation of the main wave, the whole main wave as a
coherent structure still keeps the same propagating speed. The central part of the main
wave gradually recovers to nearly its original solitary wave amplitude at t = 33.
Additional secondary scattered waves propagating outwards and following the leading
scattered wave can be observed att = 33 and = 38 . Att = 42, the main wave nearly
recovers to its initial solitary wave shape and amplitude, and a group of the scatter waves
propagating radially outwards from the cylinder expand over the whole fluid domain
around the cylinder. Moreover, the scattering process with much smaller oscillations
produced around the cylinder continues. From these figures, the evolution of a solitary
wave interacting with a fixed floating cylinder is found to be similar to that of a solitary
wave encountering a bottom mounted and surface piercing cylinder, however, with a

series of less pronounced scattered waves.
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Figure 5- 10 Three-dimensional perspective view plot of free-surface elevation { for
a = 0.3 at selected instants of time (partially submerged cylinder case)
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Figure 5- 10 Three-dimensional perspective view plot of free-surface elevation { for
a = 0.3 at selected instants of time (partially submerged cylinder case)
(Continued)
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Figure 5- 10 Three-dimensional perspective view plot of free-surface elevation { for
a = 0.3 at selected instants of time (partially submerged cylinder case)
(Continued)
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In Figure 5- 11, a contour plot shows the pattern of the scattered waves after the
solitary wave propagates pass the cylinder at t = 42. Solid lines represent positive values
of the free-surface elevation, and negative values of the free-surface elevation are
represented by dash lines. The circular scattered waves which are concentric to the
cylinder cover most fluid fields. The scattered waves with smaller amplitude also can be
observed nearby the cylinder. In addition, the main wave has nearly recovered back to the

initial solitary wave shape.
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Figure 5- 11 Contour plot of the free-surface elevation for amplitude of the solitary wave
a = 0.4 and cylinder diameter R = 2.0 at t = 42
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Chapter 6

Summary and Conclusions

This dissertation presents the development and numerical applications of a three-
dimensional fully nonlinear wave model with the use of a transient curvilinear coordinate
transformation technique to study the different scenarios of nonlinear wave propagation
and their interactions with cylindrical structures. The present three-dimensional model
improves the limitation of the vertical averaged two-dimensional models, such as the
Boussinesq model, which is unable to solve the problems related to the boundary
variations in the vertical direction. Furthermore, the present model includes a set of three-
dimensional transient curvilinear coordinate transformation of the governing equations
and the boundary conditions derived to fit the irregular boundaries in the physical domain.
For the modeling cases of the interaction between nonlinear waves and structures, the
present model applies multigrid systems to construct the computational domains. A
mixed implicit and explicit finite difference scheme is adopted for solving the three-

dimensional governing equations and boundary conditions.

Simulating a solitary wave propagating in a straight rectangular channel is
performed as sensitivity tests to decide the grid sizes and time step used for the present
modeling studies. The results of sensitivity tests demonstrate the present model under the
selected parameter setting is able to simulate stably the propagation of a solitary wave in
a fluid domain. After proving the stability of the present model, it is applied to simulate a

solitary wave propagating in a 180° curved channel to demonstrate its capability of
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modeling waves propagating in an arbitrary shape channel. From the results of the
simulation, it is noticeable that the wave peak changes to a nonuniform distribution
across the channel and the free-surface elevation increases near the outer wall due to the
centrifugal effect while a solitary wave propagates into the curved region of the channel.
In the curved part of the channel, the main wave reflects back and forth between the inner
and outer walls during the process of a solitary wave propagating towards the
downstream of the channel. The waves reaching the downstream of the channel tends to
eventually recover as a main solitary wave followed with a series of oscillating tails.
From the comparisons of the time variations of the free-surface elevations at the selected
locations, the predicted wave patterns in the curved channel obtained from the present
model have good agreement with those calculated from the generalized Boussinesq two-
equation model. Thus, the present three-dimensional fully nonlinear wave model can
provide stable and accurate predictions on nonlinear waves propagation in a channel with

irregular boundary.

The present three-dimensional fully nonlinear wave model is extended to solve
the interaction of waves and structures problems. The first simulation scenario is a
solitary wave encountering with a bottom mounted and surface piercing vertical cylinder.
During the interaction process, the solitary wave gradually piles up to a maximum value
of the free-surface elevation while the main wave approaches the cylinder. After the main
wave passes the cylinder, the center part of the free-surface elevation behind the cylinder
is lower than other parts of the primary wave because of the blockage of the existing
cylinder. When the solitary wave propagates beyond the cylinder over 20 water depths,

the main wave nearly recovers back to a whole solitary wave with the original wave

118



amplitude. Moreover, it is clear that a group of scatter waves propagates out from the
cylinder and expands over the upstream and downstream regions around the cylinder.
The predicted free-surface elevations with time variation at the selected locations
obtained by the present model and generalized Boussinesq model have reasonable
agreement with the experimental measurements except at the positions nearly on the
cylinder surface, where both models overestimate the maximum wave amplitudes.
Moreover, the hydrodynamic force predictions obtained from either the present model or
generalized Boussinesq model match closely with the measured forces for the cases with
small incident wave amplitude. When the amplitude of the incident wave increases, the
predicted forces are larger than the measured values. These overestimated predications
may be caused by the measurement errors, and potential viscous and flow separation

effects.

The present three-dimensional fully nonlinear wave model is further applied to
simulate the interaction of a solitary wave with a partially submerged and fixed floating
cylinder. To verify the accuracy of the present model simulations, the experiments of a
solitary wave propagating past a partially submerged and fixed floating cylinder were
conducted in a wave tank. The comparisons of model results with the experimental
measurements indicate the present model is able to make a fairly good prediction on the
time varying free-surface elevations, especially at a position in front of the cylinder,
during the encountering process of a solitary wave and a partially immersed and fixed
floating cylinder. The wave evolution patterns for a solitary wave interacting with a fixed
floating cylinder are similar to those of the solitary wave encountering a bottom mounted

and surface piercing cylinder but with less pronounced scattered wave field. The free-
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surface elevation of the main wave piles up in front of the cylinder. Then, the center part
of the main wave has lower amplitude due to the blockage of the cylinder and recovers
gradually to its initial solitary wave shape and amplitude as the main wave propagates
away from the cylinder. In addition, the scattered waves propagate radially outwards
from the cylinder and expand over the whole fluid domain around the cylinder. It is again
demonstrated the successful application of the present three-dimensional fully nonlinear
wave model in simulating the interaction of a nonlinear wave and a fixed floating
structure and making good predictions of the variations of the free-surface elevation

during the process of wave-structure interaction.

The present three-dimensional fully nonlinear wave model can solve the problems
with boundary variation in vertical direction. However, the governing equation is based
on the assumption of incompressible and inviscid fluid and the motion irrotational. Thus,
the present model is limited to the study of wave simulation in a domain with viscous
fluid. In addition, for simulating cases with open sea, due to the rigid boundary condition
applied on the side wall in the present model, the wall boundary conditions need to be

extended to include the lateral open boundary conditions.

For future research, the present three-dimensional fully nonlinear wave model can
be expanded for wider applications. In this study, the present model only simulates the
interaction between a solitary wave and a fixed cylinder. More complicated structures or
different nonlinear waves, such as an array of floating cylinders, cnoidal waves, or even
steeper Stokes waves, may be considered for future simulation studies using the present
model. For the model development point of view, the present model can be further

extended by combining with the solver of equation of motion to simulate the interaction
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between nonlinear waves and movable floating structures. Moreover, in the future, the
laboratory experiments of a floating cylinder subject to the wave action are recommended
to be performed in a large wave tank to collect more detailed wave elevation data in areas
surrounding a cylinder to further the confirmation of the performance of the developed

wave model.
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