Image Classification of Dewetting Microscopy Using Artificial Neural Networks

Date

2018-10-18

Authors

Sutrisno, Raymond

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Contemporary methods to analyze dewetting stages from optical microscopy are limited to manual classification. The project seeks to automate this process by using image processing techniques and machine learning. Magnitude independent features, such as pixel skew, variance, and entropy, along with their local deviations, were used to train a simple feed forward neural network. From a dataset of 64 images, tuning was achieved by selecting the neural network hyperparameter configuration with the highest peak cross validation score. The selected model accurately classified approximately 80% of the testing set.

Description

Keywords

Citation