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Abstract 

This dissertation presents a three-dimensional fully nonlinear wave model 

developed to simulate solitary waves propagating in straight or curved channels and 

interactions bottom mounted or partially submerged structures. The three-dimensional 

Laplace equation and fully nonlinear boundary conditions are solved numerically by the 

finite difference method. In order to have the computational grids fit closely to the curved 

structural boundaries and the time varying free surface for numerical advantage, the 

transient three-dimensional curvilinear coordinate transformation technique is adopted to 

convert the original governing equation and boundary conditions in Cartesian coordinates 

into the curvilinear coordinate based formulations.  

The effects of grid size and time step on the accuracy and convergence of the 

present numerical model are examined and discussed by simulating a solitary wave freely 

propagating in a straight rectangular channel. Then, the feature of the curvilinear 

coordinate transformation is tested by modeling the case of a solitary wave propagating 

in a 180° curved channel. After comparing with the results obtained from the generalized 

Boussinesq (gB) two-equation model, this three-dimensional model can produce stable 

and accurate predictions on nonlinear waves propagation in a channel with irregular 

boundary. 

The present three-dimensional model is extended to solve the wave and structure 

interaction problems. One of the cases is a solitary wave impinging a bottom mounted 

and surface piercing vertical cylinder. The results obtained from the present three-

dimensional model shows a reasonable agreement with the experimental measurements 
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and those calculated from the gB model. The other case is a solitary wave interacting 

with a partially submerged and fixed floating cylinder. Laboratory tests for a solitary 

wave passing through a partially immersed and fixed floating cylinder were conducted to 

verify the present three-dimensional model performance. The numerical results of the 

present model match well with the experimental measurements. It is demonstrated 

through these comparisons that the present three-dimensional fully nonlinear wave model 

can provide reliable predictions on wave evolution and loading for a solitary wave 

interacting with selected cylindrical structures.  
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Chapter 1  

Introduction 

1.1   Practical Significance 

Water waves commonly occur in nature. They are routinely generated by many 

factors, such as wind, gravitational forces between the sun, moon, and earth, undersea 

earthquakes, and others. As ocean covers nearly three-quarters of the surface of the earth, 

the consequence of wave motion and its interaction with structures is closely associated 

with human activities. The occurrence of extreme waves as a result of undersea 

earthquakes, hurricanes (typhoons), or eruptions of submarine volcanoes can cause 

devastating property damage and loss of life. In 2011, a submarine earthquake triggered a 

tsunami at Japan’s northeastern offshore and has resulted in the loss of nearly 18,000 

lives, billions of dollars of property damages, and a world shocking crisis of a nuclear 

power plant. A tsunami is one kind of extreme wave that behaves as a nonlinear shallow-

water wave. It is essential to understand the formation and transformation of water waves 

under different scenarios, especially shallow-water waves. Thus, detailed investigation of 

nonlinear shallow-water waves has become increasingly important. A wide range of 

topics related to costal and offshore engineering applications, such as design of offshore 

structures, coastal seawalls, breakwaters, harbors, and so on, have been studied in the past 

decades. However, as the layout of the costal and offshore structures become more 

complicated, it is increasingly challenging to develop proper methods to solve the 

complex governing equations and physical boundary conditions describing the interaction 
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process between waves and structures.  Thus, to advance the capability of wave-structure 

interaction modeling, the present study focuses on the development of curvilinear 

coordinates based fully nonlinear wave model to investigate the interaction between 

waves and three-dimensional structures.  

1.2   Statement of the Problem 

The main fluid body of water waves can be assumed to be incompressible and its 

motion irrotational. With this assumption, a velocity potential that satisfies the Laplace 

equation can be defined to describe the wave motion. Certainly, the main problems faced 

in solving the wave related problems, either analytically or numerically, are mostly 

related to the formulation of the nonlinear boundary conditions, especially at the free 

surface, and solutions of the nonlinear equations. Linear water wave theory can provide 

the simplified and approximate solutions for the fully nonlinear waves by neglecting 

some of the nonlinear effects. However, the linear wave solutions cannot truly reflect the 

physical impacts caused by the nonlinear waves, especially the extreme waves, on wave 

elevations and wave loads on structures. The waves in higher dimensions, such as the 

three-dimensional, increase the difficulty of solving the real wave problems.  

If the focus of the study is to determine the free-surface elevation and vertically 

averaged flow variables, then the three-dimensional problems can be formulated by two-

dimensional equations. A Boussinesq model is a typical example of two-dimensional 

models applied to three-dimensional wave propagation. The Boussinesq equations, due to 

their orders of accuracy, are best described as the weakly nonlinear and weakly dispersive 

shallow-water waves. In the past decades, a limited number of researchers have 

developed and extended the Boussinesq equations to engineering applications. The 
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generalized Boussinesq equations were derived by Wu (1979, 1981). Later, Wu and Wu 

(1982) established a numerical model for the generation and propagation of nonlinear 

long waves under a moving surface pressure condition. Nwogu (1993) modified the 

Boussinesq equations by using the velocity vector at an arbitrary depth as a dependent 

variable. This modification makes Boussinesq equations applicable to a wider range of 

water depths.   

With the advancement of computing power, fully three-dimensional models may 

be developed to simulate complex wave propagation problems, as they can provide more 

detailed information on wave motion, velocity distribution, and especially the three-

dimensional wave loadings on structures. One way to solve the fully three-dimensional 

wave problems is by adopting the three-dimensional Navier-Stokes equations as the 

governing equations. In addition, a free-surface tracking technique, such as the Volume 

of Fluids (VOF) method, needs to be applied to predict the free-surface elevations. 

However, the overall numerical computations are tedious and the VOF method is not 

effective for large scale simulations and tracking of the three-dimensional free surface. 

The other way of modeling wave propagation and wave-structure interaction in three 

dimensions is to solve the Laplace equations of the velocity potentials in various fluid 

regions satisfying the associated free-surface, interfacial and structural boundary 

conditions. The procedure allows the direct application of the kinematic and dynamic 

free-surface boundary conditions to accurately obtain the free-surface elevations in 

transient motion. For practical applications, the Laplace equations and boundary 

conditions can be solved up to the three-dimensional domain by selected numerical 

schemes, such as the finite difference, finite element or finite volume method.  
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   Obtaining the numerical solutions requires the discretization of the governing 

equations into a set of algebraic equations of the unknown variables to be solved in the 

grid system of the computational domain. For three-dimensional computations, the finite 

difference method is considered to be an effective numerical scheme and can be easily 

applied to solve the model equations. However, it is limited to the domains with a regular 

and structured grid system. To extend the finite difference method to a domain with 

irregular boundaries, the boundary-fitted coordinate (or curvilinear coordinate) 

transformation technique (Thompson et al. 1974, 1977) has been applied to solve more 

complex wave-structure interaction problems. For example, Wang et al. (1992) 

developed a generalized Bousinessq numerical model in a curvilinear coordinate system 

in two horizontal dimensions to simulate scattering of solitary waves by a vertical 

cylinder. The model was also applied to study nonlinear long waves interacting with 

multiple vertical cylinders (e.g. Wang and Jiang, 1994; Wang and Ren, 1999). Recently, 

Chang and Wang (2011) developed a three-dimensional model using transient curvilinear 

coordinate transformation along the vertical direction to investigate the generation of 

nonlinear long waves by a submerged moving body. The three-dimensional nonlinear 

wave model with the three-dimensional curvilinear coordinate transformation technique 

has not yet been developed for simulating wave propagation and wave-structure 

interaction.  

As the number of structures built in offshore or coastal environments increases, 

the study of wave and structure interaction becomes more important, especially under the 

conditions of nonlinear waves and floating structures. The wave run-up and forces acting 

on the structures are critical information for the design of the fixed or floating structures. 
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Wave run-up onto the deck, called green water load, can cause damage to the floating 

structures. Forces on the main offshore structures affect the overall design of the 

supporting structures, mooring lines, risers, and others. Three-dimensional numerical 

models can provide effective and comprehensive estimations of wave run-ups and forces 

on structures.  

In this study, a three-dimensional fully nonlinear wave model, based on solving 

the Laplace equation and boundary conditions in a domain with three-dimensional 

curvilinear coordinate system, is developed to simulate propagation of solitary waves and 

their interactions with a bottom mounted and surface-piercing cylindrical structure or a 

floating cylindrical structure. Model results with selected cases will be validated by 

comparing the simulated solutions with measured data from Wang et al. (1994), present 

wave tank tests, and other published analytical and numerical results. Other results in 

terms of wave elevations and forces on structures are also presented.  

Following the Introduction section, a Literature Review section is provided to 

describe the prior studies of nonlinear waves, especially the propagation of nonlinear 

long waves and their interactions with fixed or floating structures.  

1.3   Literature Review 

1.1   Shallow water waves interacting with bottom mounted cylindrical 

structures 

  The interactions between water waves and cylindrical structures have been 

investigated for decades. MacCamy and Fuchs (1954) applied the diffraction theory to 

study the interaction of long-crested waves with a vertical cylinder in general water 
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depths and compared the wave profiles with experimental measurements. Molin (1979) 

derived the nonlinear wave solutions to compute the second-order diffraction loads on 

three-dimensional bodies. For nonlinear long waves, Isaacson (1983) implemented the 

expressions of the free-surface elevation and velocity potential in Fourier integral forms 

to derive the analytical solutions on wave force and free-surface run-up for a solitary 

wave scattered around a vertical cylinder. Later, Basmat and Ziegler (1998) obtained 

higher-order equations for the diffraction of a solitary wave with a vertical cylinder and 

accordingly extended Isaacson’s (1983) first-order approximation to second-order 

solutions.  

 For the class of nonlinear shallow-water (or long) waves, the two important 

dimensionless parameters, 0/ hH  and ߝ ൌ ሺ݄଴/ߣሻଶ , are assumed to be small. 

However, their ratio, known as the Ursell number, is of order one, or )( O . Here,  H   

is a representative wave height, ݄଴  is a typical water depth, and   is a characteristic 

wavelength. The standard expansion method using the two small dimensionless 

parameters   and ߝ can be followed to derive the Boussinesq equations to describe the 

so-called weakly nonlinear and weakly dispersive waves. The Boussinesq equations have 

been widely applied numerically to study the propagation, transformation, and diffraction 

of nonlinear long waves under the influence of variable water depths and the existence of 

structures. The associated wave loads on structures have also been investigated.   

The lower-order Boussinesq equations were originally derived in a domain of 

constant water depth. To extend the applications, the improved Boussinesq equations in 

higher order have been developed to describe the higher-order nonlinear long waves in a 

wide range of water depth (Peregrine, 1967; Wu, 1981, 1998; Nwogu, 1993; Wei and 



7 
 

Kirby, 1995; Agnon et al., 1999; Gobbi and Kirby, 2000; Madsen et al., 2002). Based on 

the concept of layer-mean velocity potentials, Wu (1979) developed a generalized 

Boussinesq two-equation model for modeling a three-dimensional nonlinear long wave 

propagating in shallow water. In 1998, Wu further derived the fully nonlinear and weakly 

dispersive Boussinesq equations for the study of fully nonlinear long waves. Wang et al. 

(1992) solved the generalized Boussinesq equations using the finite difference scheme 

and curvilinear coordinate system to investigate the three-dimensional scattering of 

solitary waves by a vertical cylinder. Later, Wang and Jiang (1994) and Wang and Ren 

(1998) adopted the concept of the multiple grid system, which provides a better fit of the 

grid system along the surface of cylindrical structures, to simulate the interaction between 

a solitary wave or a cnoidal wave with arrays of cylinders.  

The finite element method was also introduced into the numerical approach of 

solving the Boussinesq equations because of the advantage of using non-uniform and 

unstructured grids. Katopodes et al. (1987) and Antunes et al. (1993) constructed the 

finite element models to solve the original Boussinesq equations. Fully unstructured 

meshes were used in a linear finite element model developed by Kawahara et al. (1994). 

For modeling shallow water wave interaction with structures, Ambrosi et al. (1998) and 

Woo et al. (2004) investigated the interactions of solitary waves with a vertical cylinder 

by the finite element method. Recently, Zhong and Wang (2008) developed a time-

accurate stabilized finite element model to investigate the diffraction processes of both 

weakly nonlinear and weakly dispersive waves and fully nonlinear and weakly dispersive 

waves by cylindrical structures. Other fully three-dimensional models have also been 

constructed to simulate the interaction between waves and structures. Yang and Ertekin 
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(1992) applied the boundary element method to calculate the solitary wave induced 

forces on a vertical cylinder. Simulations of the interaction between a vertical cylinder 

and steep waves were carried out by using a three-dimensional finite element model (Ma 

et al., 2001; Kim et al., 2006). Later, Eatock Taylor et al. (2008) combined the boundary 

element and finite element methods to perform numerical wave tank simulation. Ai and 

Jin (2010) applied an efficient non-hydrostatic finite volume model to simulate solitary 

waves interacting with a vertical cylinder, an array of four cylinders, and a submerged 

structure. Choi et al. (2011) solved the three-dimensional Navier-Stokes equations by 

means of a finite difference method to model the run-up of a cnoidal wave around a fixed 

bottom mounted cylinder. Experimentally, Yates and Wang (1994) provided a series of 

measurements of free-surface elevations around a vertical cylinder and induced forces for 

the case of a solitary wave scattered by a vertical cylinder. 

1.2   Water waves interacting with floating structures 

In recent years, construction of floating structures in offshore applications has 

been expanded considerably. However, the studies of wave interaction with floating 

structures have been very limited, especially considering nonlinear shallow-water waves. 

The analytical formulations to predict wave forces on floating structures can be found in 

Miles and Gilbert (1968), Garrett (1971), Yeung (1981), Mavrakoos (1985), and Sabuncu 

and Gӧren (1985). Yu and Chwang (1993) and Chwang and Wu (1994) used a linear 

wave theory and an eigenfunction expansion method to study the scattering of water 

waves by a horizontal submerged disk. The eigenfunction expansion method was also 

applied to investigate the wave interaction with floating structures (Drimer et al. 1992; 

Wu et al.,1995; William et al., 2000). For an array of floating cylinders, three-
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dimensional analytical methods have been developed to solve the wave radiation and 

diffraction problems (Kagemoto et al., 1986; Kim, 1993; Yilmaz et al., 1998, 2001; 

Siddorn and Eatock Taylor, 2008; Zeng and Tang, 2013). Zheng and Zheng (2015) 

applied the concepts of the analytical solutions of an array of floating cylinders with 

eigenfunction expansion matching method to predict the wave diffraction by a truncated 

cylinder in front of a wall. 

 Numerically solving three-dimensional governing equations directly with fully 

nonlinear boundary conditions may be utilized to investigate the impinging of waves on 

floating structures. The boundary element method with its computational elements 

arranged along the boundary surfaces is an approach that has been applied by researchers 

to simulate the interaction of waves and floating structures. Isaacson (1982) solved the 

integral equations of the boundary element approach based on the Green’s function 

theorem to obtain velocity potentials of the fluid domain. He also computed the wave 

forces acting on the fixed and floating structures. Isaacson and Cheung (1990, 1991, and 

1992) modified the time-stepping procedure to solve wave diffraction around the two-

dimensional and three-dimensional body problems. A higher-order boundary element 

model with the mixed Eulerian-Lagrangian method was developed to simulate nonlinear 

wave-wave and wave-body interactions (Kim et al., 1998; Xue et al., 2001; Lue et al., 

2001). Boo (2002) used the time-domain higher-order boundary element method to 

simulate linear and nonlinear irregular waves and their interactions with a vertical 

truncated circular cylinder. Using different time domain scheme, Koo and Kim (2007) 

utilized Mixed Eulerian-Lagrangian numerical method and Runge-kutta fourth-order time 

integration techniques on the free surface to study the problem of two-dimensional fully 
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nonlinear waves encountering a surface-piercing body. Bai and Taylor (2009) later 

applied the higher-order boundary element method to simulate fully nonlinear water 

waves interacting with fixed and floating flared structures.  

In addition to the boundary element method, other discretization methods, such as 

finite difference and finite element methods, have also been used to develop models to 

study wave and floating structure interaction problems. Park et al. (2001) presented a 

numerical wave tank study on nonlinear waves interacting with a stationary and vertically 

truncated circular cylinder by a finite difference based Navier-Stokes equations solver. 

Lin (2006) also solved the Navier-Stokes equations with the finite difference method and 

multiple-layered σ-coordinate transformation technique to simulate the transformation of 

solitary waves by a two-dimensional rectangular floating structure. Later, Kang et al. 

(2015) extended the multiple-layered σ-coordinate transformation technique to study the 

problems of wave interacting with a submerged three-dimensional vertical circular 

cylinder. By applying the finite element method, Zhu et al. (2001) solved the Navier-

Stokes equations to simulate free-surface waves over submerged horizontal cylinders. 

Wang et al. (2007) investigated the interaction between nonlinear waves and non-wall-

sided three-dimensional structures. Sun et al. (2015) applied the higher-order finite 

element method to simulate a solitary wave impacting on a two-dimensional structure. 

Recently, Lu and Wang (2015) developed an integrated analytical-numerical approach 

for modeling a solitary wave propagating past a fixed two-dimensional floating body. A 

series of experimental measurements in terms of reflected and transmitted wave 

elevations have also been conducted by Lu and Wang (2015) to compare to their model 

solutions. 
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1.3   Water wave propagation in a curved channel  

As curved channels are easily observed in nature and in engineering applications, 

the phenomenon of wave propagation in curved channels is also an important topic to 

study. In past decades, only very limited researches focused on investigating the 

nonlinear shallow-water waves propagating in curved channels. Rostafinski (1972) 

derived a two-dimensional analytical solution by using linear wave equations for the 

propagation of long acoustic waves in curved ducts. Katopodes and Wu (1987) developed 

a finite element model with a rectangular grid system to simulate a solitary wave 

traveling through a 90 degree sharp-cornered channel. However, it is difficult to describe 

non-orthogonal boundaries, like curved channels, by using the rectangular orthogonal 

grid system for numerical simulations. For this reason, coordinate transformation systems 

have been developed and applied in different cases of non-orthogonal boundaries such as 

breakwaters, shorelines, and riverbanks (Wang, 1994; Shi, 2005; Wood and Wang, 2015). 

Kirby et al. (1994) applied small- and large-angle parabolic approximations in 

conformally mapped coordinate systems to investigate linear waves propagating in a 

curved water channel. For nonlinear wave modeling, Boussinesq equations with 

coordinate transformations can provide solutions to describe nonlinear long waves 

propagating in variable topographies. Shi et al. (1996, 1998) adopted the boundary-fitted 

curvilinear finite difference scheme developed by Wang et al. (1992) to solve the 

generalized Boussinesq equations (Wu, 1981) for modeling solitary waves propagating 

through a sharp-cornered channel bend and a smoothly curved channel bend. Then, the 

higher-order Boussinesq equations were developed and applied with the curvilinear 

coordinate transformation system to simulate waves propagating through a circular 
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channel (Yuhi et al., 2000; Shi et al., 2001; Fang, 2012). In addition, the boundary-fitted 

curvilinear transformations were combined with the solvers of the Navier-Stokes 

equations to investigate nonlinear waves traveling in a curved channel (Choi et al., 2011; 

Choi and Yuan, 2012). Different from using the boundary-fitted curvilinear 

transformation technique, Nachbin and Da Silva Simões (2012) applied the Schwarz-

Christoffel transformation into the generalized Boussinesq equations to study the 

interaction of a solitary wave with a sharp-cornered and a smoothly curved 90 degree 

bend.  

Solving equations in an unstructured grid system is another way to model wave 

propagation in a domain with non-orthogonal boundaries. Lӧhner et al. (1984) developed 

a finite element model for a computational domain that is constructed by the linear 

triangular elements to simulate two-dimensional oblique waves passing through a channel 

with a sudden contraction of width. Asmar and Nwogu (2007) solved Boussinesq-type 

equations by the finite volume method with irregular triangular grids to carry out the 

simulations of a solitary wave traveling in a curved channel.    

1.4   Outline of the Dissertation 

It is noticed from the literature review that the applications of Boussinesq models 

are limited to the problems associated with the interaction between three-dimensional 

nonlinear shallow-water waves and bottom mounted and surface piercing structures. For 

the floating bodies, the vertically integrated (or averaged) Boussinesq models face the 

difficulty to cover the solutions for the regions beneath the bodies. The development of a 

fully three-dimensional modeling approach becomes necessary to investigate the 

evolution of waves scattered by three-dimensional floating bodies. In addition, the study 
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of nonlinear shallow-water waves interacting with a floating structure by solving the 

three-dimensional governing equations has brought only very limited attention, especially 

considering solitary wave interactions with floating structures. Thus, the aim of this study 

is to develop a three-dimensional fully nonlinear wave model by solving the three-

dimensional Laplace equation and specified boundary conditions on the free surface and 

structural surface in order to investigate the interaction process between nonlinear 

shallow-water waves and cylindrical structures.  

The general introduction, literature review, and the outline of the dissertation are 

introduced in Chapter 1. Chapter 2 presents the theoretical development of the present 

three-dimensional fully nonlinear wave model. The three-dimensional governing 

equation, Laplace equation, and the various boundary conditions, including the kinematic 

and dynamic boundary conditions, the open boundary conditions, and solid wall 

boundary conditions, are formulated in this chapter. Additionally, the wave considered in 

this study is a Boussinesq type solitary wave, where the analytical expressions of the 

wave elevation and velocity potential are available to be used as the incident wave 

conditions. In order to have the computational grids fitting closely to the irregular and 

curved boundaries, such as a circular cylinder surface, and the time-varying free surface 

for the numerical advantage, the transient three-dimensional curvilinear coordinate 

transformation technique is adopted to convert the original governing equations and 

boundary conditions in Cartesian coordinates into the curvilinear coordinate based 

equations. The derivations of the transformed equations are also included in Chapter 2. 

Chapter 3 describes a finite difference formulation for the governing equation and 

a mixed explicit-implicit scheme for solving nonlinear free-surface boundary conditions. 
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Moreover, numerically the multiple grid systems with curvilinear grid points covering the 

regions close to or beneath the structures and separating from those regular grids for 

regions far outside of the structures are used. This requires an iteration procedure to 

generate consistent and converged results at grid points in the overlapped regions. Once 

the three-dimensional velocity potentials and free-surface elevation around the cylindrical 

surface are determined, the pressure distribution on the cylinder can be computed by 

means of the Bernoulli equation. Accordingly, the total forces acting on the cylinder can 

be calculated by integrating the pressure.  In order to validate the stability and accuracy 

of the present three-dimensional fully nonlinear model, modeling a solitary wave freely 

propagating in a long fluid domain was performed for studying the effects of grid size 

and time step. Another case study, a solitary wave propagating through a 180  curved 

channel, was also carried out to demonstrate the capability of the present model to 

simulate propagation of waves in a channel of arbitrary shapes.  

Chapter 4 and Chapter 5 present the application studies of the interaction between 

solitary waves and structures. In Chapter 4, the present three-dimensional fully nonlinear 

wave model simulates a solitary wave interacting with a bottom mounted and surface 

piercing vertical cylinder. The results showing the time variation of the diffracted wave 

pattern and hydrodynamic forces acting on the cylinder considered in the simulation are 

presented. The model performance is examined by comparing the time-varying wave 

elevations at selected locations with those obtained from Boussinesq model and 

experimental measurements (Yates and Wang, 1994). In Chapter 5, in order to show the 

capability of the present three-dimensional fully nonlinear wave model in solving more 

complicated wave-structure interaction problems, the results from simulating the 



15 
 

propagation of a solitary wave and its interaction with a partially immersed and fixed 

floating circular cylinder are presented. In addition, the laboratory experiments of a 

solitary wave interacting with a partially immersed and fixed floating circular cylinder 

were conducted for verifying the numerical results obtained from the present model. The 

detailed data recording and experimental setup including the dimensions and locations of 

the wave gauges, the wavemaker, and the circular cylinder are described. The evolution 

of the wave diffraction process and wave induced hydrodynamic forces along the 

horizontal and vertical directions for the selected cases are also presented in this chapter.  

Finally, the key results and conclusions of the present three-dimensional fully 

nonlinear modeling studies are summarized in Chapter 6. This chapter also discusses the 

future study and potential applications of the developed wave model.  
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Chapter 2  

Theoretical Model for Fully Nonlinear Water Waves 

There are many approaches based on general Boussinesq model to simulate the 

long wave propagate. However, the vertical averaged Boussinesq model is hard to 

describe the change in the vertical direction while the velocity potentials of each layer are 

different such as a solitary wave passes through a floating structure. It is hard for using 

vertical averaged method to solve the velocity potentials underneath the floating structure. 

Moreover, the Boussinesq model is derived for weakly-nonlinear long wave. In order to 

simulate the fully nonlinear long wave interaction with structures, especially with a 

floating structure, the equations need to suit for fully three-dimension and fully non-

linear wave. The curvilinear coordinate transformation which can describe the boundaries 

fittingly is also applied to this model. The equations used for developing three-dimension 

fully non-linear solitary wave model and the curvilinear coordinate transformation in this 

study will be presented in the following sections.     

2.1   Governing Equations 

In this study, simulations of solitary waves interaction with a full (bottom 

mounted and surface piercing) vertical cylinder or a partially immersed and fixed floating 

cylinder were carried out using a developed three-dimensional fully nonlinear wave 

model. For the convenience of model development and results presentation, all physical 

variables are nondimensionalized according to ݄଴
∗, ඥ݄଴

∗ ݃⁄ ,	and ඥ݄݃଴
∗  as respectively the 

length, time, and velocity scales. We have  
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where a variable with superscript “*” represent the dimensional form of that variable. 

Here, ߶	= velocity potential and ሺݑ, ,ݒ  = three-dimensional velocity vector. Sketches	ሻݓ

showing a solitary wave encountering a full vertical cylinder and a partially immersed 

one are presented in Figures, 2-1(a) and 2-1(b), respectively. The Cartesian coordinates 

were chosen as the original coordinate system to formulate the governing equation and 

the boundary conditions. As shown in Figure 2-1, the x- and y- axes represent the two 

horizontal coordinates while z-axis points upward with ݖ	0= being set at the level of the 

undisturbed free surface. ݖ ൌ  ሺݔ, ,ݕ ሻݐ  denotes the displacement of the free surface 

from the undisturbed water level and t = time The bottom of flow domain is horizontal 

and is placed at ݖ∗ ൌ െ݄଴
∗  or in dimensionless form ݖ ൌ െ1,	where ݄଴

∗	is a constant water 

depth. It is assumed that the fluid is incompressible and inviscid and the motion 

irrotational. The velocity potential of the wave motion satisfies the Laplace equation, 

which is described in dimensionless form as 
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߶ଶ׏ ൌ 0 ,          at  zh , (2- 2)

 

where ׏ൌ ሺ߲ ⁄ݔ߲ , ߲ ⁄ݕ߲ , ߲ ⁄ݖ߲ ሻ is a vector differential operator. The velocity 

components u, v, and w can be related to the velocity potential as 

ݑ               ൌ ߲߶ ⁄ݔ߲  , (2- 3)

ݒ         ൌ ߲߶ ⁄ݕ߲  , and (2- 4) 

ݓ                ൌ ߲߶ ⁄ݖ߲  . (2- 5)

In addition to the governing equation (2- 2), the boundary conditions at the free surface, 

the bottom boundary, the rigid side wall and structural boundaries, and the upstream and 

downstream open boundaries need to be formulated to complete the required equations 

for the development of a three-dimensional nonlinear wave model that can be used to 

simulate the propagation of nonlinear long waves and their interactions with cylindrical 

structures. Those boundary equations are addressed in Section 2.2.    
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2.2   Boundary Conditions 

 As described above, providing appropriate boundary conditions is essential for the 

development of stable and accurate wave simulation model for the present wave-structure 

interaction study. The boundary conditions for each specified boundary are introduced 

and formulated in the following subsections.  

2.2.1   Free-surface boundary conditions 

The kinematic property of the free surface indicates that once a fluid particle is on 

the free surface, it remains on the free surface and its normal velocity follows the normal 

velocity of the free surface. Defining the free surface function as ܨሺݔ, ,ݕ ,ݖ ሻݐ ൌ ݖ െ

 ሺݔ, ,ݕ  ሻ, the condition suggests that the total derivative of the surface function withݐ

respect to time is equal to zero there. Thus, the kinematic free-surface boundary condition 

(KFSBC) can be written as 

yxt vuw          at  tyxz ,, , (2- 6)

where the subscripts denote the partial derivatives.    

Moreover, the pressure is maintained as a constant at the free surface. The 

Bernoulli equation is applied at the free surface as the dynamic free-surface boundary 

condition (DFSBC), which is described as  

߶௧ ൅
ଵ

ଶ
ሺݑଶ ൅ ଶݒ ൅ ଶሻݓ ൅  ൅ ݌ ൌ 0     at  tyxz ,,  , (2- 7)

where p is a pressure on the surface. Let p = 0, the DFSBC is reduced to 
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߶௧ ൅
ଵ

ଶ
ሺݑଶ ൅ ଶݒ ൅ ଶሻݓ ൅  ൌ 0     at  tyxz ,,  . (2- 8)

2.2.2   Bottom boundary condition 

The no fluid penetrating at the flat solid bottom boundary leads to the following 

bottom boundary condition  

 0



z


     at z = -1. (2- 9) 

2.2.3   Solid side wall and structural boundary conditions 

For modeling the interactions between nonlinear waves and cylindrical structures 

in a domain of wave channel with two side walls, the boundary conditions on the rigid 

side walls and the circular cylinder surface follow that the normal fluid velocity vanishes 

there. We have  

 0



n


, (2- 10) 

where n is the unit normal direction to a solid boundary surface. 

2.2.4   Open boundary conditions 

The open boundary conditions control the waves propagating out of the 

computational domain without the adverse impact from wave reflection. The Orlanski 

type simple wave equations used as the open boundary conditions for simulating 

propagation of nonlinear long waves were firstly applied by Wu and Wu (1982). The 

equations in dimensionless forms for velocity potential and wave elevation are given as 
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                        0 xt   and (2- 11a) 
 

 0   xt  ,  (2- 11a)  

where the + or – sign is referenced according to the downstream or upstream boundary. 

The above described open boundary conditions have been proven to be able to propagate 

the primary and scattered waves out of the computational domain effectively, including 

the cases of modeling scattering of a solitary wave by a vertical cylinder (Wang el al., 

1992), by a breakwater (Wang, 1993) and the interactions of cnoidal waves with cylinder 

arrays (Wang and Ren, 1999).  Later, the boundary conditions in equations (2- 11a) and 

(2- 11a) were extended by Chang and Wang (2011) in their modeling study of generation 

of three-dimensional water waves by a submerged moving object. The extended open 

boundary conditions for the downstream boundary are given as  

                   ߶௧ ൅ ට൫1 ൅  ൯߶௫ ൌ 0  and (2- 12a)
 

 
௧
൅ ට൫1 ൅  ൯

௫
ൌ 0 . (2- 12a) 

The wave elevation effect is included in Equations (2- 12a) and (2- 12a). The 

upstream open boundary conditions that control the transmission of the scattered or 

reflected waves out of the upstream boundary are expressed as 

         ߶௧ െ ට൫1 ൅  ൯߶௫ ൌ 0  and (2- 13a)
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
௧
െ ට൫1 ൅  ൯

௫
ൌ 0 . (2- 13a)

2.3   Initial Condition for Incident Solitary Waves 

 As a solitary wave has a unique property of cohesive balance between the 

nonlinear and dispersive effects and can be effectively applied to reveal the nonlinear 

behavior of wave-structure interaction, it is selected, in this study, a solitary wave to be 

the initial and incident wave condition.    

An up to the second-order solitary wave solution as derived by Schember (1982) 

is used. This second-order solitary wave solutions in term of wave elevation  and 

vertically averaged (layer-mean) velocity potential ߶ത	are expressed as  

 ൌ



1

ሾsechଶ	݇ሺݔ െ ݐܿ െ ଴ሻݔ ൅ sechଶߙ ݇ሺݔ െ ݐܿ െ ଴ሻሿ and (2- 14)ݔ

߶ത ൌ ቆ 
3

4
ቇ
ଵ ଶ⁄

tanh݇ሺݔ െ ݐܿ െ ଴ሻ, (2- 15)ݔ

where 

          ݇ ൌ ቈ  

14

3
቉
ଵ ଶ⁄

 and (2- 16)  

  ܿ ൌ ሺ1 ൅ ሻଵߙ ଶ⁄  , (2- 17) 

 = dimensionless wave amplitude, and the layer-mean velocity potential

)1/(]),,([
ζ

1

  


dztzx .  
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In order to extend the ߶ത equation in (2- 15) to the expression of three-dimensional 

velocity potential, a relationship between the original velocity potential ߶ሺݔ, ,ݕ ,ݖ  ሻ andݐ

the layer-mean velocity potential ߶തሺݔ, ,ݕ   ሻ as given in Wu (1981) and Wang et al. (1992)ݐ

߶ ൌ ߶ത െ ߙ ቆ
23

1 2z
z  ቇ׏ଶ߶ത ൅ ܱሺߝହሻ, (2- 18)

is applied. The neglected error terms in Eq. (2- 18) are up to ܱሺߝହሻ, where  0h . 

The three-dimensional velocity potential for an incident solitary wave can be derived by 

substituting ߶ത	from Eq. (2- 15) into Eq. (2- 18) as 

߶ ൌ ቆ 
3

4
ቇ
ଵ ଶ⁄

tanh݇ሺݔ െ ݐܿ െ ଴ሻݔ െ ߙ ቆ
23

1 2z
z  ቇቆ 

3

4
ቇ
ଵ ଶ⁄

ሺ2݇ଶሻ tanh ݇ሺݔ െ

ݐܿ െ ଴ሻݔ ሾtanhଶ ݇ሺݔ െ ݐܿ െ ଴ሻݔ െ 1ሿ .   

  (2- 19) 

Equation (2- 19) can be used as an initial wave condition by setting t = 0 and letting the 

peak of a specified solitary wave be situated at ݔ ൌ  ଴. For modeling wave and cylinderݔ

interaction, the initial wave peak location is selected to be sufficiently far away from the 

cylinder (Wang et al., 1992). This will allow the inputted incident waves from Eqs. (2- 14) 

and (2- 19) to gradually transition into an initial solitary wave that satisfies the derived 

three-dimensional model equations before it encountering a vertical cylinder.  

2.4   Forces on cylinders 

Once the free-surface elevation and velocity potentials are determined from 

solving the model equations, the wave-induced hydrodynamic force F acting on either a 



25 
 

bottom mounted cylinder or a floating cylinder can be calculated by integrating the 

pressure on the cylinder surface, where the pressure, p, is computed from the Bernoulli 

equation  

݌  ൌ െݖ െ ߶௧ െ
ଵ

ଶ
൫߶௫ଶ ൅ ߶௬ଶ ൅ ߶௭ଶ൯ . (2- 20) 

For the convenience of force comparisons with other published results for the cases of a 

bottom mounted and surface piercing cylinder, the inline force coefficient ܥ௙ுሺݐሻ  is 

defined as the integral of the x-direction component of the excess pressure ሺ݌ ൅  ሻ overݖ

the surface of the cylinder in contact with the fluid. The form of the force coefficient is 

    








 h

x
fH dzzpd

Rgh

eF
tC  cos   2

02
0

, (2- 21)

where ݁௫  = the unit normal direction along the ݔ -axis, R is the radius of a cylinder 

considered in the study, and ߠ is the angle of angular direction measured from the ݔ-axis.   

For the partially submerged floating cylinder cases, the hydrodynamic forces 

include two parts: horizontal force and vertical force. The horizontal (inline) force 

coefficient ܥ௙ுሺݐሻ  is similar to Equation (2- 21), but integrated only the submerged 

portion of the cylindrical surface. The vertical force coefficient ܥ௙௏ሺݐሻ, which is acting on 

the bottom of the floating cylinder, is computed according to 

ሻݐ௙௏ሺܥ  ൌ 2
0Rgh

eF z




ൌ ∬ሺ݌ ൅  (22 -2) , ܣሻ݀ݖ

where ݁௭ = the unit normal direction along the ݖ-axis and ݀ܣ is a small incremental area 

of the bottom surface. 
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2.5   Three-Dimensional Transient Curvilinear Coordinate 

Transformation 

The traditional Cartesian coordinates are convenient to define with rectangular 

grids a regular flow domain with straight-line boundaries. However, when complex and 

curved boundaries exist in the physical domain, the Cartesian coordinates based finite 

difference models are expected to face the difficulty in representing the irregular 

boundaries with rectangular grids and the associated numerical challenge in computing 

the values of physical variables there. In order to facilitate the application of the 

boundary conditions on the irregular and curved boundaries (e.g. cylinder surface) and to 

represent the selected structural surface in the computational domain well, the boundary-

fitted (or curvilinear) coordinate transformation technique is applied in the present 

modeling study.  

The curvilinear coordinate transformation technique was introduced by Thompson 

et al. (1974) and has been extended to the modeling studies of solitary waves interactions 

with a bottom mounted cylinder (Wang et al., 1992) or cylinder arrays (Jiang and Wang, 

1994; Wang and Ren, 1999) and the generation of fully nonlinear waves by a submerged 

moving object (Chang and Wang, 2011).  In this study, a fully 3D transient curvilinear 

coordinate transformation is utilized to transform the transient rectangular grids in 

Cartesian coordinates  t zyx ;,,  into transient curvilinear coordinates   ;,,   for 

multi-grid modeling application. The transient effect on the computational grids is limited 

to the vertical coordinate. This indicates that the physical z coordinates vary at each time 

level according to the updated vertical domain at a given location. The transformation of 

the governing equations and the boundary conditions are summarized in the following. 
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 The spatial derivatives of velocity potential ߶ with respect to  ,  , and   are 
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Solving the above three equations, we have 

                 
J

zyyzzyz

x
  
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
 y

  , (2- 26)
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 , and (2- 27) 
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



  , (2- 28)

 

where    zyxyxJ    is the determinant of Jacobian matrix. For the time derivative, 

it can be shown                                          

 


















 z

zt
 . (2- 29) 

The terms of ߲߶ ⁄ݔ߲ , ߲߶ ⁄ݕ߲ , and ߲߶ ⁄ݖ߲ 	 in Eqs. (2- 26)- (2- 28) are substituted into the 

Laplace equation [Eq. (2- 2)] in Cartesian coordinates  
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to give 
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Let 

                
 

2

222

11 J

zyx
g  

 , (2- 31)

 
 

2

2

12

2

J

zyyxx
g  

  , (2- 32) 

 
   

2

22

13

22

J

zzyxzzyyxx
g  

  , (2- 33) 



29 
 

 
 

2

222

22 J

zyx
g    , (2- 34) 

 
   

2

22

23

22

J

zzyxzzyyxx
g  

  , (2- 35) 

 
     

2

222

33
J

yxyxzxzxzyzy
g  

  , (2- 36) 

 
 

3

3

1 J

zDxyDyx
f  
  , (2- 37) 

 
 

3

3

2 J

zDyxDxy
f  
  , (2- 38) 

 

     
J

zgzgzgzgzgzgyxyx

J

gygx
f  332212111323

33





  ,  

  (2- 39) 

  Dxzzyzzygx
22

   , (2- 40) 

  Dyzzxzzxgy
22

   , (2- 41) 

        xyxxyyxxxyxDx
2222

2   , and (2- 42) 



30 
 

                yyxyyyxxyyxDy
2222

2   . (2- 43)

 

The governing equation Eq. (2- 30a) in the transformed coordinates can be reduced to 

 

            0
321332223121311

   fffgggggg  . 

   (2- 44) 

The fluid velocity can be calculated from velocity potential, namely (2- 3) to (2- 5) in the 

transformed domain are 

  Jzyyzzyzyu x    , (2- 45)

       Jzxzxzxzxv y    , and (2- 46)

  Jxyyxw z    . (2- 47)

The free-surface boundary conditions described in Eqs. (2- 6) and (2- 8) are transformed 

as 
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where u, v, and w are three-dimensional velocity components given in Eqs.  (2- 45), (2- 

46), and (2- 47) respectively. Similarly, the open boundary conditions as given in Eqs. (2- 

11a) and (2- 12a) are reformulated in the transformed coordinate system to have  

     0   1    zxzxw  and (2- 50) 

     0   1    x . (2- 51) 
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Chapter 3  

Numerical Method 

 The numerical scheme and procedure of solving the governing equation and 

boundary conditions formulated in Chapter 2 are described in this chapter. Numerically, 

the finite difference scheme is adopted for the development of the three-dimensional 

nonlinear wave model. The technique of multi-grid system is also used to handle more 

complex computational domains. Cases with a solitary wave propagating along a 180 

bend channel and wave interactions with a bottom mounted and surface-piercing vertical 

cylinder or with a fixed and partially submerged cylinder are simulated. The model tests 

and validation in terms of the effects of grid size, time step and irregular domain are 

presented and discussed.   

3.1   Finite Difference Formulations 

The finite difference method is applied to solve the governing equation and 

boundary conditions. Following the usual notations, ߶௜,௝,௞
௡  and 

n

ji,
  are defined as 

 tnkjin
kji  ,,, ,,   and  tnjin

ji  ,, ,  , in which i, j, and k are grid 

indices along respectively  ,  , and   directions, n is the time level index, Δݐ is the 

time step, and 1   are spatial mesh sizes in  ,  , and   directions. The 

central difference scheme when applied to discretize the spatial derivatives in the 

governing equation [Eq.(2- 44)] yields 
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(3- 1)
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  The value of ߶௜,௝,௞	at each grid point and at the new time level is evaluated by 

solving Eq. (3- 1) through the iteration procedure. A mixed explicit-implicit scheme is 

adopted to solve the nonlinear free surface boundary conditions specified at the grid 

points on the free surface. Free surface elevation   and velocity potential  there at the 

new time level are determined through the developed numerical algorithm. The explicit 

finite difference expressions of the transformed kinematic and dynamic free-surface 

boundary conditions [Eqs. (2- 48) and (2- 49)] are derived as 

 
௜,௝

௡ାଵ෫ n
KMji

n
ji tE ,,,   , (3- 15) 
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  (3- 16) 

and 
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 . (3- 18)  

The superscript ݊ ൅ 1෫  denotes the provisional values at ݊ ൅ 1෫ time level through explicit 

computation. The index KM represents the vertical grid points at the water surface layer. 

Through the iteration procedure, the updated values of 
௜,௝

௡ାଵ෫
 and 

௜,௝,௄ெ

௡ାଵ෫
 after solving 

Eqs. (3-15) and (3-17) are used to average with the values calculated from the following 

implicit finite difference formulations 
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in which 
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and 
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The averaging procedures using values obtained from the explicit and implicit 

computations for 
௜,௝

௡ାଵ෫
 and 

௜,௝

௡ାଵതതതതതത
 in kinematic free-surface boundary condition and for 


௜,௝,௄ெ

௡ାଵ෫
 and 

௜,௝,௄ெ

௡ାଵതതതതതത
 in dynamic free-surface boundary condition are applied to further the 

determination of the final values of the free surface elevation 1
,
n
ji  and velocity potential 

1
,,
n

KMji  at ሺ݊ ൅ 1ሻΔݐ time. The described formulations are shown below 

    1
,
n

ji  ൬
௜,௝

௡ାଵ෫
൅ 

௜,௝

௡ାଵതതതതതത
൰ 2ൗ  and 

(3- 23)

1
,,

n
KMji  ൬

௜,௝,௄ெ

௡ାଵ෫
൅ 

௜,௝,௄ெ

௡ାଵതതതതതത
൰ 2ൗ  . 

(3- 24)

Once the values of 1
,
n
ji  and 1

,,
n

KMji at the free surface are obtained from Eqs. (3- 23) and 

(3- 24), the velocity potential at each grid point below the free surface of the entire 
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computational domain at ሺ݊ ൅ 1ሻΔݐ time level can be determined by solving Eq. (3- 1) 

with additional inputs from open boundary conditions [Eqs. (2- 12a) to (2- 13a)]. 

3.2   Computational Domain with Multi-grid Systems 

For modeling a solitary wave interaction with a fixed structure (e.g., a vertical 

circular cylinder), a single set of curvilinear grids can generally represent well the flow 

domain. However, the concern is that potentially the numerical instability and singularity 

may appear when applying the structural boundary conditions on the grid points located 

around the cylinder surface and the cuts of the grid system, especially at points in front of 

the structures that receive the direct impact from the incident nonlinear waves. In order to 

avoid the numerical errors caused by inappropriate grid points within a single set of 

curvilinear grid system, a multi-grid system and a multi-block computational method as 

introduced by Wang and Jiang (1994) for their numerical investigation of the interactions 

between a solitary wave and a transversely arranged two vertical cylinders is adopted for 

the present study. Polar grids (inner grids) are introduced to cover the region close to and 

on the cylinder surface while the rectangular grids (outer grids) are extended over the 

remaining fluid domain outside of the polar grid region. Overlapped grids between the 

inner and outer grid systems are arranged to allow the interpolation of physical variables 

at the grid interfaces for the numerical iteration and check of solution convergence. 

Figure 3- 1shows the distribution of the inner polar grids and the outer rectangular grids 

with the thick black line representing the inner boundary of the rectangular grids. 

After an initial solitary wave introduced in the entire computational domain, to 

proceed to the next (or new) time level, the numerical procedure for the multi-grid 

systems is to firstly compute the velocity potentials and wave elevations throughout the 
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For a partially submerged floating cylinder case, the computational domain is 

separated into the outer region of the cylinder and the inner region beneath the cylinder. 

Computation for the flow domain beneath the cylinder needs to be considered. The grid 

setup for the outer region (excluding the region beneath the cylinder) is similar to the 

case with a bottom mounted and surface-piercing vertical cylinder. In the inner region (i.e. 

region beneath the cylinder), the horizontal polar grids are extended from the cylinder 

boundary to the inner region, however, ended at an inner boundary slightly away from the 

central region to prevent from the occurrence of numerical instability as a result of near 

zero grid sizes. Additional rectangular grids are placed to cover the central region beneath 

the cylinder. Again, within the central region, the overlapped inner rectangular and polar 

grids are arranged to allow the values of the physical variables be interpolated between 

the two-grid systems. The arrangement of the grid systems in the region outside of the 

cylinder is the same as the bottom-mounted vertical cylinder case as described above in 

Figure 3- 1. Overall, the grid arrangement, which consists of two rectangular grid systems 

and one polar grid system, for the flow domain including a region beneath a partially 

submerged cylinder is shown in Figure 3- 3. As can be seen in Figure 3- 3, the red dash 

circle represents the boundary of the cylinder. From Figure 3- 3, it is noted that the polar 

grids are extended to the outer part of the inner region beneath the cylinder. Added 

rectangular grids are set at the central region to cover the flow domain in that region. 

Compared to the thin polar lines, the thick ones represent the polar grid system for region 

outside of the cylinder. The interfaces connecting two overlapped neighboring grid 

systems are marked in black lines in Figure 3- 3.  
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where 
bot

k  is the index number of the vertical layer representing the level of the bottom 

of the cylinder. The values of the velocity potential and free surface elevation of the 

interfaces, namely the inner boundary of the outer rectangular grids (for flow domain 

outside of the cylinder) and the inner boundary of the polar grids (for the domain beneath 

the cylinder), are updated through a three-point interpolation scheme between two 

different grid systems to further the iteration procedure. The computational procedure is 

repeated to the next time level once the converged solutions at the interfaces and the 

entire three-dimensional flow domain are obtained at the current time level.  

3.3   Validation of the Numerical Model 

Before using the developed three-dimensional fully nonlinear wave model to 

investigate numerically the interactions between an incident solitary wave and cylindrical 

structures, a series of test cases were simulated to examine the effects of the grid sizes 

and time step on the solutions and to validate the model stability and accuracy. 

Throughout the tests, reasonable input parameters can be selected. For testing of the 

newly developed fully nonlinear wave model, the cases considering a plane solitary wave 

propagating in a rectangular wave channel with a constant water depth were used.  

As defined above, the x and y axes denote respectively the wave propagating 

direction and the transverse direction. The z axis points upward with z=0, namely the x-y 

plane, represents the undisturbed free surface. The computational domain in 

dimensionless units along x and y axes are respectively 0 ൑ ݔ ൑ 80 and 0 ൑ ݕ ൑ 3. The 

dimensionless water depth is set as one and the amplitude of the incident solitary wave ߙ 

is equal to 0.4. The rectangular grid sizes in x-y plane and time increment are ∆ݔ ൌ 0.25, 
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profles during the long process of wave propagation from upstream to downstream. 

Solitary wave solutions satisfying  the three-dimensional fully nonlinear wave model can 

be obtained. It can be seen clearly that at different time levels  the free-surface elevation 

of the solitary wave maintains the same shape and wave amplitude even when t =50. The 

difference between the computed peak of free-surface elevation and the targeted 0.4 

amplitude is within one percent. The stable wave amplitude produced by the present 

model is an evidence of the stability and validity of the developed model.  

 

 

 

Figure 3- 5  A sequence of time series plots of numerically simulated solitary waves 
propagating in a channel of constant depth ( 4.0 ) 
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3.3.1   Selection of time step and grid size 

The grid size and time step set for modeling studies affect the convergence and 

stability of the numerical simulation. In order to ascertain the convergence of the 

numerical scheme of the developed model, cases for a solitary wave propagating in a 

rectangular channel with various combinations of  x , y , and t  are selected to test 

the sensitives of the grid size and time step on the model results. As mentioned above, the 

x-axis represents the direction of wave propagation and the y-axis denotes the transverse 

direction. The z-axis points upward with 0z  plane being located at the undisturbed 

free surface. The dimensionless dimensions of the wave channel are 800  x and 

30  y . The incident solitary-wave amplitude   is set as 0.4. The results of the free-

surface elevation at 30t after the waves traveling from the initial position 10x

( 0t ) are selected for comparison plots, where the effects of the time step and the grid 

size on the modeling performance can be examined.  

First, the effects of time step on the wave simulation for fixed grid sizes are tested. 

The horizontal grid sizes x and y  are set to be equal to 0.25 and twenty layers are 

arranged in the z-direction. The time steps t  varying from 0.05 to 0.3 are considered 

for model simulations. Figure 3- 6 shows the comparisons of the numerically generated 

free-surface elevations with the case of different time interval at t 30. The results in 

Figure 3- 6 indicate that similar water surface profiles are obtained for cases with

05.0t , 1.0 , 2.0 , or 3.0 . The simulation using 3.0t  produces the least accurate 

results with a nearly three percent error. Certainly the amplitude of the solitary wave best 

fits to the set wave amplitude of 0.4 while time step is set as 0.1. The input of 1.0t  

gives the most accurate numerical solutions and the error is less than one percent. With 
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the further reduction of the time step to 0.05, the results do not show significant 

improvement from those obtained using 1.0t . Thus, the time step 1.0t was used 

for all cases included in the present modeling study. 

 

 

Figure 3- 6  Comparisons of numerical wave elevation profiles of different time interval 
for solitary waves propation with a constant depth ( 25.0 yx , 30t ) 
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to 0.3, are presented in Figure 3- 7. The results that when grid size 0.25 is used, the 

computed free surface elevations best fit to the targeted solitary wave profile including 

the wave amplitude of 0.4. Also, the overall error is less than 1 percent. The wave 

elevations from the case of grid size of 0.2 are in general similar to those from the case 

with x 0.25, however, with a slightly overpredicted wave amplitude which has a 

nearly 2.5 percent error. The comparisons suggest x 0.25 to be a reasonable grid size 

used in a Cartesian grid domain. Figure 3- 8 illustrates the comparisons of simulated 

wave profiles at t 30 from cases using different grid sizes in transverse (or y) direction. 

The grid size includes 0.2, 0.25, and 0.3. Due to the fact of wave propagation along the x 

direction, the grid size in y direction does not show an apparent effect on the simulated 

results. The grid size y  is set to be 0.25 for this study, which is comparable to the grid 

size chosen along the x direction. Additionally, the effect of the numbers of layers along 

the z direction on the results obtained from the present three-dimensional model also 

needs to be evaluated. Figure 3- 9 presents the comparison plots of the free-surface 

elevations using various grid systems with changes of the numbers of vertical layer. As 

can be seen in Figure 3- 9, the results indicate that the wave profiles at 30t  under the 

condition of twenty layers match the peak and phase closely with those from the case 

with twenty-five layers. The results from using ten or fifteen layers deviate in phase 

slightly from those with twenty or twenty-five layers used. The percentage difference of 

the phase of the wave peak between the values using ten, fifteen, and twenty layers and 

that from the twenty-five layer case are 1.68%, 1.12%, and 0.56%. For the consideration 

of the accuracy of the modeling results and computational efficiency, twenty layers along 

the vertical direction are selected. 
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Figure 3- 7  Comparisons of numerical profiles of different grid sizes in x-direction for 
solitary waves propation with a constant depth ( 1.0t ) 

 

Figure 3- 8  Comparisons of numerical profiles of different grid sizes in y-direction for 
solitary waves propation with a constant depth ( 1.0t ) 
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Figure 3- 9  Comparisons of numerical profiles of different grid sizes in x-direction for 
solitary waves propation with a constant depth ( 25.0 yx , 1.0t ) 

 

3.3.2   Mass conservation 

Examining the conservation of mass during the process of wave propagation is 

fundamental way to check the stability and accuracy of a model in numerical simulations. 

When the principle of mass conservation is satisfied, the excess mass of the wave domain 

should maintain as a constant value until the wave travels out of the computational 

domain with a constant fluid density, the excess mass (M) is calculated as an integration 
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Figure 3- 10 shows the time variation of the excess mass for the case of 4.0 . It is 

noted from Figure 3- 10 that the calculated total excess mass is kept as a constant value 

until the time reaches about 54.5 where the leading tail is about to propagate out of the 

computational domain. Further decrease of the excess mass reflects increase of the wave 

components propagate out of the downstream boundary.  The results suggest the present 

model is capable of providing accurate and reliable predictions on wave propagation. 

 

 

 

Figure 3- 10  Time variation of total excess mass within the computational domain 
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dash lines in the contour plots represent respectively the positive and negative values of 

the wave elevations. From the plots shown in Figure 3- 13, it is noted that the solitary 

wave maintains as an uniform wave profile before it enters the curved portion of the 

channel at 15t . As the solitary wave propagates into the curved channel at 25t , the 

nonuniform distribution of the wave peak across the channel starts to form. Owing to the 

centrifugal effect, the wave elevation with increased amplitude near the outer wall shows 

the decreasing trend towards the inner wall of the channel. The wave encountering 

process on the outer wall is shown in results at 30t  and 35t , where the wave peak 

on the outer wall continues to increases. The water surface can reach up to about 0.48 at 

35t . Due to the length difference between the inner and the outer walls of the bended 

part of the channel as well as the wave diffraction effect, a curved wave front can be 

noticed. At 40t  and 45t , during the process of main wave propagates towards the 

downstream portion of the curved channel, as the effect of wave reflection, the high peak 

of the wave is observed to move to the center of the channel. Following the above 

described wave transition, the main wave close to the outer wall encounters the wall 

again and results in the increase of the free-surface elevation of the main wave near the 

outer wall at 50t . Two high wave peaks coexist along the main wave crest. From 

50t to 70t , the position of the peak of wave elevation near the outer wave  

gradually catches up with the peak of the leading wave near the inner wall and the wave 

form tends to eventually recover as a solitary wave followed with a series of oscillating 

tails.  
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To provide the verification of the solution accuracy of the computed wave profiles 

along the curved channel as given above using the present three-dimensional fully 

nonlinear wave model, a well-established generalized Boussinesq (gB) two-equation 

model (Wang et al., 1992) is applied to calculate wave elevations of the similar case for 

comparisons. The dimensionless gB equations originally developed by Wu (1979) are 

capable of modeling propagation and transformation of weakly nonlinear and weakly 

dispersive waves in a domain of two horizontal dimensions.  The gB equations are given 

below 

      






















 h
h

hh
h

hh
ttt

 2
2

32
 and (3- 28)

    
ttot

h
hh

t

h
p  2

2
2

622

1





 , (3- 29)

where 
o

p is the ambient surface pressure, h is the water depth and  is the layer-mean 

value of the original velocity potential defined as 

  
 

 








h
dztzyx

h
tyx ,,,

1
,, . (3- 30) 

For the present case, we have 1h  and 00 p . Equations (3- 28) and (3- 29) can be 

simplified as 

    01  
t

 and (3- 31)
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 
tt
 22

3

1

2

1
 . (3- 32)

Following the approach introduced by Wang et al. (1992), Equations (3- 31) and 

(3- 32) are transformed into the curvilinear coordinates system as  

 
 

    021
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 J tb
 (3- 33) 
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2
3

1

2
2

1 2222

 , (3- 34)  

where 

   22
,  yx  , (3- 35) 

    yyxx , , (3- 36) 

   22
,  yx  , (3- 37) 

    yxyxJ
b

, , (3- 38) 

        yyyxxxxyJ  22, , and (3- 39) 
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              xxxyyyyxJ  22, . (3- 40)

The curvilinear gB two-equation model [Equation  (3- 33) and  (3- 34)] with 

the use of  a predictor-corrector finite difference scheme developed by Wang et al. (1992) 

is simulated to calculate the evolution of free-surface elevations for a solitary wave 

propagating in the 180  curved channel as described above. Computed wave elevations 

at three positions along each of five selected cross sections (A to E) throughout the 

channel are compared. The locations of five cross sections are shown in Figure 3- 14. 

Along each cross sections, three chosen positions as each marked by a black dot are 

denoted by “inner wall”, “center of channel”, and “outer wall”, respectively. The 

comparisons of time varying free surface elevations obtained from the present model and 

from the gB two-equation model at each identified location are presented in Figure 3- 15 

to Figure 3- 19. 
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model utilizes the vertically averaged velocity potential to determine the free-surface 

elevation. As a result, the two models generated slightly different phase velocities. It can 

be noticed in Figure 3- 15 that when the solitary wave propagates into the curved section 

and encounters the outer wall of the channel, the wave profile at the outer wall shows 

higher amplitude than that at the inner wall. After the solitary wave propagates past the 

cross section A, the wave amplitude keeps piling up at the outer wall and follows with 

wave reflection. Two wave peaks occurred at the channel center and inner wall are 

noticeable in Figure 3- 16 and Figure 3- 17.  

As noted in Figure 3- 18 and Figure 3- 19, the continuing process of wave 

diffraction and reflection between the inner and outer walls at cross sections D and E 

suggests the occurrence of transverse wave oscillation and as a results generates multiple 

wave peaks at locations across the channel. Again, from the results presented in Figure 3- 

16 to Figure 3- 19, both the gB and present nonlinear wave models obtain consistent and 

similar wave profiles. The comparison study for simulating a solitary wave propagating 

in a 180  curved channel further confirms the present three-dimensional fully nonlinear 

wave model can provide stable and accurate predictions on wave propagation and 

transformation.  

The model is proved to be able to apply for simulating wave and structure 

interaction related problems. Two cases are investigated. One is a solitary wave 

interaction with a bottom mounted cylinder and the other is an interaction between a 

solitary wave and a fixed truncated cylinder. The results are presented in the following 

two chapters 
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Figure 3- 15  Comparisons of time variations of free-surface elevations obtained from gB 
model and the present 3D fully nonlinear model at the positions of “outer 
wall”, “center of channel”, and ”inner wall” in cross section A 
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Figure 3- 16  Comparisons of time variations of free-surface elevations obtained from gB 
model and the present 3D fully nonlinear model at the positions of “outer 
wall”, “center of channel”, and “inner wall” in cross section B 
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Figure 3- 17  Comparisons of time variations of free-surface elevations obtained from gB 
model and the present 3D fully nonlinear model at the positions of “outer 
wall”, “center of channel”, and “inner wall” in cross section C 
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Figure 3- 18  Comparisons of time variations of free-surface elevations obtained from gB 
model and the present 3D fully nonlinear model at the positions of “outer 
wall”, “center of channel”, and “inner wall” in cross section D 
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Figure 3- 19  Comparisons of time variations of free-surface elevations obtained from gB 
model and the present 3D fully nonlinear model at the positions of “outer 
wall”, “center of channel”, and “inner wall” in cross section E  
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Chapter 4  

Solitary Waves Interacting with a and Bottom 

Mounted Surface Piercing Vertical Cylinder 

In Chapter 3, as a verification of model performance the newly developed three-

dimensional fully nonlinear wave model performed the simulations of a three-

dimensional solitary wave propagating in a straight rectangular channel and a 180° 

curved channel. The studies of a solitary wave interacting with a cylindrical structure are 

also carried out using this developed model. The case presented in this chapter is a 

solitary wave encountering with a bottom mounted and surface-piercing vertical cylinder. 

The results obtained from this model are presented and compared with those from other 

models and measured data in literatures. The fluid domain with a vertical circular 

cylinder for this study is shown in Figure 4- 1.  

 According to the derivation of model equations given in Chapter 2, all variables 

described here for model simulations are dimensionless. The z-axis points upwards with 

the plane z=0 being located locates at the undisturbed free-surface. The domain bottom is 

assumed to be flat and its location is at ݖ ൌ െ1 ൌ  constant. The dimensionless radius of 

the cylinder (ܴ) is 1.5875 and the cylinder is fixed at the center of the channel. The 

amplitude of the incident solitary wave is given as ߙ ൌ ܽ ݄଴
∗⁄ ൌ 0.4. The values of the 

radius of the cylinder and the amplitude of the solitary wave are selected to be the same 

as those used in the experimental studies conducted by Yates and Wang (1994) for the 
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4.1   Interaction Process 

Figure 4- 2 shows a time sequence of three-dimensional perspective view plots of 

the free-surface elevation for a solitary wave with amplitude 4.0 propagating in a 

wave channel to impinge on a vertical cylinder. At 10t , a simulated stable solitary 

wave as the incident wave can be noticed to propagate towards the bottom mounted 

vertical cylinder. While the peak of the solitary wave impacts on the cylinder at 20t , 

the solitary wave piles up to the maximum value of the free-surface elevation in front of 

the cylinder surface. After the primary wave propagates past the cylinder, as shown at 

24t , the diffraction initiated backscattering and forward scattering waves are formed  

around the cylinder. Additionally, as part of the waves emerges as the back-scattered 

waves, the wave height of the central part of the primary waves is lower than the other 

parts of the primary waves after its impacting on the cylinder. However, it can still keep 

the same propagating speed with other primary waves. At 25t , the scattered wave 

around the cylinder continue propagating outwards and the wave profile of the central 

part of the primary waves is shown the tendency to recover its initial shape of the incident 

solitary wave. An apparent secondary scattered wave that follows the leading back-

scattered wave is observed propagating outwards at 31t . While the solitary wave 

propagates over 20 water depths beyond the cylinder at 40t , a group of scattered 

waves travel further away from the cylinder and expand over the upstream and 

downstream regions of the cylinder. Moreover, the central part of the primary wave 

transitions back to nearly its original amplitude and as a whole the wave recovers as a 

solitary wave propagating downstream. Similar features of wave-cylinder interactions 
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4.2   Comparisons of the Present Model Results with Other Published 

Solutions and Experimental Data 

The performance of the present model in simulating the interaction between a 

solitary wave and a bottom mounted and surface-piercing vertical cylinder is examined 

by comparing the model results with other published solutions and the experimental data. 

The other published results include the finite difference solutions of the weakly nonlinear 

and weakly dispersive generalized Boussinesq (gB-FDM) model (Wang et al., 1992), and 

experimental data from Yates and Wang (1994). The selected locations for the 

comparisons of free-surface elevation are the same as the gauge locations used in the 

Yates and Wang (1994) experimental study. The gauge locations are expressed with the 

polar angle θ, and the dimensionless radial distance ݎ/ܴ, where R is the radius of the 

cylinder. Figure 4- 4 presents the wave elevations in time series at four selected radial 

locations along the ߠ ൌ 0° line, where ߠ ൌ 0° denotes the direction pointing toward the 

negative x direction. The comparison plots at selected radial locations along ߠ ൌ 60°, 

100°, 150°, and 180° following the clockwise direction are shown in Figure 4- 5, Figure 

4- 6, Figure 4- 7, and Figure 4- 8, respectively. 

In Figure 4- 4 (a) to 4-4 (d), the wave profiles at the radial location of ݎ/ܴ ൌ4.5, 

2.61, 1.66, and 1.03 are presented. The incident solitary wave with an amplitude of 

ߙ ൌ 0.4 is shown to propagate past the position of ݎ/ܴ ൌ 4.5  and is followed with a 

reflected wave and a train of small oscillatory waves after impacting on the cylinder, 

[Figure 4- 4 (a) and (b)]. At a position close to the cylinder surface ( ݎ/ܴ ൌ 1.03), Figure 

4- 4(d) reveals that the solitary wave piles up to the maximum amplitude in front of the 

cylinder and is followed with a negative wave propagating radially outward from the 
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cylinder surface. It can be noticed that the amplitude of the main wave also shown to 

increase at ݎ/ܴ ൌ 1.66 [Figure 4- 4 (c)], although is less than the value at  ݎ/ܴ ൌ 1.03. 

The similar variation trends of the free-surface elevations at the location of  ݎ/ܴ ൌ 3.87, 

2.92, 2.29, and 1.35 and along	ߠ ൌ 60° direction can also be found in Figure 4- 5 (a) to 

Figure 4- 5 (d). 

The comparisons shown in Figure 4- 4 and Figure 4- 5 indicate that the present 

model, and the published finite difference gB model produce similar results. Both model 

predictions are also shown to agree reasonably well with the experimental data, 

especially the main wave profile. From the figures, it is noticed that the maximum 

amplitudes can be accurately predicted by the developed three-dimensional fully 

nonlinear wave model while comparing to the maximum amplitudes of the experimental 

data at the positions away from the cylinder surface. When at the position nearly on the 

cylinder surface, both models overestimate the maximum wave amplitude. The present 

nonlinear wave model can capture well the variation trends of the free-surface profile at 

position along  ߠ ൌ 60° direction.  
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(a) 

 

(b) 

Figure 4- 4  Comparisons of time variation of free-surface elevation along θ = 0̊ at (a) 
r/R=4.5 and (b) r/R=2.61 obtained from the present 3D nonlinear model, 
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang, 
1994)  
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(c) 

 

(d) 

Figure 4- 4  Comparisons of time variation of free-surface elevation along θ = 0̊ at (c) 
r/R=1.66 and (d) r/R=1.03 obtained from the present 3D nonlinear model, 
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang, 
1994) (Continued) 
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(a) 

 

 

(b) 

Figure 4- 5  Comparisons of time variation of free-surface elevation along θ = 60̊ at (a) 
r/R=3.87 and (b) r/R=2.92 obtained from the present 3D nonlinear model, 
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang, 
1994)  
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(c) 

 

(d) 

Figure 4- 5  Comparisons of time variation of free-surface elevation along θ = 60̊ at (c) 
r/R=2.29 and (d) r/R=1.35 obtained from the present 3D nonlinear model, 
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang, 
1994) (Continued) 
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Figure 4- 6 to Figure 4- 8 illustrate the comparisons between the computed and 

measured free-surface profiles on the rear side of the cylinder. The wave profiles include 

a main solitary wave followed with a group of forward-scattered waves. Figure 4- 6 

shows the variations of the free-surface along the radial line of  ߠ ൌ 100°. The present 

model predictions agree well with measured data at the location of ݎ/ܴ ൌ 1.35, 2.29, and 

2.92. At the closest location to the cylinder, namely at ݎ/ܴ ൌ 1.03, the present model 

again produces a reasonably over-estimated wave amplitude. However, the overall 

variation trends of the wave elevation are similar to the measured data. The similar 

phenomena in terms of predicted wave profiles can also be found along the directions of 

ߠ ൌ 150° (Figure 4- 7) and at ߠ ൌ 180° (Figure 4- 8). The present model can provide 

good predictions on the wave elevations at locations away from the cylinder. The 

mismatch of the amplitude predictions for waves at the location almost on the cylinder 

surface (ݎ/ܴ ൌ 1.03) may be caused by the measurement errors and potential viscous 

and flow separation effects, which are not included in the model formulations. Along the 

direction of  ߠ ൌ 180°  (Figure 4- 8), it is interesting to note that the present fully 

nonlinear model can better predict at the general trend of wave variation and the tail part 

of the main wave. Also shown in Figure 4- 8, when the main wave propagates past the 

cylinder, the wave amplitude in the region behind the cylinder decreases until later 

recovers to nearly the original amplitude.  It is demonstrated from this comparison study 

the present three-dimensional nonlinear wave model in general can make similar on or 

better predictions on free-surface variations of a solitary wave interacting with a bottom-

mounted and surface piercing cylinder when compared to the results obtained from gB 

model. 
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(a) 

 

(b) 

Figure 4- 6  Comparisons of time variation of free-surface elevation along θ = 100̊ at (a) 
r/R=2.92 and (b) r/R=2.29 obtained from the present 3D nonlinear model, 
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang, 
1994)  
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(c) 

 

(d) 

Figure 4- 6  Comparisons of time variation of free-surface elevation along θ = 100̊ at (c) 
r/R=1.35 and (d) r/R=1.03 obtained from the present 3D nonlinear model, 
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang, 
1994) (Continued) 
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(a) 

 

(b) 

Figure 4- 7  Comparisons of time variation of free-surface elevation along θ = 150̊ at (a) 
r/R=2.92 and (b) r/R=2.29 obtained from the present 3D nonlinear model, 
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang, 
1994) 
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(c) 

 

(d) 

Figure 4- 7  Comparisons of time variation of free-surface elevation along θ = 150̊ at (c) 
r/R=1.35 and (d) r/R=1.03 obtained from the present 3D nonlinear model, 
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang, 
1994) (Continued) 
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(a) 

 

(b) 

Figure 4- 8  Comparisons of time variation of free-surface elevation along θ = 180̊ at (a) 
r/R=2.92 and (b) r/R=2.29 obtained from the present 3D nonlinear model, 
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang, 
1994) 
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(c) 

 

(d) 

Figure 4- 8  Comparisons of time variation of free-surface elevation along θ = 180̊ at (c) 
r/R=1.35 and (d) r/R=1.03 obtained from the present 3D nonlinear model, 
the gB-FDM (Wang et al., 1992), and experimental data (Yetes and Wang, 
1994) (Continued) 
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The hydrodynamic forces of solitary waves acting on the surface of cylinder can 

be determined by integrating the dynamic pressures on the cylinder surface. For the 

convenience of force comparisons, they are presented as the dimensionless force 

coefficients calculated by Equation (2- 21). The comparisons of the time varying force 

coefficients obtained from the present model, gB approach, and experimental 

measurements for different incident wave amplitude 	ߙ ൌ	0.18, 0.24, 0.32, and 0.4 are 

given in Figure 4- 9 (a), Figure 4- 9 (b), Figure 4- 9 (c), and Figure 4- 9 (d), respectively. 

In Figure 4- 9 (a), when ߙ ൌ	0.18, we notice the results from both the present three-

dimensional model and gB-FDM match closely with the measured forces. Reasonable 

force predictions for the case of ߙ ൌ	0.24 can be found in Figure 4- 9 (b). As the 

amplitude of the incident wave increases, namely ߙ ൌ	0.32 and 0.4, the results in Figure 

4- 9 (c) and 4-9 (d) indicate that both the present fully nonlinear wave model and gB-

FDM overpredict the maximum force. The smaller measured maximum forces may be 

caused by the viscous and boundary layer effects and the small gap set between the 

bottom of the cylinder and the channel bottom for wave force measurements. It is to note 

the interaction time and associated phase calculated by the present model shows slightly 

more accurate than that from gB-FDM. In addition, the maximum negative forces 

determined by the present three-dimensional model are close to the experimental 

measurements.   
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(a) 

 

(b) 

 

Figure 4- 9  Comparisons of force coefficient ܥ௙ு in time sequence, (a) ߙ ൌ 0.18, (b) 
ߙ ൌ 0.24, (c) ߙ ൌ 0.32, and (d) ߙ ൌ 0.4 
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(c) 

 

(d) 

Figure 4- 9  Comparisons of force coefficient ܥ௙ு in time sequence, (a) ߙ ൌ 0.18, (b) 
ߙ ൌ 0.24, (c) ߙ ൌ 0.32, and (d) ߙ ൌ 0.4 (continued) 

‐1

‐0.6

‐0.2

0.2

0.6

1

1.4

1.8

5 10 15 20 25

CfH

t

Present 3D model

gB-FDM

Experimental data

α=0.32

‐1.5

‐1

‐0.5

0

0.5

1

1.5

2

2.5

5 10 15 20 25

CfH

t

Present 3D model

gB-FDM

Experimental data

α=0.4



98 
 

Chapter 5  

Solitary Waves Interacting with a Fix Floating 

Cylinder 

In Chapter 4, the present three-dimensional fully nonlinear model is demonstrated 

to be able to successfully simulate the interaction of a solitary wave with a bottom 

mounted vertical cylinder. Simulations of waves encountering with Structures having 

non-uniform boundary condition in z-direction, such as floating structures, where the 

motion within the region below the structures needs to be calculated separately, can also 

be carried out by the present model. Thus, this chapter provides the results of the present 

model simulating a case of a solitary wave interaction with a partially submerged and 

fixed floating cylinder. For the simulation, all physical variables are dimensionless 

defined by Equation (2-1) and the schematic diagram is shown in Figure 5- 1. In the 

figure, the channel has a dimensional constant water depth *
0h and the dimensionless gap 

 .ሻ is defined as the space between the bottom of the cylinder and the channel bedܩ)

Moreover, two rectangular grid systems and one polar grid system as shown in Figure 3- 

3 are applied in the simulation. In order to verify the numerical results obtained from the 

present model, experiments of a solitary wave propagating in a flume and the subsequent 

interaction with a partially submerged and fixed floating cylinder were performed for 

comparisons. The setups for the experimental measurement are introduced in the 

following section.  
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The undisturbed water depth ( *
0h ) set for this experiment was 7.62 cm. The radius 

of the cylinder, shown in Figure 5- 4, was 5.715 cm (ܴ ൌ 0.75) and its center is located 

at 46.75 water depth far from the wavemaker. The cylinder and the wave gauges set 

along the centerline of the cylinder. The draft of the cylinder was 3.81 cm, which gives 

ܩ ൌ 0.5  in dimensionless. Since there were only two reliable wave gauges, the 

experiments with the same wave conditions need to be repeated to measure the free-

surface elevations at different locations. Gauge 1 was always set at 30 water depth far 

downstream from the wavemaker to measure the incident solitary waves. Gauge 2, used 

to measure the variations of the wave profile around the cylinder, was located at ݎ ܴ⁄ ൌ

1.88 in front of or behind the cylinder. The repeat of the incident wave condition for a 

setting of the wavemaker was checked and the amplitude   of the generated initial 

solitary wave measured by Gauge 1 was found to be close to 31.0 . The experimental 

measurements based on 31.0  are used to compare to the solutions obtained from the 

present three-dimensional fully nonlinear numerical model and the comparisons are 

presented in the next section.  
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cylinder is ܩ ൌ 0.5. The two selected radial locations (ݎ/ܴ) are 1.88 at the ߠ ൌ 0° and 

180°  lines respectively. ߠ ൌ 0°  denotes the direction pointing toward the negative x 

direction. The amplitude ߙ  of the initial solitary wave is set as 0.31 based on the 

experimental measurements. 

Figure 5- 5 illustrates the comparisons of the free-surface elevation that are 

obtained from the present three-dimensional fully nonlinear wave model and from the 

experimental measurements at the two identified locations where one is at 1.88=ܴ/ݎ in 

front of the cylinder [Figure 5- 5 (a)] and the other is with the same distance but at rear 

side of the cylinder [Figure 5- 5 (b)]. From Figure 5- 5 (a), it is clearly indicated that the 

wave profile obtained from the present model simulation has a good agreement with the 

measured data, especially the main including the peak and trough of the free-surface 

elevation.  On the rear part of the cylinder, the present model as shown in Figure 5- 5 (b) 

can also predict reasonably well the varying free-surface elevations when compared to 

the experimental measurements. The good agreement between the present numerical 

solutions and experimental data again suggests that the present model can capture the 

variation trend of the wave elevations during the interaction process, especially at the 

locations close to the front and rear surfaces of the cylinder. Therefore, the comparison 

studies presented above demonstrate that the present three-dimensional fully nonlinear 

wave model is capable of making a good prediction on the time varying free-surface 

variations during an encountering process of a solitary wave and a partially immersed and 

fixed floating cylinder. 
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(a) 

 

(b) 

Figure 5- 5  Comparisons of time variation of free surface elevation obtained from 
numerical and experimental measurement: (a) in front of the cylinder 
ߠ) ൌ 0°) and (b) in back of the cylinder (ߠ ൌ 180°) 
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Figure 5- 6 and Figure 5- 7 shows the comparisons of the time variation of the 

free-surface elevation for three different draft conditions at respectively the locations 

ሺݎ/ܴ ൌ 1.88ሻ in front of and at the back of the cylinder with the initial wave amplitude 

ൌ 0.31 .  From Figure 5- 6, it can be observed that the free-surface elevations especially 

at the peak location increase as the gap decreases. When the gap decreases, the cylinder 

has more blockage area in the fluid domain to cause the wave to have a higher run-up. At 

the rear side of the cylinder [Figure 5- 7], the difference between the free-surface 

elevations of the different drafts are not significant. The reason of it is that the blockage 

of the cylinder does not produce obvious effect on waves at the region behind the 

cylinder, especially when the cylinder radius is small.       

 

 

Figure 5- 6  Comparisons of time variation of free surface elevation obtained from the 
present model with gap G = 0.3, 0.5, and 0.7: in front of the cylinder 
ߠ) ൌ 0°)  
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Figure 5- 7  Comparisons of time variation of free surface elevation obtained from the 
present model with gap G = 0.3, 0.5, and 0.7: at the back of the cylinder 
ߠ) ൌ 180°)  
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structures. The formula as it combines the inertia and drag forces to obtain the total 

horizontal wave forces acting on a cylindrical structure are expressed as 

 IDH FFF   ,  

             dz 
Dt

Du
VCdz u AuC

d Md D  


00

2

1   , (5- 1) 

where IF , DF , DC , and MC  are the inertia force, drag force, drag coefficient, and 

inertia coefficient, respectively.  In order to calculate the total wave force acting on a 

cylinder, the proper coefficients, DC and MC , need to be chosen. For the given wave and 

cylinder conditions, the estimated Kc 0.82, Re 1.11 ൈ 10ସ, and D  0.2, where 

Kc  is Keulegan-Carpenter number, Re  is Reynolds number, D = diameter, and : wave 

length. According to the summarized DC  and MC values suggested by Hogben et al 

(1977), the hydrodynamic force of  a solitary wave with   0.31 acting on the surface 

of a cylinder with a diameter of 1.5 is in the inertia force dominant zone while using the 

Morrison equation. In other words, the MC  is equal to two and the DC  can be neglected. 

Hence, we have 

  dz u u A  F
dH 

0
  .   (5- 2) 

For convenience of force comparisons with the present model, the forces calculated by 

the Morison equation are also normalized as force coefficient, fHC . Although Morison 

equation provides empirically based estimations of the force coefficients, it is selected as 
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commonly used in engineering applications to calculate wave induced horizontal forces 

for comparisons with the present model solutions. 

Figure 5- 8 shows the horizontal force coefficients fHC   calculated from the 

present three-dimensional model and the Morison equation in time sequence. It is 

noticeable that the time variations of the force coefficients calculated by the present 

model and the Morison equation are similar. However, as the forces from the Morison 

equation include the part of linearized inertia forces, a symmetric profile of force 

coefficients can be noticed in Figure 5- 8. In addition, the nonlinear effect from the 

present model leads to larger positive force coefficients and smaller negative force 

coefficients than the results from the Morison equation. The hydrodynamic force 

coefficients in vertical direction with time variation are shown in Figure 5- 9. It illustrates 

that the hydrodynamic forces in the vertical direction vary with the propagation of a 

solitary wave and are all positive. Thus, the shape of the vertical hydrodynamic force 

basically follows the solitary wave profile.   
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Figure 5- 8  Comparisons of force coefficient, fHC , calculated by the present three-

dimensional model and Morison equation in time sequence 

 

 

Figure 5- 9 Vertical force coefficient fVC , calculated by the present three-dimensional 
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5.4   Interaction Process 

The comparison study for point measurements and computed free-surface 

elevations described above concludes that the present three-dimensional fully nonlinear 

model can successfully and accurately simulate the interaction between a solitary wave 

and a partially submerged fixed floating cylinder. In order to show the detailed process of 

the interaction between a solitary wave and a partially submerged fixed floating cylinder, 

a larger cylinder with a radius of two water depths is considered for model simulation. 

The cylinder is set at the center of a computational domain, where the ranges along the x 

and y directions are 0 ൑ ݔ ൑ 70, and 0 ൑ ݕ ൑ 35. Again, the computational domain is 

covered with two rectangular grid systems and an overlapped polar grid system. One of 

the rectangular grid systems with ∆ݔ ൌ ݕ∆ ൌ 0.25 is used for the outer domain and the 

other is applied underneath the cylinder where the grid sizes in both x and y directions are 

set as 0.1. In the z direction, the grid sizes changing with time are derived from Equation 

(3- 26). The initial solitary wave peak is set at ݔ଴ ൌ 10  to allow the solitary wave 

establishing to a stable wave amplitude before impacting the cylinder. 

Figure 5- 10 shows a time sequence of three-dimensional perspective view plots 

of the free-surface elevation during the interaction process. At ݐ ൌ 10, a stable incident 

solitary wave with amplitude of ߙ ൌ 0.3 is shown to propagate towards a fixed floating 

cylinder with a draft of 0.5 (G=0.5). The solitary wave approaches the front surface of the 

cylinder at ݐ ൌ 20.6 and the free-surface elevation increases to the maximum value. A 

backscattering wave initiated by the diffraction starts to propagate radially outwards at 

ݐ ൌ 25 while the main solitary wave have just passed the cylinder. It can also be noticed 

the central part of the free-surface elevation behind the cylinder, due to the blockage of 
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the existing cylinder, is lower than the other parts of the primary wave. In spite of the 

difference of the free-surface elevation of the main wave, the whole main wave as a 

coherent structure still keeps the same propagating speed. The central part of the main 

wave gradually recovers to nearly its original solitary wave amplitude at ݐ ൌ 33 . 

Additional secondary scattered waves propagating outwards and following the leading 

scattered wave can be observed at ݐ ൌ 33 and ൌ 38 . At ݐ ൌ 42, the main wave nearly 

recovers to its initial solitary wave shape and amplitude, and a group of the scatter waves 

propagating radially outwards from the cylinder expand over the whole fluid domain 

around the cylinder. Moreover, the scattering process with much smaller oscillations 

produced around the cylinder continues. From these figures, the evolution of a solitary 

wave interacting with a fixed floating cylinder is found to be similar to that of a solitary 

wave encountering a bottom mounted and surface piercing cylinder, however, with a 

series of less pronounced scattered waves. 
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Chapter 6 

Summary and Conclusions 

This dissertation presents the development and numerical applications of a three-

dimensional fully nonlinear wave model with the use of a transient curvilinear coordinate 

transformation technique to study the different scenarios of nonlinear wave propagation 

and their interactions with cylindrical structures. The present three-dimensional model 

improves the limitation of the vertical averaged two-dimensional models, such as the 

Boussinesq model, which is unable to solve the problems related to the boundary 

variations in the vertical direction. Furthermore, the present model includes a set of three-

dimensional transient curvilinear coordinate transformation of the governing equations 

and the boundary conditions derived to fit the irregular boundaries in the physical domain. 

For the modeling cases of the interaction between nonlinear waves and structures, the 

present model applies multigrid systems to construct the computational domains. A 

mixed implicit and explicit finite difference scheme is adopted for solving the three-

dimensional governing equations and boundary conditions. 

Simulating a solitary wave propagating in a straight rectangular channel is 

performed as sensitivity tests to decide the grid sizes and time step used for the present 

modeling studies. The results of sensitivity tests demonstrate the present model under the 

selected parameter setting is able to simulate stably the propagation of a solitary wave in 

a fluid domain. After proving the stability of the present model, it is applied to simulate a 

solitary wave propagating in a 180°  curved channel to demonstrate its capability of 
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modeling waves propagating in an arbitrary shape channel. From the results of the 

simulation, it is noticeable that the wave peak changes to a nonuniform distribution 

across the channel and the free-surface elevation increases near the outer wall due to the 

centrifugal effect while a solitary wave propagates into the curved region of the channel. 

In the curved part of the channel, the main wave reflects back and forth between the inner 

and outer walls during the process of a solitary wave propagating towards the 

downstream of the channel. The waves reaching the downstream of the channel tends to 

eventually recover as a main solitary wave followed with a series of oscillating tails. 

From the comparisons of the time variations of the free-surface elevations at the selected 

locations, the predicted wave patterns in the curved channel obtained from the present 

model have good agreement with those calculated from the generalized Boussinesq two-

equation model. Thus, the present three-dimensional fully nonlinear wave model can 

provide stable and accurate predictions on nonlinear waves propagation in a channel with 

irregular boundary. 

The present three-dimensional fully nonlinear wave model is extended to solve 

the interaction of waves and structures problems. The first simulation scenario is a 

solitary wave encountering with a bottom mounted and surface piercing vertical cylinder. 

During the interaction process, the solitary wave gradually piles up to a maximum value 

of the free-surface elevation while the main wave approaches the cylinder. After the main 

wave passes the cylinder, the center part of the free-surface elevation behind the cylinder 

is lower than other parts of the primary wave because of the blockage of the existing 

cylinder. When the solitary wave propagates beyond the cylinder over 20 water depths, 

the main wave nearly recovers back to a whole solitary wave with the original wave 
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amplitude. Moreover, it is clear that a group of scatter waves propagates out from the 

cylinder and expands over the upstream and downstream regions around the cylinder. 

The predicted free-surface elevations with time variation at the selected locations 

obtained by the present model and generalized Boussinesq model have reasonable 

agreement with the experimental measurements except at the positions nearly on the 

cylinder surface, where both models overestimate the maximum wave amplitudes. 

Moreover, the hydrodynamic force predictions obtained from either the present model or 

generalized Boussinesq model match closely with the measured forces for the cases with 

small incident wave amplitude. When the amplitude of the incident wave increases, the 

predicted forces are larger than the measured values. These overestimated predications 

may be caused by the measurement errors, and potential viscous and flow separation 

effects. 

The present three-dimensional fully nonlinear wave model is further applied to 

simulate the interaction of a solitary wave with a partially submerged and fixed floating 

cylinder. To verify the accuracy of the present model simulations, the experiments of a 

solitary wave propagating past a partially submerged and fixed floating cylinder were 

conducted in a wave tank. The comparisons of model results with the experimental 

measurements indicate the present model is able to make a fairly good prediction on the 

time varying free-surface elevations, especially at a position in front of the cylinder, 

during the encountering process of a solitary wave and a partially immersed and fixed 

floating cylinder. The wave evolution patterns for a solitary wave interacting with a fixed 

floating cylinder are similar to those of the solitary wave encountering a bottom mounted 

and surface piercing cylinder but with less pronounced scattered wave field. The free-
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surface elevation of the main wave piles up in front of the cylinder. Then, the center part 

of the main wave has lower amplitude due to the blockage of the cylinder and recovers 

gradually to its initial solitary wave shape and amplitude as the main wave propagates 

away from the cylinder. In addition, the scattered waves propagate radially outwards 

from the cylinder and expand over the whole fluid domain around the cylinder. It is again 

demonstrated the successful application of the present three-dimensional fully nonlinear 

wave model in simulating the interaction of a nonlinear wave and a fixed floating 

structure and making good predictions of the variations of the free-surface elevation 

during the process of wave-structure interaction. 

The present three-dimensional fully nonlinear wave model can solve the problems 

with boundary variation in vertical direction. However, the governing equation is based 

on the assumption of incompressible and inviscid fluid and the motion irrotational. Thus, 

the present model is limited to the study of wave simulation in a domain with viscous 

fluid. In addition, for simulating cases with open sea, due to the rigid boundary condition 

applied on the side wall in the present model, the wall boundary conditions need to be 

extended to include the lateral open boundary conditions. 

For future research, the present three-dimensional fully nonlinear wave model can 

be expanded for wider applications. In this study, the present model only simulates the 

interaction between a solitary wave and a fixed cylinder. More complicated structures or 

different nonlinear waves, such as an array of floating cylinders, cnoidal waves, or even 

steeper Stokes waves, may be considered for future simulation studies using the present 

model. For the model development point of view, the present model can be further 

extended by combining with the solver of equation of motion to simulate the interaction 



121 
 

between nonlinear waves and movable floating structures. Moreover, in the future, the 

laboratory experiments of a floating cylinder subject to the wave action are recommended 

to be performed in a large wave tank to collect more detailed wave elevation data in areas 

surrounding a cylinder to further the confirmation of the performance of the developed 

wave model. 
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