Characterization of the 8-hydroxyquinoline scaffold for inhibitors of West Nile virus serine protease
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
West Nile virus (WNV) is a mosquito-borne member of flaviviruses that causes significant morbidity and mortality especially among children. There is currently no approved vaccine or antiviral therapeutic for human use. In a previous study, we described compounds containing the 8-hydroxyquinoline (8-HQ) scaffold as inhibitors of WNV serine protease (NS2B/NS3pro) in a high throughput screen (HTS) using the purified WNV NS2B/NS3pro as the target. In this study, we analyzed potencies of some commercially available as well as chemically synthesized derivatives of 8-HQ by biochemical assays. An insight into the contribution of various substitutions of 8-HQ moiety for inhibition of the protease activity was revealed. Most importantly, the substitution of the N1 of the 8-HQ ring by –CH– in compound 26 significantly reduced the inhibition of the viral protease by this naphthalen-1-ol derivative. The kinetic constant (Ki) for the most potent 8-HQ inhibitor (compound 14) with an IC50 value of 2.01 ± 0.08 ?M using the tetra-peptide substrate was determined to be 5.8 ?M. This compound inhibits the WNV NS2B/NS3pro by a competitive mode of inhibition which is supported by molecular modeling.