Spatial and Spatio-Temporal Clustering

dc.contributor.advisorEick, Christoph F.
dc.contributor.committeeMemberKaiser, Klaus
dc.contributor.committeeMemberChen, Guoning
dc.contributor.committeeMemberLeiss, Ernst L.
dc.contributor.committeeMemberVilalta, Ricardo
dc.creatorWang, Sujing 1975- 2014 2014
dc.description.abstractDue to the advances in technology, such as smart phones, general mobile devices, remote sensors, and sensor networks, different types of spatial data become increasingly available. These data can also integrate multiple other types of information, such as temporal information, social information, and scientific measurements, which provide a tremendous potential for discovering new useful knowledge, as well as new research challenges. In this research, we focus on clustering and analyzing spatial and spatio-temporal data. We have addressed several important sub-problems in polygon-based spatial and spatio-temporal clustering and post-processing analysis techniques. We have developed (1) two distance functions that measure the distances between polygons, especially overlapping polygons; (2) a density-based spatial clustering algorithm for polygons; (3) two post-processing analysis techniques to extract interesting patterns and useful knowledge from spatial clusters; (4) two density-based spatio-temporal clustering algorithms for polygons; (5) a box plot based post-processing analysis technique to identify interesting spatio-temporal clusters of polygons; (6) a change-pattern-discovery algorithm to detect and analyze patterns of dynamic changes within spatio-temporal clusters of polygons; and (7) a formal definition of the task of finding uniform regions in spatial data and an algorithm to identify such uniform regions. Our algorithms and techniques are demonstrated and evaluated in challenging real-world case studies involving ozone pollution events in the Houston-Galveston-Brazoria area and the building data of Strasbourg, France. The results show that our algorithms are effective in finding compact clusters in spatial and spatio-temporal domains and in extracting interesting patterns and useful information from spatial and spatio-temporal data.
dc.description.departmentComputer Science, Department of
dc.format.digitalOriginborn digital
dc.identifier.citationPortions of this document appear in: Wang, Sujing, and Christoph F. Eick. "A polygon-based clustering and analysis framework for mining spatial datasets." GeoInformatica 18, no. 3 (2014): 569-594.
dc.rightsThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. UH Libraries has secured permission to reproduce any and all previously published materials contained in the work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).
dc.subjectSpatial Clustering
dc.subjectSpatio-temporal clustering
dc.subjectPost-processing Analysis
dc.subjectUniform Regions
dc.subjectPopular Signatures
dc.titleSpatial and Spatio-Temporal Clustering
dc.type.genreThesis of Natural Sciences and Mathematics Science, Department of Science of Houston of Philosophy
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
4.37 MB
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
1.84 KB
Plain Text