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Abstract

Due to the advances in technology, such as smart phones, general mobile devices,

remote sensors, and sensor networks, different types of spatial data become increas-

ingly available. These data can also integrate multiple other types of information,

such as temporal information, social information, and scientific measurements, which

provide a tremendous potential for discovering new useful knowledge, as well as new

research challenges. In this research, we focus on clustering and analyzing spa-

tial and spatio-temporal data. We have addressed several important sub-problems

in polygon-based spatial and spatio-temporal clustering and post-processing analysis

techniques. We have developed (1) two distance functions that measure the distances

between polygons, especially overlapping polygons; (2) a density-based spatial clus-

tering algorithm for polygons; (3) two post-processing analysis techniques to extract

interesting patterns and useful knowledge from spatial clusters; (4) two density-

based spatio-temporal clustering algorithms for polygons; (5) a box plot based post-

processing analysis technique to identify interesting spatio-temporal clusters of poly-

gons; (6) a change-pattern-discovery algorithm to detect and analyze patterns of

dynamic changes within spatio-temporal clusters of polygons; and (7) a formal def-

inition of the task of finding uniform regions in spatial data and an algorithm to

identify such uniform regions. Our algorithms and techniques are demonstrated and

evaluated in challenging real-world case studies involving ozone pollution events in

the Houston-Galveston-Brazoria area and the building data of Strasbourg, France.

The results show that our algorithms are effective in finding compact clusters in spa-

tial and spatio-temporal domains and in extracting interesting patterns and useful

information from spatial and spatio-temporal data.
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Chapter 1

Introduction

The complete spatial data-mining process is interactive and iterative, involving many

tasks, such as data extraction and cleaning, feature selection, algorithm design, and

post-processing analysis of the output when an algorithm is applied to the data. The

goal of spatial data mining is to automate the discoveries of interesting patterns and

potentially useful information, which can be examined by domain experts for further

validation and verification. Spatial clustering is one of the most fundamental tasks

in spatial data mining. It is the process of grouping objects into different groups

known as clusters such that the objects within the same group are similar to each

other but dissimilar from those in other groups.Clusters are generated on the basis

of a “similarity” criterion which is used to determine the relationship between each

pair of objects in the datasets. Post-processing analysis techniques deal with both

spatial and non-spatial characteristics of spatial objects.

A spatial dataset contains objects characterized by a spatial location as well as
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non-spatial attributes. The notion of spatial auto-correlation, namely that similar

objects tend to cluster in geographic space, is central to spatial data mining. The

principles of independence that are assumed in traditional data mining algorithms

no longer apply in spatial data mining; therefore, spatial clustering is more diffi-

cult than traditional clustering due to the complexity of spatial data types, spatial

relationships, and spatial auto-correlation.

This dissertation focuses on the design of clustering algorithms and post-processing

analysis techniques for mining spatial and spatio-temporal datasets. In particular,

we have developed a spatial clustering algorithm, two spatio-temporal clustering al-

gorithms, and several post-processing analysis techniques for mining complex types

of spatial objects, mostly centering on polygons.

1.1 Motivation of research

Due to the advances in remote sensors and sensor networks, different types of spatial

data become increasingly available. The spatial data contain not only non-spatial at-

tributes such as traditional numeric and categorical data, but also spatial attributes,

e.g., longitude and latitude. Mining spatial data is a very challenging task. The

separation of spatial and non-spatial attributes in spatial datasets poses new chal-

lenges because patterns and summaries have to be obtained frequently in the spatial

subspace whereas the non-spatial attributes play key roles in determining the inter-

estingness of the obtained patterns and summaries. Spatial data can also integrate

multiple other types of information, such as temporal information, social information,
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and scientific measurements, which provide a tremendous potential for discovering

useful knowledge, as well as new research challenges.

Traditional clustering techniques are inefficient in mining spatial or spatial-temporal

data because they do not incorporate the idiosyncrasies of the spatial and tempo-

ral domains; therefore, new techniques are needed to address these challenges and

to provide effective solutions to analyze and mine large spatial or spatio-temporal

data. As expected, extracting interesting patterns from such data is very important

for many applications, such as geographic information systems, weather forecasting,

medical imaging, environment protection, and urban computing.

Several types of spatial data are available in real applications, i.e., points, tra-

jectories, and polygons. Polygons are more complex than points because polygons

have topological properties that are not relevant to points. Traditional clustering

algorithms for points and trajectories do not work directly for polygons. Moreover,

polygons provide natural representations for many types of geo-referenced objects,

such as countries, buildings, and pollution hotspots, which can be used by a broad

set of applications, such as air pollution prevention, health-care study, and urban

planning; therefore, it is very important to develop data mining techniques focusing

on mining polygon-based spatial and spatio-temporal data, such as clustering and

post-processing analysis techniques.
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1.2 Research contributions

In this research, we have made several significant contributions to the state of the

art in spatial and spatio-temporal clustering. They are briefly summarized below.

1. Distance functions for polygons - We have introduced two distance functions

that can efficiently measure the spatial distances between polygons, especially

overlapping polygons and polygons with holes.

2. Density-based spatial clustering algorithm - We have developed a density-based

spatial clustering algorithm for polygons that extends the density-concepts of

the Shared Nearest Neighbor clustering algorithm from points to polygons.

3. Domain-driven final clustering generation method - We have investigated an

algorithm which generates the final clusterings by selecting at most one polygon

from the meta-clusters to maximize a reward function that captures domain

experts’ notions of interestingness.

4. Post-processing analysis techniques for spatial data - We have developed algo-

rithms with several plug-in interestingness functions to automatically identify

spatial clusters whose member distribution with respect to a non-spatial vari-

able deviates significantly from the distribution in the whole dataset.

5. Density-based spatio-temporal clustering algorithm - We have introduced two

density-based spatio-temporal clustering algorithms for polygons by taking into

account both the spatial and temporal dimensions of polygons.
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6. Change-pattern-discovery algorithm - We have developed a change-pattern-

discovery algorithm to detect and analyze dynamic patterns of changes within

spatio-temporal clusters of polygons.

7. Post-processing analysis technique for spatio-temporal data - We have imple-

mented a box plot based post-processing analysis technique for spatio-temporal

data to identify interesting spatio-temporal clusters of polygons.

8. Identifying uniform regions in spatial data - We have formally defined the task

of finding uniform regions in spatial data as solving a maximization problem

for a plug-in measure of uniformity and have designed a spatial clustering

framework to identify uniform regions.

9. Popular signatures - We have proposed popular signatures, which are distri-

bution signatures frequently occurring in the subspaces of a spatial area of

interest. A novel approach which summarizes the composition of a spatial

dataset by annotating regions with popular signatures is presented as well.

1.3 Dissertation organization

The remainder of the dissertation is organized as follows: Chapter 2 discusses the

literature review. Chapter 3 describes the details of our polygon-based clustering

and analysis framework for mining spatial datasets, which includes two distance

functions for polygons, a spatial clustering algorithm, and several post-processing

5



analysis techniques. We also present the results obtained by applying our algo-

rithms on challenging real-world case studies involving ozone pollution events in

the Houston-Galveston-Brazoria (HGB) area. Chapter 4 presents two density-based

spatio-temporal clustering algorithms for polygons. We also explain the application

of these two algorithms on ozone pollution datasets in order to detect the density-

connected clusters of polygons in both spatial and temporal domains. A change-

pattern-discovery algorithm that detects and analyzes dynamic patterns of changes

within spatio-temporal clusters of polygons, and a post-processing analysis technique

to extract interesting patterns and useful knowledge from spatio-temporal clusters of

polygons for domain experts, are presented as well. Chapter 5 discusses the formal

definition of the task of finding uniform regions in spatial data and a prototype-based

clustering algorithm to find such regions. This chapters also shows the results of the

application of our algorithm for analyzing the composition of the city of Strasbourg

in France. Finally, in Chapter 6 we present a summary of our work, along with

directions for future research.
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Chapter 2

Literature Review

2.1 Distance functions and spatial clustering algo-

rithms for polygons

Distance functions are the key for spatial clustering algorithms. In [1], Joshi et al.

introduce a dissimilarity function for clustering polygons that takes into account

different characteristics of the polygon separated in different groups: non-spatial at-

tributes, intrinsic spatial attributes, and extrinsic spatial attributes. It is a weighted

sum of a number of distance functions each pertaining to a different type attributes

of a polygon. Buchin et al. [2] propose a polygonal time algorithm to compute the

Fréchet distance between two polygons. Several papers [3, 4] propose algorithms to

compute the Hausdorff distance between polygons; however, none of them can cope
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with overlapping polygons. Overlapping polygons play a very important role in an-

alyzing large spatial datasets in many application domains. Failing to measure the

degree of overlap will result in inadequate clustering results.

Spatial clustering has been a highly active topic in data mining research. Many

clustering methods for points and trajectories have been developed. Han et al. [5]

classify spatial clustering algorithms into four categories: partitioning methods, hier-

archical methods, density-based methods, and grid-based methods. Representative

algorithms from each category are introduced as well; however, spatial clustering

techniques for polygons are still rarely seen. In [6], Joshi et al. propose a DBSCAN-

style spatial clustering algorithm for polygons. The algorithm works by replacing

points in the original DBSCAN algorithm with polygons; however, the algorithm in

[6] does not cope with overlapping polygons, and the identified spatial clusters of

polygons are frequently not contiguous.

2.2 Spatio-temporal clustering algorithms

Spatio-temporal clustering techniques for points and trajectories have been heavily

studied in past work as well. Kulldorff [7] introduces basic spatial scan statistics to

search spatio-temporal cylinders representing areas where the points occur consis-

tently for a significant amount of time; spatio-temporal cylinders are circular regions

occurring within a certain time interval. Iyengar [8] extends the basic spatial scan

statistics [7] using flexible square pyramid shapes instead of cylinders for spatio-

temporal clusters that can either grow or shrink over time and that can also move

8



over time. Wang et al. [9] propose two spatio-temporal clustering algorithms, i.e.,

ST-GRID and ST-DBSCAN. ST-DBSCAN is an extension of the DBSCAN algo-

rithm to perform spatio-temporal clustering by introducing the second parameter

of temporal neighborhood radius in addition to the spatial neighborhood radius.

ST-GRID is a grid-based clustering approach which maps the spatial and temporal

dimensions into cells. Birant et al. [10] also improve DBSCAN for spatio-temporal

clustering and apply it to discover spatio-temporal distributions of physical seawa-

ter characteristics in Turkish seas. A density factor is assigned to each cluster for

detecting some noise points when clusters of different densities exist. The density

factor of a cluster captures the degree of the density of the cluster. Rinzivillo et al.

[11] propose a progressive clustering approach to analyze the trajectories of moving

objects supported by visualization and interaction techniques. It progressively ap-

plies different distance functions for spatio-temporal data in each step to optimize

the outcome of the algorithm. Li et al. [12] introduced the concept of moving micro-

cluster to catch some regularities of a moving object. The micro-clusters are kept

geographically small at any time.

Joshi et al. [13] propose a spatio-temporal polygonal clustering algorithm, STPC.

STPC extends the DBSCAN algorithm to cluster spatio-temporal polygons by re-

defining the neighborhood of a polygon as the union of its spatial neighborhood and

temporal neighborhood. The temporal aspect is constant or reduced to a fixed in-

terval or time instance when calculating spatial neighbors of a polygon. Moreover,

the spatial dimension is instead held to a constant space when calculating temporal

neighbors of a polygon; therefore, STPC only clusters polygons that do not change
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their locations, sizes, and shapes over time. Only the non-spatial attributes or prop-

erties might change with time.

2.3 Finding uniform regions using spatial cluster-

ing

Work in [14, 15] proposes a region discovery framework based on a fitness function to

be maximized. The framework adapts four representative clustering algorithms, ex-

emplifying grid-based, prototype-based, density-based, and agglomerative clustering

algorithms to optimize the fitness function. The fitness function is defined according

to the application, and the goal is to model the interestingness of a region. Other

work seeks to find uniform regions for spatial regression [16, 17] using quite differ-

ent methods. Both approaches partition the space into regions, associating different

regression functions with different regions. Sheng et al. [18] introduce a search al-

gorithm which finds the top-k regions with a similar distribution of Point of Interest

(POI) on a spatial map.

Applegate et al. state that “signatures are compact representation ... that cap-

ture important characteristics of massive datasets”[19]; then, they investigate a spe-

cial family of signatures for multidimensional distributions that represent the dis-

tribution of probability mass over a manifold; they also introduce a novel distance

function for such signatures. Cortes et al. [20] discuss the use of signatures for

mining massive telecommunications data to find communities of interest, and for

10



fraud detection. Wong et al. [21] demonstrate the benefits of using data signatures

to guide the visualization of complex scientific datasets. The use of topic discovery

approaches [22, 23] to annotate spatial regions has gained some popularity recently.
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Chapter 3

A clustering and analysis

framework for mining spatial data

3.1 Introduction

Tools that visualize and analyze geo-referenced datasets have gained importance in

the last decade, as is evident from the increased popularity of products, such as

Google Earth, Microsoft Virtual Earth, and ArcGIS. Polygons play an important

role in the analysis of geo-referenced data as they provide a natural representation of

geographical objects, such as countries, buildings, and pollution hotspots. Polygons

can also serve as models for spatial clusters, and can model nested and overlap-

ping clusters. Moreover, polygons have been studied thoroughly in geometry and

they are mathematically well understood. Furthermore, powerful software libraries

are available to manipulate, analyze, and quantify relationships between polygons.
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Spatial extensions of popular database systems, such as ORACLE, PostGIS, and Mi-

crosoft SQL Server, support polygon search and polygon manipulation in extended

versions of SQL; however, past and current data-mining research has mostly ignored

the capabilities that polygon analysis can offer.

In general, polygon analysis is particularly useful to mine relationships among

multiple spatial datasets, as it provides a useful tool to analyze discrepancies, pro-

gression, change, and emergent events. Our work focus on clustering and analyzing

polygons that have been generated from multiple spatial point datasets. In par-

ticular, the scope of a spatial cluster is described by a polygon; points inside a

polygon belong to the same spatial cluster, while points outside of a polygon do

not. Our framework provides computational methods to create such spatial clusters

from multiple spatial point datasets. Multiple related spatial datasets contain a lot

of overlapping polygons. Traditional distance functions and clustering algorithms

for points would not work directly for polygons. New distance functions and spatial

clustering algorithm are proposed to cluster spatial polygons. We use the term meta-

cluster to refer to a cluster containing sets of polygons. As there are usually a lot of

meta-clusters containing multiple polygons, it is desirable to have automated screen-

ing procedures to help domain experts to select clusters and meta-clusters that they

are interested in based on their domain-driven notion of “interestingness”; there-

fore, our framework provides post-processing techniques which mine the obtained

meta-clusters to extract interesting patterns and summarized knowledge based on

a domain expert’s notion of interestingness. The architecture of our framework is

introduced in Section 3.2.
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The rest of the chapter is organized as follows. Section 3.2 introduces the ar-

chitecture of our framework. Section 3.3 explains our DCONTOUR algorithm that

can be used to generate polygons from point datasets. Section 3.4 discusses the

distance functions for polygons and the spatial clustering algorithm for overlapping

polygons. Section 3.5 presents two post-processing analysis techniques for finding

interesting clusters. Section 3.6 evaluates our work with challenging real-world case

studies involving ozone pollution events in the Houston-Galveston-Brazoria (HGB)

area. Section 3.7 gives our conclusion.

3.2 Framework architecture

In our framework, we first generate spatial clusters represented by polygons from

multiple spatial point datasets. Both spatial clustering algorithms which directly de-

rive polygons from point datasets and approaches that initially obtain spatial clusters

as sets of objects and wrap a polygon around those objects can be used to obtain

such spatial clusters. As the first type of algorithm is not very common, an algorithm

called DCONTOUR is introduced for this purpose. In the second step, we introduce

two distance functions called Overlay distance and Hybrid distance to access the dis-

tance between overlapping polygons. The Shared Nearest Neighbor algorithm (SNN)

[24] is extended to cluster polygons by redefining the density concepts for polygons.

In the third step, post-processing analysis techniques are provided to extract inter-

esting patterns and to provide summaries from the meta-clusters based on a domain

expert’s notion of “interestingness”. A spatial cluster will be characterized by two
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things in our work: a polygon which describes the scope of a spatial cluster and

a statistical summary based on all the objects belonging to the same clusters; the

statistical summary usually contains mean values and standard deviations of various

non-spatial variables for the objects in the same spatial clusters. Two particular

post-processing techniques are proposed: First, a greedy algorithm is developed to

automatically select a set of interesting polygons from meta-clusters to obtain a final

clustering. Second, a screening procedure which uses plug-in reward functions is in-

troduced to automatically identify interesting meta-clusters which have unexpected

member distributions with respect to a continuous non-spatial variable.

In summary, our framework is an integration of clustering algorithms, post-

processing analysis techniques, and visualization. The architecture of our framework

is summarized in Figure 3.1 It consists of three steps:

Step 1: Apply the DCONTOUR algorithm to generate polygons which describe

spatial clusters from multiple spatial point datasets.

Step 2: Apply the Poly-SNN clustering algorithm to create meta-clusters from

the polygons that were generated in Step 1.

Step 3: Extract interesting patterns and create summaries from the meta-clusters

using post-processing analysis techniques.

We use multiple ozone concentration datasets downloaded from the website of

Texas Commission on Environmental Quality (TCEQ) [25] as an example to further

explain the three steps in our framework. The TCEQ uses a network of 44 ozone-

monitoring stations in the HGB area which covers the geographical region within
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Figure 3.1: The clustering and analysis framework for mining spatial data

[-95.8070, -94.7870] longitude and [29.0108, 30.7440] latitude. It collects hourly

ozone concentration data from each monitoring station and publishes the data on its

website. In Step 1, we first apply a standard Kriging interpolation method [26] to

compute the ozone hourly concentrations on 20× 27 grids that cover the HGB area.

Next, we feed the interpolation function into the DCONTOUR algorithm with a

defined threshold to create sets of polygons. Such polygons describe ozone pollution

hotspots at each hour - areas whose hourly ozone concentrations are above the input

threshold. In Step 2, we apply the Poly-SNN algorithm with the Hybrid distance

function to cluster polygons and create meta-clusters. In Step 3, we propose several

plug-in reward functions to capture a domain expert’s notion of “interestingness” to
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guide the extraction of knowledge from the meta-clusters. In particular, an algo-

rithm to generate a final clustering from the meta-clusters is proposed. Such a final

clustering could help domain experts to clearly capture the dominant ozone pollution

hotspots and the possible maximum range of the ozone pollution events in the HGB

area. Moreover, automated screening procedures to identify unusual meta-clusters

are introduced.

3.3 DCONTOUR

DCONTOUR [27] is the first density-based clustering algorithm that uses contour

lines to determine cluster boundaries. Objects that are inside a contour polygon

belong to the same cluster. DCONTOUR operates on top of supervised density

functions.

We assume that an object o in the dataset O has the form ((x, y), z) where (x, y)

is the location of the object o, and z or z(o) is the value of interestingness of object

o. In general, density estimation techniques employ influence functions that measure

the influence of a object o with respect to another object v. The overall influence of

all objects oi ∈ O for 1 ≤ i ≤ n on a point v is measured by the density function

ϕo(v). The density estimation is called supervised because in addition to the density

information based on the locations of all objects, we take the interestingness z(o)

into consideration when measuring the density. The density function ϕo(v) is defined

as follows:
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ϕo(v) =
n∑
i=1

finfluence(v, oi) =
n∑
i=1

z(oi)e
− d(v,oi)

2

2σ2 (3.1)

The parameter σ determines how quickly the influence of a object oi on v decreases

as the distance between oi and v increases. The pseudo-code of DCONTOUR is given

in Algorithm 1.

Input: Density function ϕo, density threshold d
Output: Density polygons for the density threshold d
Algorithm:

1. Subdivide the space into D grid cells.

2. Compute densities at grid intersection points by using density function ϕo.

3. Compute the contour intersection points b on the grid cell edges where
ϕo(b) = d using binary search and interpolation.

4. Compute contour polygons from the contour intersection points b.

Algorithm 1: DCONTOUR algorithm pseudo-code

Figure 3.2 gives an illustration on how to construct contour intersection points

based on the density threshold d being equal to 4.5. For instance, when the right

edge of the lower left cell is considered, because 4.5 is between 4.1 and 5.5, a contour

intersection point exists on this edge; by interpolating between 4.1 and 5.5, a point

on this edge is sampled and its density is computed as 4.8. Because 4.8 is larger than

d, we continue the binary search by sampling a point south of this point. The binary

search terminates if the density difference between a sampled point and d is less than

a threshold. All the blue points in Figure 3.2 are the contour intersection points b for

density threshold d equal to 4.5. Finally, in step 4, we connect contour intersection

points b found on cell edges and continue this process on its neighboring cells until
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a closed polygon is formed or both ends of the polyline reach the grid boundary. An

algorithm proposed by Cottafava and Moli [4] is used to compute contour polygons.

Figure 3.2: Contour construction for density equal to 4.5

3.4 Distance functions and clustering algorithm

for polygons

3.4.1 Distance functions for polygons

One unique characteristic of our work is that we have to cope with overlapping

polygons. We believe that considering polygon overlap is of critical importance

for polygon-based clustering of large spatial datasets; therefore, in addition to the

Hausdorff distance, we propose two novel distance functions: the Overlay distance

and the Hybrid distance. We define a polygon A as a sequence of points A = p1, ..., pn,

with p1 being connected to pn to close the polygon. Moreover, we assume that the

boundary of a polygon does not cross itself and a polygon can have holes inside.
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Throughout this chapter we use the term polygon to refer to such polygons.

The Hausdorff distance [3, 4] measures the distance between two sets of points A

and B by using Formula 3.2.

DHausdorff(A,B) = max
a∈A
{min
b∈B
{d(a, b)}} (3.2)

where a and b are points of sets A and B, and d(a, b) is the distance between two

points a and b. Based on this defined formula, the distance between two polygons is

determined by the maximum distance of a point in A to its nearest point in B.

In order to use the Hausdorff distance for polygons, we have to determine how to

associate a set of points with a polygon. One straight-forward solution is to define the

set of points as the points that lie on the boundary of a polygon; however, computing

the distance between a set of points that consist of unlimited number of points is

considerably expensive. An algorithm that solves this problem for trajectories has

been proposed [8] and the same technique can be applied to polygons.

The Overlay distance measures the distance between two polygons based on their

degree of overlap. The overlay distance between two polygons A and B is defined as:

DOverlay(A,B) = 1− area(Intersection(A,B))

area(Union(A,B))
(3.3)

where the function area(X) returns the area a polygon X covers. The overlay dis-

tance subtracts the ratio of the size of the intersection over size of the union of two

polygons from 1. The overlay distance is 1 between two non-overlapping polygons.

The Hybrid distance function uses a linear combination of the Hausdorff distance

and the Overlay distance. Because the Overlay distance between two non-overlap
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polygons is always 1, regardless of the actual location in space, using the Hausdorff

distance can provide more precise approximations of the distance between two non-

overlap polygons. The Hybrid distance function is defined as:

DHybrid(A,B) = w ×DOverlay(A,B) + (1− w)×DHausdorff(A,B) (3.4)

where w is the weight factor associated with the Overlay distance function (0 ≤ w ≤

1).

There are several distance functions [1]-[4] proposed in the literature for polygons;

however, none of them can cope with overlapping spatial polygons. Overlapping

spatial polygons play a very important role in analyzing multiple related spatial

datasets in many application domains. Failing to measure the degree of overlap will

result in inadequate clustering results.

3.4.2 Spatial clustering algorithm for polygons

The Shared Nearest Neighbors (SNN) clustering algorithm [24] is a density-based

algorithm. SNN clusters data as DBSCAN does, except that the number of the

nearest neighbors that two points share is used to assess the similarity instead of

the number of points being within the radius ε of a particular point. In SNN, the

similarity between two points p1 and p2 is the number of points they share among

their k nearest neighbors as follows:

similarity(p1, p2) = size of(NN(p1) ∩NN(p2)) (3.5)

where NN(pi) is the set of k nearest neighbors of a point pi.
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The SNN density of a point p is defined as the sum of the similarities between p

and its k nearest neighbors as follows:

density(p) =
k∑
i=1

similarity(p, pi) (3.6)

where pi is the ith nearest neighbor of p.

After assessing the density of each point, SNN finds all core points; all points in

the dataset D that have the SNN density of at least MinPs and form the clusters

around the core points like DBSCAN.

coreP (D) = {p ∈ D|density(p) ≥MinPs} (3.7)

Our spatial clustering algorithm for polygons (Poly-SNN) extends the SNN algo-

rithm from points to polygons. The key component of Poly-SNN is the calculation of

the distance between two polygons. We use the Hybrid distance function discussed

in Section 3.4.1. Next, we identify the k nearest neighbors for each polygon. Poly-

SNN calculates the SNN density of each polygon using its k nearest neighbors, and

clusters the polygons around the core polygons as described above. The pseudo-code

of Poly-SNN is given in Algorithm 2.

There are several advantages of using the SNN algorithm as our reference algo-

rithm. First, it has the ability to find clusters in the presence of outliers. Second, the

SNN algorithm is capable of finding clusters of different shapes, sizes, and densities.

Third, it works well for high dimensional data. The experimental results and detailed

discussions in [24] show that SNN performs better than traditional methods, such as

K-means, DBSCAN, and CURE, on a variety of datasets.
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Input: Contour polygons, number of nearest neighbor k
Output: Clusters of polygons (Meta-clusters)
Algorithm:

1. Compute the similarity matrix of the input contour polygons.

2. For each polygon p, find its k nearest neighbors.

3. For each polygon p, compute its SNN density.

4. Identify the core polygons.

5. Form clusters from the core polygons.

6. Mark all noise polygons.

Algorithm 2: Poly-SNN algorithm pseudo-code

3.5 Post-processing analysis techniques

3.5.1 Domain-driven final clustering generation method

In general, domain experts seek clusters based on their domain-driven notion of “in-

terestingness”. Usually, a domain expert’s interestingness is different from generic

characteristics used by traditional clustering algorithms; moreover, for a given dataset

there usually are many plausible clusterings whose value has to be determined by

domain experts. Finally, even for the same domain expert, multiple clusterings are

of value, e.g., clusterings at different levels of granularity. A key idea of this research

is to collect a large number of frequently overlapping clusters organized in the form

of meta-clusters; final clusterings and other summaries are then created from those

meta-clusters based on a domain expert’s notion of interestingness.

To reflect what was discussed above, we assume that our final clustering gen-

eration algorithms provide several plug-in reward functions that capture a domain
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expert’s notion of interestingness. The reward function will be maximized during

the final clustering generation procedure. Our methodology provides an alternative

approach to the traditional ensemble clustering by creating a more structured input

for obtaining a final clustering, and reducing algorithm complexity by restricting

choices. We propose algorithms that create a final clustering by selecting at most

one cluster from each meta-cluster. Moreover, due to the fact that polygons that

were generated from multiple spatial datasets usually overlap a lot, we provide an

option for domain experts to restrict the cluster overlap in the final clustering. More

specifically, we develop algorithms that create the final clustering from the input

meta-clusters by solving the following optimization problem:

Inputs:

1. A meta-clustering M = X1, . . . , Xk - at most one object will be selected from

each meta-cluster Xi(i = 1, . . . , k).

2. The user provides the individual cluster reward function RewardU whose values

are in [0,∞).

3. A reward threshold θU - clusters with low rewards are not included in the final

clustering.

4. A cluster distance threshold θd, which expresses to what extent the user would

like to tolerate cluster overlap.

5. A cluster distance function dist.
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Find Z ⊆ X1 ∪ ... ∪Xk that maximizes:

q(Z) =
∑
c∈Z

rewardU(c) (3.8)

subject to:

1. x ∈ Z ∀x′ ∈ Z(x 6= x′ ⇒ Dist(x, x′) > θd)

2. x ∈ Z(RewardU(x) > θU)

3. x ∈ Z ∀x′ ∈ Z((x ∈ Xi ∧ x′ ∈ Xk ∧ x 6= x′)⇒ i 6= k)

Our goal is to maximize the sum of the rewards of clusters represented by polygons

that have been selected from the input meta-clusters. Constraint 1 prevents two

clusters which are spatially too close to be included in the final clustering. Constraint

3 makes sure that at most one cluster from each meta-cluster is selected.

Assuming that we have n meta-clusters, and that each meta-cluster contains an

average of m clusters (polygons), there are roughly (m+1)n final clusterings; for each

meta-cluster, we can either select one cluster for inclusion or we might decide not to

take any cluster due to the violations of Constraints 1 and 2. Constraint 2 is easy

to handle by removing clusters below the reward threshold from the meta-clusters

prior to running the final clustering generation algorithm.

Many different algorithms can be developed to solve this optimization problem.

We developed a greedy algorithm that always selects the cluster with the highest

reward from the unprocessed meta-clusters whose inclusion in the final clustering

does not violate Constraints 1 and 2. If there is no such cluster left, no more cluster

will be added from the remaining meta-clusters to the final clustering.
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The greedy algorithm is very fast (O(m × n)) but far from optimal; the back-

tracking algorithm explores the complete search space (O(mn)) and - if not stopped

earlier - finds the optimal solution if n and m are not very large; however, the anytime

backtracking approach can be used for large values of m and n. Finally, the evolu-

tionary computing algorithm covers a middle ground, providing acceptable solutions

that are found in the medium run-time. The pseudo-code of the greedy algorithm is

given in Algorithm 3

Input: Meta-clusters M = {X1, . . . , Xk}, Reward functions RewardU ,
Reward threshold θU , Cluster distance function dist, Distance threshold θd
Output: Final Clustering F = {p1, . . . , pn}
Algorithm:

1. Mark all meta-clusters Xi unprocessed; initialize final clustering F to empty.

2. Compute the reward using RewardU for meta-clusters M and delete polygons
whose rewards are less than the reward threshold θU from meta-clusters M .

3. Select the polygon p with the highest reward from the unprocessed
meta-clusters.

4. Compute the distances distq between p and every q ∈ F , if all distq ≥ θd, put
p into F , mark Xi(p ∈ Xi) processed; otherwise remove p from Xi; if Xi is
empty, mark Xi as processed.

5. Stop if all Xi are marked processed, otherwise go back to Step 3.

6. Output the final clustering F .

Algorithm 3: The greedy algorithm pseudo-code

As an example, we use the reciprocal of the area of a polygon as the reward

function. This reward function can help domain experts to identify potential ozone

pollution point sources and to analyze patterns at different levels of granularity

when different parameters are selected. First, all input meta-clusters generated by

Poly-SNN are marked “unprocessed”. The final clustering F is initialized to empty.
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The reward values for all polygons (the reciprocal of the areas of all polygons) are

computed. The user inputs a reward threshold and a distance threshold, e.g., the

reward threshold RewardU equal to 10, and the distance threshold θd equal to 0.5.

Next, a polygon p with the highest reward from the unprocessed meta-clusters M

is selected; compute the distances between p and all polygons in F , if all distances

are greater than the distance threshold 0.5, put the polygon p into F , and flag the

meta-cluster Xi that the polygon p belongs to as “processed”. Otherwise, remove the

polygon p from the meta-cluster Xi. The algorithm repeats until all meta-clusters are

flagged as “processed”. The output is the final clustering F containing all selected

polygons.

3.5.2 Finding interesting meta-clusters with respect to a

continuous variable v

Our second post-processing analysis technique allows automatic screening of the

obtained meta-clusters for unexpected distributions. The main idea is to provide

interestingness functions that automatically identify the meta-clusters whose member

distribution with respect to a non-spatial variable v deviates significantly from its

distribution in the whole dataset. We introduce such an interestingness function that

measures the interestingness of a meta-cluster based on its mean value and standard

deviation of a non-spatial variable v.

We assume that a datasetD = (a1, . . . , an, v) and a meta-clusteringM = {X1, . . . , Xk}
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is given, where v is a continuous variable which has been normalized using the z-

scores. Our goal is to find the contiguous clusters in A = {a1, . . . , an} space which

maximize the following interestingness function:

Let Xi ∈ 2A be a cluster in the A-space

Let σ be the variance of v with respect in the dataset D

Let σ(Xi) be the variance of variable v in a cluster Xi

Let mv(Xi) be the mean value of variable v in a cluster Xi

Let t1 ≥ 0 be a mean value reward threshold and t2 ≥ 1 be a variance reward

threshold

We suggest using the following interestingness function ϕ to calculate the reward

for each cluster:

ϕ(Xi) = max(0, |mv(Xi)| − t1)×max(0, σ − σ(Xi)× t2) (3.9)

In general, only clusters which satisfy |mv(X)| > t1 and σ(X) < σ/t2 will receive

a reward value; e.g., for t1 = 0.2 and t2 = 2, only clusters whose mean-value is below

−0.2 or above 0.2 and whose variance is less than or equal to half of σ will receive

a reward. In general clusters whose mean values are significantly different from 0

and variances are low will receive high rewards. We rank all clusters based on their

rewards and only report those whose rewards are higher than the reward threshold

specified by domain experts.

The proposed interestingness function is just an example for identifying unusual
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clusters with respect to a continuous non-spatial variable v - other useful interest-

ingness functions can be proposed as well. Similar interestingness functions can also

be proposed for categorical variables.

3.6 Experimental evaluation

3.6.1 The ozone datasets

The HGB area is currently classified as a severe nonattainment area for ozone. In

order to closely monitor the air quality in this area, an air quality monitoring network

has been established to continuously monitor the ground level of ozone concentration

in this area, which provide large amounts of dynamic data associated with ozone

pollution events in this area, such as ozone concentration, nitrogen oxides (NOx)

concentration, and various meteorological data. Time-series measurements for such

data constitute large-scale spatial datasets. Data-mining techniques are needed to

facilitate the automatic extraction and analysis of interesting patterns from such

large-scale spatial data; thus, we consider an application of our spatial clustering

algorithm and post-processing analysis techniques to ozone pollution spatial data

in the HGB area. In particular, we downloaded the raw data for the timeframe

from 1 am on April 1, 2009 to 11 pm on November 30, 2009 from the website

of the Texas Commission on Environmental Quality (TCEQ) [25], which include

ground level ozone concentration, outdoor temperature, wind direction, wind speed,

and solar radiation. The spatial scope covers the geographical region within the
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longitude domain of [−96.1,−94.5] and the latitude domain of [29.0, 30.4]. The

standard Kriging interpolation method [26] and the DCONTOUR [27] algorithm

along with the user defined density threshold, i.e., 90 ppb (parts per billion), are

adopted to generate polygons. Those polygons represent the area in which the hourly

ground level ozone concentration is higher than 90 ppb. Polygons are represented by

contour lines. The shape and area of a polygon reflect the impact location and scope

of an ozone pollution event, which are controlled by multiple factors of the emission

precursors and the meteorological conditions. We use the dataset consisting of 162

polygons generated by the DCONTOUR algorithm for the density threshold 90 ppb

in the following case studies in this chapter.

Ozone formation is a complicated chemical reaction. There are several control

factors involved:

• Sunlight, measured by solar radiation, is needed to produce ozone.

• High outdoor temperature causes ozone formation reactions to speed up.

• Wind transports ozone pollution from the point sources.

• Time of Day: ozone levels can continue to rise all day long on a clear day, and

then decrease after sunset.

Solar radiation is measured in langleys per minute. A langley is a unit of energy

per unit area (1 gram-calorie/cm2) commonly employed in radiation measurements.

Outdoor temperature is measured in Fahrenheit. Wind speed is measured in miles

per hour.
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Basically, we generate polygons from the original point datasets to capture ozone

hotspots for particular time slots in the HGB area. 255 polygons are created by using

DCONTOUR with density threshold 180 (ozone concentration 80 ppb). 162 polygons

are generated by using DCONTOUR with density threshold 200 (ozone concentration

90 ppb). The current Environmental Protection Agency (EPA) ozone standard is

based on eight-hour average measurements. In order to meet the standard, the

eight-hour average ozone concentration has to be less than 75 ppb; therefore, we can

consider these two sets of polygons represent areas where the ozone level exceeds the

EPA standard.

We evaluate our method in three case studies. The goal of the first case study is to

verify that our new distance functions and spatial clustering algorithm for polygons

can effectively cluster overlapping polygons. By analyzing additional meteorological

variables associated with polygons, such as outdoor temperature, solar radiation,

wind speed, and time of day, we can characterize each cluster of polygons and identify

interesting patterns associated with these ozone pollution hotspots represented by

polygons.

In the second case study, we are interested in generating final clusterings that

capture a domain expert’s notions of interestingness by plugging in different reward

functions. For example, domain experts may be interested in finding typical ozone

pollution hotspots that occurred when the outdoor temperatures were extremely

high. In order to summarize the final clusterings, the statistical results of three

ozone pollution control variables are provided as well.
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In the third case study, we try to find interesting clusters with unexpected dis-

tributions with respect to a continuous variable. A screening procedure and several

interestingness functions are proposed for this task. Meta-clusters are evaluated

with respect to different continuous variables, such as solar radiation, wind speed,

and outdoor temperature, respectively.

3.6.2 Case study for spatial clustering

An ozone polygon is a hotspot that has an ozone concentration above a certain

threshold. In order to generate polygons representing ozone pollution hotspots where

ozone concentration is above 90 ppb from the original point datasets downloaded

from TCEQ’s website [25], we divide the HGB area into a 20× 27 grid. The density

function discussed in Section3.3 is used to compute the ozone concentration at each

grid intersection point. Next, we compute the contour intersection points on the grid

cell edges where the density is equal to 90 ppb using binary search and interpolation.

Finally, we compute the contour polygons by connecting the contour intersection

points.

In this case study, we select the dataset with 162 polygons generated by the

DCONTOUR algorithm with the density threshold equal to 200. These polygons

represent areas with a one hour ozone concentration higher than 90 ppb. We then ap-

ply the Poly-SNN clustering algorithm to find clusters of ozone hotspots represented

by polygons called meta-clusters. Figure 3.3 displays the result of 30 meta-clusters

generated by Poly-SNN with the number of nearest neighbor k equal to 5 and the
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Hybrid distance function. Out of 162 polygons, 30 percent are considered outliers

by Poly-SNN. Polygons marked by the same color belong to the same meta-clusters.

Figure 3.3: All meta-clusters generated by Poly-SNN

In general, by analyzing the meteorological characteristics of polygons, domain

experts may find some interesting phenomena that could lead to further scientific

investigation; therefore, we also compute the statistics of four meteorological vari-

ables involved in ozone pollution events. Table 3.1 lists the statistical results of four

meteorological variables associated with the meta-clusters displayed in Figure 3.3.

Table 3.1: The statistical results for all meta-clusters
Mean Deviation Max Min

Temperature (◦F) 90.6 5.3 102.8 78.6
Solar Radiation (Langleys per minute) 0.8 0.4 1.4 0.03

Wind Speed (Miles per hour) 6.1 1.9 15.7 0.3
Time of Day 2 : 30 pm 1.8 8 pm 10 am
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As expected, meta-clusters shown in Figure 3.3 are characterized by high outdoor

temperature (average of 90.6 ◦F and standard deviation of 5.3) and strong solar

radiation (average of 0.8 langleys per minute and standard deviation of 0.4), which

usually happens between 1 pm and 4 pm. Since the standard deviation of the wind

speed (1.9) compared with the average wind speed (6.1 miles per hour) is nontrivial,

the variance of the sizes of all polygons in Figure 3.3 is significant.

It is hard to visualize all meta-clusters in a single picture when clusters overlap

a lot. Figures 3.4 and 3.5 display eight out of 30 meta-clusters shown in Figure 3.3.

As expected, the Hybrid distance function that employs both the Overlay distance

and the Hausdorff distance creates clusters of polygons that are similar in terms of

shape, size and location. Particularly, since we give more weights to the overlay

distance function, the meta-clusters in Figures 3.4 and 3.5 overlap significantly. This

case study proves that our Poly-SNN algorithm in conjunction with the Hybrid

distance function can effectively find clusters of overlapping polygons with similar

sizes, shapes, and locations.

Tables 3.2, 3.4, 3.3, and 3.5 list the mean and standard deviation of outdoor

temperature, solar radiation, wind speed, and time of day associated with eight

meta-clusters shown in Figures 3.4 and 3.5. The solar radiation information related

to clusters 2 and 4 are not available from the TCEQ’s website. Certainly, ozone for-

mation is more complicated than only considering those four control factors; however,

our polygon-based method does have the capability of handling more variables.

Based on Tables 3.2 and 3.3, we can see that polygons in the meta-clusters 11 and

12 are characterized by high outdoor temperatures (98.8 ◦F and 99.1 ◦F) compared
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Figure 3.4: Visualization of four meta-clusters (ID: 11, 12, 16, and 29)

Table 3.2: The mean values of the meta-clusters 11,12,16, and 29
Meta-cluster ID 11 12 16 29

Temperature (◦F) 98.8 99.1 91.0 85.5
Solar Radiation (Langleys per minute) 0.9 0.9 0.7 0.7

Wind Speed (Miles per hour) 5.2 4.9 5.9 8.3
Time of Day 2 pm 2 pm 3 pm 12 pm

with the entire dataset (90.6 ◦F) and strong solar radiations (0.9 langleys per minute

and 0.9 langleys per minute) compared with the entire dataset (0.8 langleys per

minute). The wind speeds of the meta-clusters 11 and 12 (5.2 miles per hour and 4.9

miles per hour) are low compared with the mean value of entire dataset (6.1 miles

per hour) so that the average size of the polygons in the meta-clusters 11 and 12

are relatively small compared with other polygons shown in Figure 3.3. Also, meta-

clusters 11 and 12 are captured around 2 pm. The statistical results associated with

the meta-cluster 16 are very close to the mean values of the entire dataset listed in
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Figure 3.5: Visualization of four meta-clusters (ID: 2, 4, 10, and 27)

Table 3.3: The variances of the meta-clusters 11,12,16, and 29
Meta-cluster ID 11 12 16 29

Temperature (◦F) 1.1 2.9 4.3 1.0
Solar Radiation (Langleys per minute) 0.3 0.3 0.3 0.5

Wind Speed (Miles per hour) 0.5 1.0 0.9 2.6
Time of Day 0.9 1.6 1.6 1.9

Table 3.1.

Based on Tables 3.4 and 3.5, the meta-cluster 10 has lower outdoor temperature

(86.0 ◦F), lower solar radiation (0.7 langleys per minute), and lower wind speed

(4.8 miles per hour) compared with the mean values of the entire dataset listed in

Table 3.1. The average time of day for the meta-cluster 4 is about 4 pm. Those

four lower meteorological values contribute to the smaller sizes of polygons inside

the meta-cluster 4 shown in Figure 3.5.
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Table 3.4: The mean values of the meta-clusters 2,4,10,and 27
Mean Deviation Max Min

Temperature (◦F) 83.4 88.5 86.0 92.3
Solar Radiation (Langleys per minute) N/A N/A 0.7 0.6

Wind Speed (Miles per hour) 6.8 6.2 4.8 6.5
Time of Day 2 pm 1 pm 4 pm 3 pm

Table 3.5: The variances of the meta-clusters 2,4,10, and 27
Meta-cluster ID 11 12 16 29

Temperature (◦F) 3.6 1.6 2.1 2.9
Solar Radiation (Langleys per minute) N/A N/A 0.0 0.3

Wind Speed (Miles per hour) 1.0 0.5 0.8 0.5
Time of Day 1.7 0.9 0.8 0.8

3.6.3 Case study for domain-driven final clustering genera-

tion

In this case study, the greedy algorithm is implemented to generate the domain-

driven final clustering from the meta-clusters shown in Figure 3.3. We use several

reward functions to capture the domain experts’ notions of interestingness. The final

clustering with statistical results of the corresponding meteorological variables can be

used to summarize what characteristics the ozone hotspots in the same meta-clusters

share.

The range of an ozone pollution event represented by the area of a polygon is

selected as the first reward function, which will help domain experts recognize the

possible maximal range of ozone pollution events in the HGB area. By selecting dif-

ferent reward threshold values and distance threshold values, several final clusterings

could be generated. Figure 3.6 shows one such final clustering using reward thresh-

old 0.04 and the Hybrid distance threshold 0.5. There are five polygons. Table 3.6

shows the statistical results of the corresponding meteorological variables. Since the
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standard deviations of the meteorological variables are relatively small, we will not

discuss the standard deviations in this case study. Polygons 21, 80, and 150 cover

larger areas with high outdoor temperature, high wind speed, and strong solar radi-

ation compared with polygons 13 and 125. Polygon 150 is interesting because it has

a hole inside. Our method can handle polygons with holes. Further analysis could

be done to help understand the formation of holes inside polygons.

Figure 3.6: Final clustering for the area of polygon reward threshold 0.04 and the
Hybrid distance threshold 0.5

Table 3.6: The mean of the meteorological variables for the final clustering of the
area reward function

Polygon ID 13 21 80 125 150

Temperature (◦F) 79.0 86.4 89.1 84.1 88.9
Solar Radiation (Langleys per minute) N/A 1.3 1.2 0.1 1.1

Wind Speed (Miles per hour) 4.5 6.1 6.2 4.9 5.4
Time of Day 6 pm 1 pm 2 pm 2 pm 12 pm

The reciprocal of the area of a polygon is selected as the second reward function

for smaller granularity, which may be useful to identify the ozone pollution point

sources and enable the domain experts to analyze patterns at different levels of
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granularity. By decreasing either the reward threshold or the distance threshold, we

are able to get several final clusterings. Figure 3.7 shows the final clustering with

the reward threshold equal to 10 and the distance threshold equal to 0.45. There are

14 polygons. Table 3.7 lists the mean values of four corresponding meteorological

variables. Some of the values are not available in the original datasets downloaded

from the TCEQ’s website. All of those 14 polygons with relatively smaller sizes occur

either before 1 pm or after 4 pm. According to Table 3.1, the average of the time

of day for the entire dataset is 2:30 pm with a standard deviation of 1.8. The time

slot from 1 pm to 4 pm is definitely a major time period for ozone formation which

could change the range and the concentration density of an ozone pollution event

significantly. More analysis should be done especially for the time slot between 1 pm

and 4 pm.

Figure 3.7: Final clustering for the reciprocal of the area reward threshold 10 and
the Hybrid distance threshold 0.45
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Table 3.7: The mean of the meteorological variables for the final clustering of the
reciprocal of the area reward function

Polygon ID Temperature
(◦F)

Solar Radiation
(Langleys per minute)

Wind Speed
(Miles per hour)

Time of Day

11 81.4 N/A 6.3 4 pm
17 88.2 N/A 6.0 3 pm
18 N/A N/A N/A 4 pm
35 86.3 N/A 6.2 5 pm
42 N/A N/A N/A 1 pm
44 N/A N/A N/A 3 pm
74 N/A N/A N/A 4 pm
83 N/A N/A 5.9 10 am
106 93.5 0.12 5.9 4 pm
107 94.4 1.2 4.6 11 am
114 94.6 0.6 5.8 4 pm
128 86.4 0.1 5.4 5 pm
129 86.2 1.1 8.8 10 am
148 N/A N/A N/A N/A

Outdoor temperature, wind speed, and solar radiation also play very important

roles in ozone formation. We use average outdoor temperature as the third reward

function. Figure 3.8 shows one final clustering with the average outdoor temperature

threshold equal to 90 ◦F and the Hybrid distance threshold equal to 0.55. The mean

values of the corresponding meteorological variables are summarized in Table 3.8.

Obviously, all the polygons with high temperatures occur during 2 pm to 4 pm. The

lower the wind speed is, the smaller the area of a polygon is. For example, polygon

67 has the lowest wind speed of 4.1 miles per hour compared with all other polygons

in Figure 3.8, along with a relative high outdoor temperature and a strong solar

radiation; the area of polygon 67 is still smaller than the other polygons shown in

Figure 3.8.

The solar radiation associated with each polygon is selected as next reward func-

tion. Figure 3.9 shows the final clustering for the solar radiation threshold equal to
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Figure 3.8: Final clustering for the average temperature reward threshold 90 and the
Hybrid distance threshold 0.55

Table 3.8: The mean of the meteorological variables for the final clustering of the
average temperature reward function

Polygon ID 54 67 89 101 105

Temperature (◦F) 100.3 102.8 92.4 99.4 94.5
Solar Radiation (Langleys per minute) N/A 1.0 0.9 0.7 0.7

Wind Speed (Miles per hour) 6.0 4.1 8.5 8.2 6.0
Time of Day 2 pm 3 pm 3 pm 4 pm 3 pm

0.9 and the Hybrid distance threshold equal to 0.55. Table 3.9 lists the correspond-

ing mean values of four meteorological variables. Based on Table 3.9, strong solar

radiation happens between 11 am and 1 pm. During that time period, the outdoor

temperature is not relative high compared to the entire dataset (90.6). Polygon 107

is the smallest due to the smallest wind speed (4.6) even though it has the highest

outdoor temperature (94.4) and strong solar radiation (1.2). Polygon 21 has relative

strong solar radiation (1.3), high wind speed (6.1), and relative low outdoor temper-

ature (86.4) compared with the other four polygons shown in Figure 3.9; however,

the area of polygon 21 is the largest one.
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Figure 3.9: Final clustering for solar radiation threshold 0.9 and the Hybrid distance
threshold 0.55

Table 3.9: The mean of the meteorological variables for the final clustering of the
solar radiation reward function

Polygon ID 21 78 85 107 130

Temperature (◦F) 86.4 86.1 92.4 94.4 86.9
Solar Radiation (Langleys per minute) 1.3 1.4 1.3 1.2 1.1

Wind Speed (Miles per hour) 6.1 5.5 4.7 4.6 12.3
Time of Day 1 pm 11 am 11 am 11 am 12 pm

3.6.4 Case study for identifying interesting meta-clusters

For this case study, we use the dataset with 255 polygons generated by DCONTOUR

with density threshold 180. 21 meta-clusters are created by using Poly-SNN with the

Hybrid distance function and the number of nearest neighbor k equal to 4. 20% of

those polygons are considered outliers by Poly-SNN. We evaluate these meta-clusters

with respect to several continuous meteorological variables, such as solar radiation,

wind speed, and outdoor temperature, respectively. The meta-clusters with high

rewards based on the interestingness function ϕ are identified.

The statistical summaries for three meteorological variables for the entire dataset
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are listed in Table 3.10. The average temperature is 89 ◦F. The average solar radiation

is 0.8 langleys per minute. The average wind speed is 5.9 miles per hour. Table 3.11

shows the statistical results after the Z-score normalization. All mean values become

0; all variances become 1.

Table 3.10: The statistical results for the dataset of 255 polygons
Mean Variance Max Min

Temperature (◦F) 89.0 35.5 102.8 71.6
Solar Radiation (Langleys per minute) 0.8 0.1 1.4 0

Wind Speed (Miles per hour) 5.9 2.8 12.3 2.5

Table 3.11: The statistical results of the dataset of 255 polygons after the Z-score
normalization

Mean Variance Max Min

Temperature (◦F) 0 1 2.3 −2.9
Solar Radiation (Langleys per minute) 0 1 1.7 −2.1

Wind Speed (Miles per hour) 0 1 3.8 −2.1

In this case study, the mean value threshold is set to 0.2, the variance threshold

is set to 2, and the interestingness reward threshold is set to 0.4. We are interested

in finding meta-clusters whose mean values are below −0.2 or above 0.2, whose

variances are less than or equal to half of the variance of the entire dataset, and

whose interestingness rewards are above 0.4.

We first select outdoor temperature. Three meta-clusters (3, 15, and 16) depicted

in Figure 3.10 were selected by our post-processing analysis procedure. Table 3.12

lists the normalized outdoor temperatures associated with the meta-clusters shown

in Figure 3.10.

Table 3.13 lists the detailed information of each polygon in the final meta-clusters.

For example, meta-cluster 15 has five polygons; two out of five polygons were mon-

itored at 1 pm and 2 pm on May 4, 2009, the other three were monitored at 10
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Figure 3.10: Interesting meta-clusters with respect to outdoor temperature

Table 3.12: The statistical results for the meta-clusters using outdoor temperature
Meta-cluster ID Mean Variance Number of Polygons

3 −2.2 0.01 2
15 −0.7 0.09 5
16 1.6 0.11 3

am, 11 am, and 12 pm, respectively on June 7, 2009. Further investigation of the

meta-cluster 15 will help domain experts better understand how the ozone pollution

events change over time.

In general, the highest level of ozone concentration appears a few hours after the

maximum solar radiation. We pick solar radiation as our second continuous vari-

able. Figure 3.11 shows three selected meta-clusters with respect to solar radiation.

Table 3.14 lists the statistical results of the normalized solar radiation associated

with each meta-cluster shown in Figure 3.11. Meta-cluster 5 was picked due to the
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Table 3.13: The meteorological information of the selected meta-clusters
Meta-
cluster

ID

Polygon
ID

Temperature
(◦F)

Solar Radiation
(Langleys per

minute)

Wind Speed
(Miles per hour)

Date Time of
Day

2 3 71.6 N/A 4.0 11/13/2009 2 pm
2 4 71.9 N/A 2.5 11/13/2009 3 pm
2 115 84.7 N/A 4.5 6/6/2009 2 pm
2 117 85.8 N/A 4.9 6/6/2009 3 pm
2 118 86.3 N/A 5.2 6/6/2009 4 pm
3 5 75.1 1.0 4.8 11/7/2009 12 pm
3 6 76.0 0.9 6.6 11/7/2009 1 pm
5 9 76.8 0.4 6.8 11/7/2009 3 pm
5 70 86.1 0.7 8.7 5/4/2009 4 pm
5 127 88.2 0.4 6.3 6/7/2009 5 pm
5 166 93.2 0.3 7.9 8/15/2009 5 pm
5 245 85.2 0.3 7.5 9/4/2009 4 pm
12 38 88.2 N/A 5.7 5/29/2009 2 pm
15 67 85.8 1.1 6.1 5/4/2009 1 pm
15 68 86.6 1.1 6.5 5/4/2009 2 pm
15 120 82.2 1.0 4.6 6/7/2009 10 am
15 121 83.9 1.2 5.1 6/7/2009 11 am
15 122 85.8 1.4 5.6 6/7/2009 12 pm
16 79 96.7 1.3 5.9 6/24/2009 1 pm
16 102 98.3 1.1 5.4 6/24/2009 1 pm
16 112 100.5 0.9 6.2 6/3/2009 3 pm
19 105 98.8 1.0 2.7 6/27/2009 3 pm
19 113 102.8 0.5 4.2 6/3/2009 4 pm
19 184 91.1 0.8 4.6 8/28/2009 3 pm
19 185 91.6 0.5 6.7 8/28/2009 4 pm
19 186 93.2 0.2 3.8 8/28/2009 5 pm
21 172 88.3 1.2 10.0 8/28/2009 1 pm
21 197 85.6 1.1 8.9 8/31/2009 10 am
21 198 86.9 1.1 12.3 8/13/2009 11 am

very low value of solar radiation. It contains five polygons monitored between 3

pm and 5 pm on five different dates (5/4/2009, 5/29/2009, 6/7/2009, 8/15/2009, and

9/4/2009). Meta-cluster 15, however, is picked up again in this case study due to its

high values of the solar radiation.

The higher levels of ozone concentrations are associated with greater magnitudes

of wind velocity. Figure 3.12 shows two final meta-clusters (2, 5) when wind speed
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Figure 3.11: The interesting meta-clusters with respect to solar radiation

Table 3.14: The statistical results for the meta-clusters using solar radiation
Meta-cluster ID Mean Variance Number of Polygons

5 −0.9 0.20 5
15 1.1 0.13 5
21 1.0 0.04 3

is selected as the continuous variable in calculating the interestingness reward. Ta-

ble 3.15 lists the statistical results of the normalized wind speed of each meta-cluster

shown in Figure 3.12. There are five polygons in meta-cluster 2; two out of five

polygons were monitored at 2 pm and 3 pm on November 13, 2009; the other three

were monitored at 2 pm, 3 pm, and 4 pm on June 6, 2009. Figure 3.12 clearly shows

the progressions of the ozone pollution events on those two days. Meta-cluster 5 is

selected again due to the high values of the wind speed.

Table 3.13 lists the summarized information of the meteorological variables for

46



Figure 3.12: Interesting meta-clusters with respect to wind speed

Table 3.15: The statistical results for the meta-clusters using wind speed
Meta-cluster ID Mean Variance Number of Polygons

2 −1.0 0.41 5
15 0.9 0.32 5

all polygons in the final meta-clusters which were red flagged by our post-clustering

analysis procedure in this case study. Some meteorological data are not available in

the original dataset from TCEQ noted as N/A in Table 3.13. Both meta-cluster 5

and meta-cluster 15 are reported twice in this case study with respect to different

meteorology variables. Meta-cluster 5 has a very low mean value of solar radiation

and a relative high wind speed. Meta-cluster 15 has a very high mean value of solar

radiation and a relative low temperature. They are located in the same area. Under

different meteorological conditions, the sizes of the ozone hotspots in meta-clusters 5

and 15 are different. Further analysis of the polygons in meta-clusters 5 and 15 may
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help domain experts better understand how ozone pollution hotspots change under

different weather patterns over time.

3.7 Conclusion

Polygons are very useful to mine spatial datasets as they provide a natural repre-

sentation for particular types of spatial objects and provide a useful tool to analyze

discrepancies, progression, changes, and emergent events. In this chapter, we pro-

posed a novel polygon-based clustering and analysis framework for mining spatial

data. We introduced a density-based contouring algorithm called DCONTOUR to

generate polygons from multiple spatial point datasets. Two distance functions were

proposed to assess the distance between a pair of overlapping polygons. A density-

based polygonal clustering algorithm called Poly-SNN was developed to cluster poly-

gons. Two post-processing analysis techniques were implemented, which employ dif-

ferent plug-in reward functions capturing domain experts’ notion of interestingness

to extract interesting patterns and summaries from the meta-clusters.

Experiments on real-world spatial data involving ozone pollution events in the

HGB area show that our method is effective and can reveal interesting relation-

ships between different ozone hotspots represented by polygons. Our framework can

also identify interesting hidden relations between ozone hotspots and several mete-

orological variables, such as outdoor temperatures, solar radiation, and wind speed.

Moreover, our framework has the capability for supporting various applications, such

as water pollution and urban evolution.

48



In general, our work has the capability to cluster overlapping polygons, and

polygons with holes inside. In today’s society, we are faced with analyzing an ever

growing and changing amount of data. It should be highlighted that our framework

tries to turn the information overload to our advantage by providing automated

screening procedures. It allows for high level views of the data to facilitate data

analysis. One key idea of our work is to use different plug-in reward functions to

guide the knowledge extraction process, focusing on the extraction of the interesting

patterns and summaries with respect to a domain expert’s notion of interestingness.

To the best of our knowledge, this is the first research that proposes a comprehensive

method that relies on polygon clustering and post-processing analysis techniques to

mine multiple related spatial datasets.

49



Chapter 4

New spatio-temporal clustering

algorithms and post-processing

analysis techniques

4.1 Introduction

Due to the advances in remote sensors and sensor networks, different types of dynamic

and geographically distributed spatio-temporal data become increasingly available.

Extracting spatial and temporal patterns from such data are very important for

many applications, such as geographic information systems, weather forecasting,

medical imaging, and environment protection. Traditional clustering techniques are

inefficient in clustering spatio-temporal data because they do not incorporate the

idiosyncrasies of the spatial and temporal domains; therefore, new techniques are
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needed to address these challenges and to provide effective solutions to analyze large

spatio-temporal data. Spatio-temporal clustering is particularly useful in analyzing

large amounts of data since it allows domain experts to consider groups of objects

rather than individual objects and to focus on a higher level representation of the

data. Moreover, spatio-temporal clustering can help reveal interesting distribution

patterns and serve as the foundation for other data mining and analysis techniques.

Several types of spatio-temporal data are available in real applications, i.e., points,

trajectories, and polygons. Different spatio-temporal clustering algorithms have been

developed in the literature; however, most of them focus on clustering points and tra-

jectories. Spatio-temporal clustering techniques for polygons are still rarely reported.

Moreover, polygons serve an important role in the analysis of geo-referenced data

as they provide a nature representation for certain types of objects, such as cities

blocks, city neighborhoods, and pollution hotspots. Polygons can serve as models for

clusters as well, and can be used by a broad set of applications, such as air pollution

prevention, health-care study, and urban planning.

Geographic dynamics refer to the changes that occur across both the spatial

and temporal dimensions. Different change analysis techniques for spatio-temporal

data have been developed; however, most of them focus on points and trajecto-

ries. The current state-of-art is still lacking techniques for analyzing the changes

that may occur within the polygon-based spatio-temporal clusters across their spa-

tial and temporal dimensions simultaneously, as well as formalizing their properties.

New change detection algorithms need be developed to automate the identification,

representation, and computation of geographic dynamics for polygons.

51



In this chapter we propose two novel spatio-temporal clustering algorithms, i.e.,

Spatial-Temporal Shared Nearest Neighbor (ST-SNN), and Spatial-Temporal Sep-

arated Shared Nearest Neighbor (ST-SEP-SNN), by extending the Shared Nearest

Neighbor clustering algorithm (SNN) [24]. Advantages of the SNN algorithm in-

clude its capability to find clusters of different shapes, sizes, and densities in high

dimensional data and its tolerance to noise. In addition, SNN does not require the

number of clusters to be determined in advance. We redefine the spatio-temporal

similarity between a pair of polygons and the density concepts of the SNN algo-

rithm. Furthermore, both ST-SNN and ST-SEP-SNN can be easily modified to

cluster spatio-temporal point datasets.

We demonstrate how ST-SNN and ST-SEP-SNN can be used to extract knowl-

edge from spatio-temporal data involving ozone pollution events in the HGB area

and help answer different analytic questions from domain experts. Ozone has been

the main air-quality concern in the HGB area for years. Regional meteorological

conditions combined with the variety of emissions from industry and transportation

make the city a prime media for ground level ozone formation [25]. The rapid growth

of the city causes regional emissions to continue increasing. Our approaches can help

analyst find interesting spatio-temporal patterns from ozone pollution events and

make preliminary predictions for the future. For example, our algorithms can find

hourly patterns of high ozone concentrations that occurred in similar areas. For peo-

ple who are physically active outdoors or have respiratory problems, this knowledge

can help them to plan.

Post-processing analysis techniques are important tasks in data mining as well,
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which can help domain experts to explore the data and the clustering results from

a variety of viewpoints. Our post-processing analysis technique allows automatic

screening of the clusters of polygons for interesting ones, whose members have at-

tribute values that deviate significantly from those of the entire population. For ex-

ample, we can find clusters of polygons with attribute values that are much smaller

or larger than others. Such anomalous clusters are exceptional in some sense, and

are often of unusual importance.

The rest of the chapter is organized as follows. Section 4.2 introduces two spatio-

temporal clustering algorithms called ST-SNN and ST-SEP-SNN in detail. Func-

tions to assess the similarity between a pair of spatio-temporal polygons are formu-

lated as well. Section 4.3 presents our change pattern discovery algorithm and post-

processing analysis technique for spatio-temporal data mining. Section 4.4 evaluates

our spatio-temporal clustering algorithms with the case studies on ozone pollution

events in the HGB area. Section 4.5 presents the experimental results of applying

our change-patter-discovery algorithm and post-processing analysis technique for the

same spatio-temporal datasets. Section 4.6 gives our conclusion.

4.2 New spatio-temporal clustering algorithms

We propose two spatio-temporal clustering algorithms, ST-SNN and ST-SEP-SNN

by extending the SSN algorithm [24] from points to polygons. We redefine the spatio-

temporal similarity between two polygons taking into account both the spatial and

temporal similarities. Each spatio-temporal polygon p is associated with a time t

53



when it occurs, and a set of non-spatial attributes. Henceforth, all polygons discussed

in this chapter are spatio-temporal polygons unless specified otherwise. A spatio-

temporal cluster of polygons is a group of polygons that lie in close proximity in both

space and time.

In ST-SEP-SNN, any function that can compute the distance between a pair of

polygons, such as the Hausdoff distance [4], the Fréchet Distance [2], the PDF [1],

the Overlay distance [28], the Hybrid distance [29], can be used. Any function that

can compute the temporal distance between a pair polygons can be adopted as well.

The k-nearest spatial neighbor list and k-nearest temporal neighbor list for each

polygon p, denoted by k-SPN-List(p) and k-TN-List(p), are generated by keeping its

k-nearest spatial neighbors and k-nearest temporal neighbors only. Then the nearest

spatio-temporal neighbor list of a polygon p, denoted by NN(p), is calculated as the

intersection of the k-nearest spatial neighbor list and the k-nearest temporal neighbor

list of p:

NN(p) = k-SPN-List(p) ∩ k-TN-List(p) (4.1)

The similarity between two polygons p and q, denoted by similarity(p, q), is the

number of the nearest spatio-temporal neighbors that they share:

similarity(p, q) = size of(NN(p) ∩NN(q)) (4.2)

where NN(p) is the set of k nearest neighbors of the polygon p.

The SNN density of a polygon p is defined as the sum of the similarities between
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the polygon p and its k nearest neighbors as follows:

density(p) =
k∑
i=1

similarity(p, pi) (4.3)

where pi is the ith nearest neighbor of a polygon p.

The core polygons are identified by using a user specified parameter MinPs,

namely all polygons in the dataset D that have the SNN density of at least MinPs:

CoreP (D) = {p ∈ D|density(p) ≥MinPs} (4.4)

Clusters are then formed by computing the transitive closure of the polygons

that can be reached from an unprocessed core polygon using their respective nearest

neighbor lists; this process continues until all core polygons have been assigned to

a cluster. The remaining polygons that are not within a radius of Eps of any core

polygon are classified as outliers; they are not included in any clusters.

In contrast with ST-SEP-SNN, ST-SNN uses a weighted sum of the spatial dis-

tance and the temporal distance between two polygons p and q to calculate the

spatio-temporal distance between polygons p and q, denoted by distst(p, q):

distst(p, q) = w × dists(p, q) + (1− w)× distt(p, q) (4.5)

where w is the weight factor associated with the spatial distance (0 ≤ w ≤ 1); dists

is any functions that can compute the spatial distance between two polygons p and q;

distt is any functions that can compute the temporal distance between two polygons

p and q. Then we rank the obtained spatio-temporal distance matrix to get the

k-nearest spatio-temporal neighbor list for each polygon. In this case, the sizes of
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the nearest neighbor lists for all polygons in the dataset are the same, i.e., k. The

SNN-based concepts for spatio-temporal polygons are identical in both ST-SNN and

ST-SEP-SNN. The pseudo-code of ST-SNN and ST-SEP-SNN is given in Algorithm

4.

Input: polygon dataset D = {p1, p2, . . . , pn}, size of nearest neighbor list k,
the core polygon threshold MinPs
Output: set of clusters Ci of polygons
Algorithm:

1. for every polygon p in D ,compute k-nearest neighbor list: NN(p) ,and mark
p unprocessed.

2. for every pair of polygons p and q in D, compute similarity(p, q).

3. for every polygon p in D, compute density(p), identify core polygons whose
density is greater than MinPs.

4. for every core polygon p in D, if p is marked unprocessed, form a cluster Ci of
polygons that can be reached from p following the entries of the respective
NN-lists of core points. mark all polygons in Ci as processed.

5. return set of generated clusters Ci of polygons

Algorithm 4: Pseudo-code of ST-SNN and ST-SEP-SNN

In general, ST-SEP-SNN uses separate k-nearest spatial neighbor list and k-

nearest temporal neighbor list, and does not try to integrate the spatial distance and

the temporal distance into a single spatio-temporal distance. The nearest neighbor

lists of all polygons have different cardinalities m (m ≤ k). This property distin-

guishes ST-SEP-SNN from ST-SNN.

Both ST-SNN and ST-SEP-SNN require several user-defined parameters that

have significant impact on clustering results. These user-defined parameters need to

be changed and adapted according to the dataset being clustered:
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• k: the size of the nearest neighbor list. It is the most important parameter as

it determines the granularity of the clusters. In general, if k is too small, both

ST-SNN and ST-SEP-SNN will tend to find many small clusters and a lot of

outliers. On the other hand, if k is too large, both ST-SNN and ST-SEP-SNN

will tend to find only a few large clusters.

• MinPs: the core polygon threshold. It is the minimum number of the shared

nearest neighbors required for core polygons. It allows the user to control how

many polygons are needed to qualify a polygon as a core polygon. MinPs

should be smaller than k.

Both ST-SNN and ST-SEP-SNN follow the structure of SNN. The time com-

plexity of ST-SNN and ST-SEP-SNN are the same as that of SNN which is O(n2)

without the use of an indexing structure, where n is the number of polygons in the

datasets. If an indexing structure such as a k-d tree or an R* are used, the time

complexity will be reduced to O(n× log(n)). The space complexity is O(k×n) since

only the k-nearest neighbor need to be stored, while the k-nearest neighbor can be

computed once and used repeatedly for different runs of the algorithms with different

parameter values.
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4.3 Change-pattern-discovery and post-processing

analysis techniques

In this section we introduce the polygon-based change-pattern-discovery algorithm

and the post-processing analysis techniques for spatio-temporal clusters in detail.

The polygon-based change-pattern-discovery algorithm allows domain experts to ob-

serve the dynamic changes of the spatio-temporal clusters across both spatial and

temporal dimensions. Our post-processing analysis techniques help domain experts

identify interesting clusters based on their notion of interestingness.

4.3.1 Polygon-based change-pattern-discovery algorithm

In this section we introduce a method for discovery and analysis of changes that

may occur within a spatio-temporal cluster of polygons. Individual changes are

categorized according to the spatial relationship between polygons on two snapshots.

The following primitive change patterns are considered:

• Formation: when the number of polygons at time ti increases from time ti−1.

• Expansion: the overall areas covered by all polygons that occurred at time ti

is increased compared to time ti−1.

• Dissipation: the overall areas covered by all polygons that occurred at time ti

is decreased compared to time ti−1.

• Disappear: the number of polygons that occurred at time ti is changes to zero
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from non-zero at time ti−1.

These individual changes can also be linked into sequences to describe the evo-

lution of a spatio-temporal cluster over time. Continuation measures the duration

started from formation until disappear within a spatio-temporal cluster. The pseudo-

code of the polygon-based change-pattern-discovery algorithm (Poly-CD) is given in

Algorithm 5.

Input: set of spatio-temporal clusters Ci
Output: a vector of change pattern of cluster Ci, continuation of Ci
Algorithm:

1. Initialize vector changes = null for every spatio-temporal cluster Ci in the
dataset D.

2. For each time t in Ci, compute the number of polygons Nt that occurred at
time t.

3. Compute the change patterns for cluster Ci based on every two continues time
ti and ti−1:
if Nt ≥ 1 AND Nt−1 = 0 then changes.add (formation); continuation = 1;
if Nt ≥ 1 AND Nt−1 6= 0 AND areat > areat−1 then changes.add (expansion);
continuation++;
if Nt ≥ 1 AND Nt−1 6= 0 AND areat < areat−1 then changes.add
(dissipation); continuation++;
if Nt == 0 AND Nt−1 ≥ 1 then change.add (disappear); continuation++;

4. return the change pattern vector and the continuation of cluster Ci

Algorithm 5: Pseudo-code of Poly-CD

Poly-CD also measures the spatial properties of multiple polygons, such as overlap

and distance. The Hausdorff distance function [3, 4] is applied to compute the

distance between a pair of polygons. The Overlay distance function [28] is utilized

to calculate the overlap between a pair of polygons.
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4.3.2 Post-processing analysis technique for spatio-temporal

data

Our post-processing analysis technique for spatio-temporal data allows automatic

screening of the spatio-temporal clusters of polygons for interesting clusters, whose

members have attribute values that deviate significantly from those of the entire

population. For example, we try to find clusters of polygons with attribute values

that are much smaller or larger than others.

It is desirable to have some assessment of the degree to which the attribute

values of a cluster are anomalous. Since box plots are commonly used for showing

the distribution of values of a single numerical attribute, and for comparing how

attribute values vary among different clusters of objects, our post-processing analysis

technique is developed based on box plots. We assume a dataset D with n attributes,

and a set of clusters in D identified by a spatio-temporal clustering algorithm, e.g.,

ST-SEP-SNN. Let (ai,j, bi,j) be the interquartile range (IQR) for attribute j of a

cluster, Ci, with ai,j > bi,j, and let (a′j, b
′
j) be the IQR for attribute j of the dataset

D with a′j > b′j; we compute the degree of deviation for attribute j in the cluster Ci

compared with the dataset D as follows:

Ri,j = 1 +
max(a′j − ai,j, 0) +max(b′j − ai,j, 0)−max(a′j − bi,j, 0)−max(b′j − bi,j, 0)

ai,j − bi,j
(4.6)

Ri,j could be any number between -1 and 1. We explain the equation described above

with the help of several examples shown in Figure 4.1, which displays the box plots

for attribute j of several selected clusters and the dataset D from the ozone pollution
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datasets that we use for our case studies.

Figure 4.1: Box plots for attribute j

For example, the deviation degree of attribute j for cluster 2, R2,j can be calcu-

lated as:

R2,j = 1 +
0 + 0− 0− 0

a2,j − b2,j

= 1 (4.7)

where a2,j > b2,j > a′j > b′j holds as shown in Figure 4.1.

Consider cluster 6, its box plot overlaps with the box plot for the dataset D and

a6,j > a′j > b6,j > b′j . R6,j can be calculated as:

R6,j = 1 +
0 + 0− (a′j − b6,j)− 0

a6,j − b6,j

=
a6,j − a′j
a6,j − b6,j

(4.8)

Apparently, 0 < R6,j < 1; therefore, for all box plots that overlap with the box plot

for the dataset D above its 50th percentile line, the deviation degrees will be greater

than 0 but less than 1.
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For cluster 8, its box plot is covered completely by the box plot for the dataset

D, and a′j > a8,j > b8,j > b′j:

R8,j = 1 +
(a′j − a8,j) + 0− (a′j − b8,j)− 0

a8,j − b8,j

= 0 (4.9)

Consider cluster 10, its box plot overlaps with the box plot for the dataset D

below its 50th percentile line, and a′j > a10,j > b′j > b10,j:

R10,j = 1 +
(a′j − a10,j) + 0− (a′j − b10,j)− (b′j − b10,j)

a10,j − b10,j

=
bi,j − b′j

a10,j − b10,j

(4.10)

Obviously, −1 < R10,j < 0. For cluster 12, its box plot is displayed below the box

plot for the dataset D, and a′j > b′j > a12,j > b12,j:

R12,j =
−a12,j + bi,j
a12,j − b12,j

(4.11)

In general, Ri,j is interesting if Ri,j is equal to 1 or -1, which means that a cluster

Ci has significant different values of attribute j compared to the dataset D. The

interestingness score of a cluster, Ci, is calculated based on the values of all Ri,j

associated with Ci. Let Oi = {ri,1, ri,2, . . . , ri,n} be the set of deviation degrees of n

attributes in Ci; in general, the interestingness score of a cluster Ci is a function of

Oi:

I(Ci) = f(Oi) (4.12)

Different interestingness functions may be adopted for different analysis tasks.

Domain knowledge with respect to what patterns are interesting is crucial in deter-

mining interestingness functions. In our case, we plan to mine and analyze multi-

source spatial air quality data involving in ozone pollution events in the HGB area.
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Ozone formation involves complicated chemical reactions. There are several control

factors involved, such as solar radiation, outdoor temperature, wind speed, wind di-

rection, and NOx concentration; therefore, in addition to the ozone concentration,

we also collected several corresponding meteorological data and the NOx concentra-

tions reported from different sensor networks. An interestingness function for ozone

pollution data is proposed as follows based on the domain experts’ notion of inter-

estingness. For a cluster, Ci, we first calculate the Ozone Formation Potential Index

(OFPI) defined by the following equation:

OFPIi =
1

3
Ri,nox +

1

3
Ri,T +

1

3
Ri,SR (4.13)

where Ri,NOx is the degree of deviation of NOx concentrations in cluster Ci, Ri,T is

the degree of deviation of outdoor temperatures in cluster Ci, Ri,SR is the degree of

deviation of solar radiations in cluster Ci. Note that the OFPI function is a linear

function of these three variables, i.e., Ri,NOx , Ri,T , and Ri,SR, because NOx concen-

tration, outdoor temperature, and solar radiation are key control factors in ozone

formation. The negative Ri,jvalues will contribute negatively to the OFPI because

lower temperature, lower NOx concentration, and lower solar radiation will slow down

the ozone formation process; however, the other two attributes, i.e., wind speed, and

wind direction, contribute to the ozone pollution dispersion process; therefore, the

ozone Dispersion Index (DI) for a cluster, Ci, is calculated as follows:

DIi = exp(1− 0.4× |Ri,WD|+ 0.6×Ri,WS) (4.14)

where Ri,WD is the degree of deviation of wind direction in cluster Ci, Ri,WS is the

degree of deviation of wind speed in cluster Ci. Note that the dispersion index is
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an exponential function due to the fact that the dispersion distribution satisfies the

Gaussian air pollutant dispersion equation. We use the absolute value of Ri,WD

because the lower degree of wind direction and the high degree of wind direction

contribute equally to the impact scope of an ozone dispersion process. We compute

the interestingness score for a cluster, Ci, as follows:

ISi = OFPIi ×DIi (4.15)

The proposed interestingness function is just an example for identifying interest-

ing clusters related to the ozone pollution impact scope. Our goal is to find clusters

with either relative high or relative low interestingness scores, i.e., clusters with either

relative large or small ozone pollution impact scopes under unusual environmental

conditions and NOx concentrations. Those are the anomalous clusters that the do-

main experts are interested in and want to further analyze. Other interestingness

functions for different analysis tasks can be developed as well.

4.4 Case study for spatio-temporal clustering al-

gorithms

In this section we focus on demonstrating the effectiveness of both ST-SNN and

ST-SEP-SNN in finding interesting spatio-temporal patterns from ozone pollution

events in the HGB area. A spatio-temporal cluster of polygons is a group of polygons

representing high ozone concentration hotspots that are in close proximity in both
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space and time, and possibly share other attributes. Statistics and cluster post-

processing analyses are also presented to interpret the discovered patterns. The

Hybrid distance function [29] is applied to compute the spatial distance between a

pair of polygons due to its capability of handling overlapping polygons.

Any functions that can compute the temporal distance between a pair of polygons

can be used in this case study. Moreover, different temporal distance functions may

be adopted for different analysis tasks.

4.4.1 ST-SNN clustering and analysis

The task of this case study is to apply ST-SNN to find interesting spatio-temporal

patterns from the ozone pollution data in the HGB area. In particular, we are in-

terested in finding hourly patterns of ozone pollution events that occurred in similar

areas. This type of study can help domain experts identify not only similar impact

scopes of the ozone pollution events in space but also their corresponding time in-

stants or time intervals, which can help domain experts to gain knowledge from the

past. Unlike the time slicing approaches, which perform snapshot clustering at each

time stamp or time interval, ST-SNN takes into account both spatial and temporal

distances between polygons and is able to detect clusters of polygons that are simi-

lar in both spatial and temporal dimensions simultaneously. The following temporal

distance function is proposed for this case study:

distt(p, q) =


h(p)− h(q), abs(h(p)− h(q)) < 12

24− abs(h(p)− h(q)), otherwise

(4.16)
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where p and q are two polygons, the h(p) function returns the hour information

associated with polygon p, and the function abs() returns the absolute value. The

input parameters for ST-SNN are k = 5,MinPs = 3, and w = 0.5. We use a relative

smaller value of k, i.e., 5, to find smaller compact clusters. There are 17 clusters

found by ST-SNN. Figures 4.2, 4.3, 4.4, and 4.5 visualize four clusters, i.e., clusters

9, 11, 14, and 16, respectively.

As expected, the ST-SNN algorithm is able to find clusters of polygons that are

very similar in space and time; for example, ST-SNN could successfully identify 17

clusters of polygons that are very close spatially and occurred at the same time on

different dates. We also identify the locations of the emission sources and monitor

stations represented by the blue points and red points, respectively on each figure.

Cluster 9 and cluster 11 lie closely in space, but are identified as two different clusters

due to different temporal similarities, i.e., all five polygons in cluster 9 occurred at

1 pm, whereas all four polygons in cluster 11 occurred at 3 pm. Cluster 14 and

cluster 16 are also detected due to their high spatial and temporal similarities. All

five polygons in cluster 14 occurred at 2 pm along highway interstate 10 east. All six

polygons in cluster 16 occurred at 3 pm along highway interstate 45 north. Clusters

6 and 14 are formed due to the emissions from highway traffic vehicles and strong

solar radiation which usually happen between 2 pm and 3 pm each day.

Further we closely inspect cluster 11. Polygons 37, 157, 112, and 80 in cluster 11

are numbered in ascending order according to their impact scopes. Their extending

directions are to the east. The box plots shown in Figure 4.6 provide the statisti-

cal comparisons of NOx concentration, solar radiation, outdoor temperature, wind
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Figure 4.2: Visualization of clusters 9 identified by ST-SNN

speed, wind direction, and relative humidity of these four polygons, respectively. It

can be observed that the majority of wind directions associated with these polygons

distribute in the domain between 60 and 180, which means that the wind comes from

the Gulf of Mexico as the result of a typical sea breeze encompassing east-southeast

to south on the shore winds in the HGB area [30]. It transports the emissions from

both point sources and highway traffic vehicles that locate at the upwind direction

to this area, creating a suitable condition for ozone formation in this area. Polygon

80 has a relatively stronger solar radiation which facilitates the ozone formation,

a higher wind speed which speeds up the emission transportation; therefore, poly-

gon 80 has the largest impact scope in cluster 11. Polygon 37 has the lowest wind
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Figure 4.3: Visualization of clusters 11 identified by ST-SNN

speed, the largest distribution of wind directions, and low solar radiation, which

cause polygon 37 to have the smallest impact scope in cluster 11, even though it

has higher NOx concentration compared with other polygons in cluster 11. All the

information suggests that the wind speed, wind direction, and solar radiation may

be major contributive factors for the impact scopes of the ozone pollutant events in

this area, while NOx concentration, relative humidity, and outdoor temperature may

not. It also demonstrates that the land and sea breeze can affect ozone formation by

transferring the emissions from the emission sources.

If large values of k, such as 8, or 10, are used, ST-SNN could find fewer clusters. If

we increase the weight associated with spatial distance w, clusters that are closer in
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Figure 4.4: Visualization of clusters 14 identified by ST-SNN

space and less close in time will be identified, such as clusters of polygons that occur

within several hour intervals, while lying very closely in space. If we use w equal

to 1.0, ST-SNN becomes a spatial clustering algorithm. We can also adopt different

temporal distance functions, for example, in order for ST-SNN to find groups of

polygons that lie closely in space and occur within certain time intervals instead

of at a particular time instant; the following temporal distance function could be

adopted:

distt(p, q) =


1, abs(h(p)− h(q)) < t

0, otherwise

(4.17)
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Figure 4.5: Visualization of clusters 16 identified by ST-SNN

where p and q are two polygons, h(p) returns the value of hour information associated

with polygon p, function abs() return the absolute value, and t is the time interval

threshold input by the users.

4.4.2 ST-SEP-SNN clustering and analysis

In this case study, we apply ST-SEP-SNN and the same temporal distance function

discussed in Section 4.4.1 for comparison purpose. The input parameters for ST-SEP-

SNN are k = 5 and MinPs = 3. There are 12 clusters identified by ST-SEP-SNN. Six

of them contain polygons that occurred at the same time on different dates at similar

locations, which are very similar to the clusters identified by ST-SNN; however, the
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Figure 4.6: Boxp lots for cluster 11 identified by ST-SNN

other six clusters that contain polygons occur within certain time intervals, such as

three or four hours, instead of at a particular time. Unlike ST-SNN, ST-SEP-SNN

intends to group polygons that lie at similar locations but occur within certain time

intervals into one large cluster instead of dividing them into two or more smaller

compact clusters. This is because ST-SNN uses the weighted sum of spatial distance

and temporal distance to compute the spatio-temporal distance between a pair of

polygons; then it ranks the spatio-temporal distance matrix to get the k-nearest

neighbor list for each polygon, whereas ST-SEP-SNN first ranks both the spatial

distance matrix and the temporal distance matrix separately; next it computes the

nearest neighbor list using the intersection of the k-nearest spatial neighbor list and
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the k-nearest temporal neighbor list for each polygon; thus, the k-nearest temporal

neighbor list may include some polygons that have larger temporal distances if they

were ranked in the top k, which may be excluded in the k-nearest neighbor list by

ST-SNN due to their large temporal distances. Figures 4.7 and 4.8 visualize two such

clusters, namely clusters 4 and 9.

Figure 4.7: Visualization of cluster 4 identified by ST-SEP-SNN

Cluster 4 is an interesting cluster. It includes eight polygons, i.e., polygons 9, 13,

14, 15, 16, 144,153, and 160. Polygons 14, 15 and 16, shown in red in Figure 4.7,

occurred in three continuous hours, i.e., 1 pm, 2 pm, and 3 pm on the same day.

72



Figure 4.8: Visualization of cluster 9 identified by ST-SEP-SNN

They are in ascending order according to the area each polygon covered, and the

scope extending direction is to the northeast. The box plots in Figure 4.9 provide

the statistical comparisons of NOx concentration and related meteorological data.

Based on Figure 4.9, from 1 pm to 3 pm, the mean of the wind direction rotated

clockwise and the wind speed increased gradually, which enhanced the dispersion

effect; therefore the areas covered by polygons 14, 15, and 16 were enlarged; however,

these enhancement factors were counterbalanced by the reduction of solar radiation

from 1 pm to 3 pm, which resulted in the slow change of the areas covered by polygons

14, 15, and 16 over time. Compared with other polygons, these three polygons have

large variances of solar radiation, wind direction, wind speed, and lower mean values

of relative humidity, while their NOx concentrations and outdoor temperatures are
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Figure 4.9: Box plots for cluster 4 identified by ST-SEP-SNN

quite similar to those of the other polygons. Further investigations of such clusters

may help domain experts detect dynamic changes of the ozone pollution events in

this area.

4.5 Case study for change-pattern-discovery and

post-processing techniques

For this case study, we downloaded the ozone pollution data in the HGB area for

the timeframe from 1 am on April 1, 2010 through 11 pm on November 30, 2010

from the website of the TCEQ [25]. The DCONTOUR algorithm [27] along with a
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user defined density threshold, i.e., 80 ppb (parts per billion), is adopted to generate

polygons. Each polygon represents the area with hourly ozone concentration higher

than the threshold value of 80 ppb. The shape and area of a polygon reflect the

impact location and the scope of an ozone pollution event, which are determined by

multiple factors of the ozone precursors and meteorological conditions. A total of

460 polygons are identified. Figure 4.10 provides the statistical distributions of five

corresponding meteorological attributes and NOx concentration. The bottom and

top of each box are the first and third quartiles, respectively. The band inside a box

is the second quartile (the median). The ends of the whiskers represent the minimum

and maximum of each data categories. Any data not included between the whiskers

are plotted as outliers.

Figure 4.10: Box plots for ozone pollution data

It can be observed that the majority of the wind directions associated with all

identified polygons are distributed between 120 and 200; the distribution of wind

direction covers from 0 and 360, which means that the wind can come from any

direction horizontally, e.g., the wind can blow from the Gulf of Mexico as the result

of a typical sea breeze which encompass east-southeast to south on shore winds in

75



the HGB area [30]. It can help transport the emissions from point sources, area

sources, and on-road mobile sources located at the upwind direction to different

downwind regions, which cause ozone formation and transportation in these regions.

The corresponding solar radiation is between 0.3 and 1.05 langleys/minute, which is

relative strong and in favor of ozone formation. The higher wind speed between 4 and

9 miles/hour promotes the precursor transportation. The average NOx concentration

is below 10 ppb and the peak concentration is 183 ppb. The outdoor temperatures

are between 75 ◦F and 90 ◦F. In summary, the integrated condition of high outdoor

temperature, high NOx concentration, and high solar radiation creates favorable

conditions for high ozone concentration.

4.5.1 Change-pattern-discovery algorithm evaluation

In this case study, we use the Hybrid distance function [29] to compute the spatial

distance between polygons due to its capability of handling overlapping polygons.

The spatial distance threshold θs is set to the average distance of the datasets;

the temporal distance threshold θt is set to 24 hours because domain experts are

interested in the daily ozone pollution spatio-temporal patterns. Note that different

temporal distance functions and thresholds can be adopted for different analysis

tasks. We use a relative small number as core polygon threshold MinPs, i.e., 2.

There are 45 clusters identified by ST-SNN. Figures 4.11, 4.12, and 4.13 visualize

three clusters, i.e., clusters 10, 12, and 35, respectively. The centroid of each polygon

is calculated and marked as a red dot.
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Figure 4.11: Visualization of cluster 10

The dynamic change patterns of the daily ozone pollution events in a specific

region are very complex. The main concern is the expansion and duration of the

impact region during a ozone pollution event. A long duration time means that the

corresponding ozone pollution event is very serious, and may be caused by abnormal

emissions from local industrial plants. For example, the continuation of cluster 35 is

five hours. The impact regions of the ozone pollution events in cluster 35 have been

largely expanded during five continuous hours because the wind is not fast enough

to effectively transport the ozone pollution to the downwind direction. The change

pattern for cluster 35 is formation → expansion → expansion → expansion →

expansion→ disappear.

Further we closely inspect cluster 10, which is a typical change pattern of daily
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Figure 4.12: Visualization of cluster 12

ozone pollution events. The dynamic profiles of NOx concentration, solar radiation,

and outdoor temperature for all polygons in cluster 10 are shown in Figures 4.14, 4.15,

and 4.16, respectively. Figure 4.14 displays the dynamic changes of 3D NOx con-

centration profiles disclosed from 10 am to 12 pm. The peak NOx concentration

occurred at 11 am. The maximum value of solar radiation occurred at 12 pm as

shown in Figure 4.15. Note that an ozone pollution event was started at 10 am due

to the impact of high NOx concentration, solar radiation, and outdoor temperature;

in the following continuous two hours, the pollution hotspots were expanded because
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Figure 4.13: Visualization of cluster 35

the major impacts were enhanced; meanwhile, the pollution hotspots were continu-

ously moving toward the northwest direction partially due to the impact of the wind

flow.

4.5.2 Post-processing analysis technique evaluation

The goal of our post-processing analysis technique is to help domain experts identify

interesting clusters that are unusual compared to all other clusters. Figures 4.17

and 4.18 visualize two such clusters identified by our post-processing analysis tech-

nique, i.e., clusters 23 and 26, respectively. It can be observed that cluster 23 has
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Figure 4.14: Dynamic changes of 3D NOx concentration profiles for cluster 10

a very small impact scope within a two hour duration, whereas cluster 26 has a

relatively larger impact scope within a three hour duration. Table 4.1 summarizes

the corresponding results of Ozone Formation Potential Index (OFPI), Dispersion

Index (DI), and the Interestingness Scores (IS) for clusters 23 and 26. The deviation

degrees of all attributes in clusters 23 and 26 are summarized in Table 4.2. The

OFPI value of cluster 23 is 0.13 because cluster 23 has relative low values of solar

radiation (deviation degree 0.39), and low NOx concentration (deviation degree -1)

compared with the entire dataset. Furthermore, cluster 23 has the lowest DI value

(1.00) among all clusters because it has the lowest wind speed and smallest range
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Figure 4.15: Dynamic changes of 3D solar radiation profiles for cluster 10

of wind direction since the deviation degrees are -1 for both attributes shown in Ta-

ble 4.2. On the contrary, cluster 26 has larger values of OFPI (0.70) and DI (1.78)

due to the high values of solar radiation (deviation degree 1) and high values of

temperature (deviation degree 1); therefore, cluster 26 has a larger IS value (1.25).

Table 4.1: The interesting scores of clusters 23 and 26
Cluster ID OFPI DI IS

23 0.13 1.00 0.13
26 0.70 1.78 1.25
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Figure 4.16: Dynamic changes of 3D outdoor temperature profiles for cluster 10

Table 4.2: The deviation degrees of clusters 23 and 26
Cluster ID Temperature Wind

Direction
Wind
Speed

NOx Solar
Radiation

23 1.00 −1.00 −1.00 −1.00 0.39
26 1.00 −0.19 −0.58 0.11 1.00

4.6 Conclusion

The main objective of this research was to develop novel spatio-temporal clus-

tering algorithms for polygons and post-processing analysis techniques to analysis

spatio-temporal clusters of polygons. Two density-based spatio-temporal cluster-

ing algorithms, called ST-SNN and ST-SEP-SNN, were developed by extending the

generic Shared Nearest Neighbor clustering algorithm. We redefined the nearest
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Figure 4.17: Visualization of cluster 23

spatio-temporal neighborhood of a polygon and the density-based concepts for poly-

gons. Both ST-SNN and ST-SEP-SNN can find clusters of varying shapes, sizes,

and densities in high dimensional data, even in the presence of outliers. We also

proposed a change-pattern-discovery algorithm to atomically detect and analyze dy-

namic changes within spatio-temporal clusters of polygons and a post-processing

analysis technique to identify interesting spatio-temporal clusters of polygons for do-

main experts. Experiments on multiple real spatio-temporal data involving ozone

pollution events in the HGB area demonstrate that our method is effective and can

discover interesting spatio-temporal patterns and change patterns of ozone pollu-

tion events from spatio-temporal datasets. Moreover, statistic and post-processing

analysis techniques can help domain experts to identify interesting patterns of ozone
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Figure 4.18: Visualization of cluster 26

pollution events in the HGB area, and to learn from the past and be better prepared

for the future.
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Chapter 5

Spatial clustering for analyzing the

composition of cities

5.1 Introduction

“Urbanization is the physical growth of urban areas as a result of global change

where increasing proportion of the total population becomes concentrated in towns.

The United Nations reported that since 2008 more than half of the world’s popula-

tion is living in urban areas”[31]; thus, mastering urban evolution becomes a major

challenge for all major cities in the world. Consequently, there is a growing need

to develop urban computing and analysis tools to guide the orderly development of

cities, as well as enhance their smooth and beneficiary evolution. The evolution of a

city is a very dynamic activity; therefore, modeling the dynamics of urban evolution

is a quite challenging task. Recently, data describing cities is widely available as
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they are collected on a regular basis, offering a great opportunity to develop urban

computing techniques, which can be used to analyze and model urban evolution. Un-

derstanding and monitoring urban evolution allows urban planners to make smarter

decisions because they can provide deep insights into city changing dynamics. More-

over, it offers an opportunity to improve people’s knowledge about the impacts from

urbanization on the territory.

The step of urbanization leads to different functional regions in a city, called

urban patches throughout the remainder of this chapter, such as residential areas,

business districts, industrial and recreational areas. Different types of urban patches

support different needs of people’s lives and serve as a valuable organization technique

for framing detailed knowledge of a metropolitan area [23]. Urban patches may be

artificially created by urban planners, or may be the result of natural urban evolution;

both could change functions and the territories with the development of a city.

Improvements in scanning devices, gps, and image processing lead to an abun-

dance of geo-referenced data. For example, tracking devices are now available to

capture the movement of human and animals in the form of trajectories [32]. Fur-

thermore, more and more Point of Interest (POI) databases are created which an-

notate spatial objects with categories, e.g., buildings are identified as restaurants,

and systems, such as Google Earth, already fully support the visualization of POI

objects on maps. As more and more data become available for a spatial area, it is

desirable to identify different functions and roles which different parts of this spatial

area play; in particular, it is desirable to identify homogeneous regions in spatial

data and to describe their characteristics, creating high-level summaries for spatial
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datasets which are valuable for planners, scientists, and policy makers. For exam-

ple, ecologists might be interested in partitioning a wetland area into uniform regions

based on what animals and plants occupy this area and on other environmental char-

acteristics [33]. Similarly, city planners might be interested in identifying uniform

regions of a city with respect to the functions they serve for the people who live in

or visit this part of a city [23].

More specifically in this research, we are interested in developing spatial clustering

frameworks which are capable of creating summaries for an area of interest by iden-

tifying the spatial structure in spatial data and capturing its spatial heterogeneity.

It should be stressed that traditional clustering algorithms are not suitable for this

task - as they minimize distance-based objective functions or employ distance-based

density estimation techniques - whereas assessing uniformity relies on non-distance

based uniformity measures which operate on non-spatial attributes, such as purity,

entropy or variance with respect to continuous non-spatial attributes. The focus

of this chapter is the introduction of a method which identifies uniform regions in

spatial data and provides analysis functions to create summaries for the identified

uniform regions.

The rest of the chapter is organized as follows. Section 5.2 formally defines

the problem of finding uniform regions in spatial data and introduces the spatial

clustering approach for this task. Section 5.3 gives an experimental evaluation of the

method. Section 5.4 concludes the chapter.
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5.2 Using spatial clustering to discover uniform

regions

5.2.1 Finding uniform regions in spatial data

Figure 5.1 gives an example of a spatial clustering result in which buildings of different

types (e.g., schools and industrial buildings) of a city are clustered.

#0 71 (3%, 1%, 92%, 1%, 3%, 0%)

#1 383 (83%, 2%, 10%, 2%, 3%, 0%)

#2 17 (12%, 0%, 24%, 0%, 65%, 0%)

#3 258 (92%, 2%, 2%, 0%, 3%, 0%)

#4 222 (37%, 15%, 4%, 14%, 27%, 3%)

#5 41 (10%, 12%, 0%, 0%, 76%, 2%)

#6 129 (90%, 3%, 1%, 2%, 1%, 4%)

#7 120 (89%, 0%, 2%, 1%, 8%, 0%)

#8 293 (90%, 3%, 1%, 2%, 4%, 0%)

#9 270 (90%, 3%, 1%, 3%, 1%, 1%)

#10 151 (97%, 0%, 0%, 0%, 3%, 0%)

#11 84 (86%, 8%, 4%, 0%, 2%, 0%)

Figure 5.1: A spatial clustering of buildings belonging to different building types

The proposed method characterizes spatial clusters using their scope and signa-

ture. The scope of a spatial cluster captures the model of a cluster. In our approach,
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we use polygons as models for spatial clusters as depicted in Figure 5.1; that is, if

a spatial object is inside the polygon which describes the scope of a spatial cluster,

it belongs to that spatial cluster. Secondly, the proposed method uses signatures to

annotate spatial clusters. Signatures summarize the distribution of the objects that

belong to a cluster. As the clusters in the example contain buildings belonging to

different types, building-type histograms are used as signatures to annotate spatial

clusters. There are six building types: single houses, garages, industrial buildings,

light buildings, collective buildings, and schools. For example, the leftmost cluster

is identified as cluster 0 containing 71 buildings, and its building-type signature is

(3%, 1%, 92%, 1%, 3%, 0%), indicating that 3% of the buildings in cluster 0 are single

houses, 1% are garages, 92% are industrial buildings, 1% are light buildings, 3% are

collective houses, and there are no schools in cluster 0.

So far we did not clearly discuss what distinguishes a uniform region of a city

from one that is not uniform. In general, we assume that distribution signatures are

used to characterize the objects that belong to an urban patch. Examples of such sig-

natures include histogram-style building-type signatures which give the proportions

of different building types that occur in an urban patch, such as 15% are commer-

cial buildings and 85% are residential buildings. Moreover, the similarity between

different building-type signatures can be easily assessed: for example, we could take

the Euclidean distance between the vectors associated with different building-type

signatures. More formally, we are interested in obtaining spatial clusters which are

uniform with respect to their signatures using the following maximization procedure:
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Input: a dataset O containing spatial objects belonging to p classes
Task: Find a spatial clustering X = {C1, . . . , Ck} of O such that

(1) Ci ⊆ O for i = 1, . . . , k

(2) Cp ∩ Cq = ∅ for p 6= q

which maximizes the following objective function ϕ(X):

ϕ(X) =
∑

C∈X and C′∈X

d(s(C), s(C ′)

b
(5.1)

where b is the number of pairs of neighboring clusters in X, s(C) denotes the signa-

ture of cluster C and d() is a distance function which assesses the similarity of two

signatures.

In summary, we are interested in obtaining a spatial clustering in which the aver-

age Euclidean distance between the signatures of neighboring clusters is as large as

possible. It should be emphasized that only distances between neighboring clusters

are considered in the definition of ϕ. In order to find uniform partitions, we can

devise a search procedure which maximizes the disagreement of neighboring clusters

with respect to their signatures; however, developing a spatial clustering algorithm

which directly maximizes ϕ(X) is quite challenging, as this would require to iden-

tify and to keep track of which spatial clusters are neighboring in order to compute

ϕ(X), which leads to quite significant clustering overhead, and to theoretical prob-

lems1. Consequently, we are using different heuristics to find uniform spatial clusters

1If prototype-based clustering algorithms, such as K-medoids or K-means are used, a Voronoi
tessellation can be used to derive cluster models from the set of cluster prototype which are convex
polygons; unfortunately, it is not computationally feasible to compute Voronoi cells in higher dimen-
sional spaces, as the complexity of the algorithm is exponential with respect to the dimensionality
of the dataset. Consequently, it is only feasible to compute the Voronoi tessellation in 1D, 2D, and
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without having to deal with the question which clusters are neighboring, and rely on

approaches which use simplified versions of ϕ(X) instead; in particular:

1. We use prototype-based spatial clustering algorithms that are guaranteed to ob-

tain contiguous spatial clusters without the necessity of knowing which clusters

are neighboring. These algorithms maximize reward functions which encourage

the merging of similar neighboring clusters and the splitting of non-homogeneous

clusters if it leads to a significant increase in the total reward.

2. We reformulate the above optimization task in two ways:

i. We make the problem supervised, by using interestingness functions which

assess the quality of spatial clusters based on uniformity measures which

capture a domain expert’s notion of uniformity. Moreover, as we will see

later, those uniformity measures assume that certain signatures are more

desirable than others.

ii. Instead of comparing the signatures of all neighboring clusters - as ϕ does -

we employ an approach which identifies a set of popular2 signatures and then

uses those signatures to annotate clusters. In particular, this approach seeks

for a spatial clustering which maximizes the match of a cluster’s signature

with the closest signature in the popular signature set, as will be explained

in Section 5.3.3.

for small datasets in 3D. For density-based clustering algorithm the situation is even worse; for
example, we are not aware of any methods which are capable of producing cluster models from a
DBSCAN clustering.

2Popular signatures are distribution characteristics which occur frequently in contiguous sub-
spaces of a spatial dataset.
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5.2.2 CLEVER

In order to employ these two approaches outlined in Section 5.2.1, we need a spatial

clustering algorithm capable of finding contiguous spatial clusters by maximizing a

plug-in reward function which captures a particular notion of uniformity. A spatial

clustering algorithm named CLEVER [34, 35] will be adapted for this task. CLEVER

is a prototype-based, k-medoid-style [36] spatial clustering algorithm which employs

randomized hill climbing to maximize a plug-in reward function. Reward functions

are assumed to have the following form when assessing the quality of a clustering

X = {c1, . . . , ck}:

q(X) =
∑
c∈X

reward(c) =
∑
c∈X

i(c)× |c|β (5.2)

where |c| denotes the number of objects in a cluster c, and i(c) is an interestingness

function which assesses how interesting the cluster c is. Two such interestingness

functions will be introduced in Section 5.3. Moreover β ≥ 1 is a parameter which

determines how much reward is put on cluster size; β indirectly controls the number

of the clusters in X, as cluster size is rewarded using a non-linear function. Usually

fewer clusters are obtained when larger values for β are used. The reward function

assesses the quality of a clustering as the sum of the rewards of all clusters; The

pseudo-code of CLEVER is given in Algorithm 7.

CLEVER maintains a current set of representatives which are objects in the

dataset and forms clusters by assigning the remaining objects in the dataset to the

closest object in the representative set. It samples p solutions in the neighborhood of

the current representative set by adding, deleting, and replacing representatives. This
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Input: Dataset O, distance function d(), k
′
, i(c), β, sampling rate p

Output: Clustering X, quality q(X), rewards for clusters in X
Algorithm:

1. Randomly create a set of k
′

representatives from dataset O.

2. Sample p solutions in the neighborhood of the current representative set

3. If the best solution of the p solutions improves the clustering quality of the
current solution, its representative set becomes the current set of
representatives and search continues with Step 2; otherwise, terminate
returning the current clustering.

Algorithm 6: CLEVER algorithm pseudo-code

process continues as long as a better clustering with respect to q(X) is found. The

algorithm begins its search from a randomly created set of k
′

representatives, where

k
′

is an input parameter of the algorithm. CLEVER has recently been generalized

to cluster complex spatial objects, such as lines and polygons.

To give an example let us assume we cluster a dataset O = {o1, . . . , o200} with k
′

set to 3. In this case, the algorithm starts with a random representative set, let us say

{o3, o9, o88}, and forms clusters by assigning the remaining 197 objects to the closest

representative which takes O(k × (n − k)), where n is the number of objects in the

dataset and k is current number of representatives. Next, the algorithm samples p

new clusterings in the neighborhood of the current solution by inserting, deleting, or

replacing representatives. For example, assuming p is 3, the algorithm might create

clusterings for the representative sets {o3, o9, o88, o92},{o3, o88}, and {o3, o17, o88}, all

of which have been obtained by a single insertion/deletion/replacement applied to

the current representative set {o3, o9, o88}. Next, the algorithm computes q(X) for
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these three clusterings, and if the best of these three clusterings improves the clus-

tering quality, its representative set becomes the new current solution; otherwise, the

algorithm terminates. In general, assuming that CLEVER runs for t iterations its

complexity3 is of the order of O(t · p · k · n) with t and k usually being much smaller

than n.

5.2.3 Spatial homogeneity between neighboring clusters and

within clusters

In Section 5.2.1 we stated that ideally signatures of two neighboring clusters should

be significantly different from each other. In order to further discuss this issue, let

us assume we have two neighboring clusters c1 and c2 containing a1 and a2 objects,

respectively, which have exactly the same signature s, whose interestingness is i(s).

As we explained earlier, our reward framework employs a parameter β > 1 that puts

a reward on the cluster size. We claim that in the discussed scenario our reward

structure assigns a higher reward to a clustering which merges clusters c1 and c2 into

a single cluster c as this clustering receives a higher reward, because of the following:

i(s)× (a1 + a2)β > i(s)× (aβ1 + aβ2 ) (5.3)

For example, if we have two neighboring clusters with purity 90% that are dominated

by objects belonging to the same class, merging these two clusters leads to a better

clustering with respect to the function q(X), introduced earlier. Moreover, merging

3The analysis of the complexity of CLEVER is further complicated by the fact that the number of
representative/clusters change between iterations; that is, the algorithm might start with k′ = 100
clusters but the final clustering might contain 83 or 113 clusters. That is, CLEVER seeks for
“optimal” number of clusters with respect to the dataset O and the fitness function q.
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clusters frequently leads to a drop in the interestingness/purity in the merged cluster;

however, if the cluster size reward measured by (clustersize)β makes up for the loss

of the interestingness with respect to the cluster signature s(c), these two clusters

should still be merged; therefore, the distribution of the objects belonging to a spatial

cluster should be spatially homogeneous with respect to their associated signatures.

5.2.4 Determining the scope of a spatial cluster

In general, determining the scope of a spatial cluster is a challenging task. The goal is

to create a spatial representation of a set of spatial objects in order to easily visualize

it on the plane. One of the easiest approaches is to compute the convex hull of the

spatial objects in the cluster; however, the obtained convex hull polygon is usually

not very tight and frequently encloses empty spaces. This is especially the case when

the spatial objects are spread out and exhibit a low spatial density. Alpha shapes [37]

and the concave hull algorithm [38] generalize the convex hull algorithm, allowing for

the generation of much tighter polygons which might contain holes. In our proposed

method, we use the PostGIS Concave Hull algorithm [39] for computing the scope

of a spatial cluster; we believe this approach is more effective than the convex hull

algorithm, as it wraps a much tighter line around a set of spatial objects, resulting in

less overlap with respect to the scope of neighboring clusters and less empty spaces

in clusters, as can be seen in Figure 5.1.
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5.3 Case study for identifying uniform regions in

a city

Since understanding the evolution of a city is the key to intelligent urbanization, there

is a growing need to develop urban planning and analysis tools to guide the orderly

development of cities, as well as to enhance their smooth and beneficiary evolution;

however, it is a big challenge for urban planners to come up with methods to analyze

how cities are changing over time. Partitioning a city into uniform regions facilitates

this task, as change can be analyzed based on higher levels of granularity instead on

the raw data. In this section we present a set of experiments which use the method

introduced in Section 5.2 to extract urban patches from a building dataset. In this

context, metrics for evaluating the homogeneity of a group of buildings are very

important as they impact how a city is partitioned into urban patches characterized

by signatures. In particular, two such metrics, one based on purity and the other

based on popular signatures, will be introduced in this section. In particular, we

report the results of a series of experiments in which the CLEVER algorithm is used

in conjunction with two uniformity metrics to obtain interesting, uniform regions

for the city of Strasbourg, France. As part of the GeOpenSim project, a temporal

topographic database of the city of Strasbourg, France has been acquired [40]. As

buildings are represented as polygons, we use the Hausdorff distance [3, 4] to compute

the distance between buildings in the experiments.
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5.3.1 Building-type purity experiments

This section introduces a purity interestingness function which measures uniformity

by the degree of the dominance of instances belonging to a single category and

discusses the spatial clustering results obtained by using the purity interestingness

function.

The purity interestingness function is used for analyzing the interestingness with

respect to a categorical non-spatial attribute. The purity interestingness ipur(c) of a

cluster c is computed using the following formula: Let R = maxtpt(c), t ∈ cl(O)

ipur(c) =


0, R < th

(R− th)η, otherwise

(5.4)

where cl(O) is the set of classes in the dataset O, pt() is a function that computes

the proportions of the objects of the category t in the class c, η > 0 is the scaling

factor, and th > 0 is the threshold. For example, assuming that th = 0.4, β = 1,

and s(c) = (0.6, 0, 0, 0, 0.4, 0) indicating that 60% of the objects belong to the first

category, and 40% of the objects belong to the fourth category, we obtain: iPUR(c) =

0.6− 0.4 = 0.2 for the cluster c. In general when using the purity interestingness

function, we are interested in obtaining clusters which are dominated by the objects

of a single category.

There are six different building types in the dataset: single house, garage, com-

mercial building, light building, collective house, and school. In year 2008, 78% of the

buildings were single houses; commercial buildings were 7%; collective houses were

8%; 4% of the buildings were garages, and 3% of the buildings were light building;

97



finally, 1% of the buildings were schools. Building-type signatures describe the char-

acteristics of each urban patch which can help domain experts to better understand

the composition of a city.

Figure 5.1 visualizes and lists the building-type signatures of 12 clusters for the

year 2008; they were generated by CLEVER using the purity interestingness function

with th = 0.5, η = 2 , and β = 1.2. Cluster 0 contains 92% commercial buildings;

therefore, cluster 0 is labeled as a business urban patch. Cluster 10 is a residential

area because 97% of the buildings in cluster 10 are single houses. There are 76% of

collective houses in cluster 5, which indicates a living area with a lot of apartment

complexes. Both garages and schools constitute very small percentages in the whole

dataset, but garages and schools are more frequent in the collective housing areas in

clusters 4 and 5. Surprisingly they are not present in cluster 2. Figure 5.1 verifies that

our approach is able to identify contiguous urban patches dominated by buildings of

a single type.

5.3.2 Using popular signatures to find uniform regions in a

city

Many uniform regions are characterized by particular proportions of the class densi-

ties without having a dominating class; for example, collective houses usually have

a lot of garages next to them. This is the motivation for the following alternative

approach which seeks to find popular signatures which occur frequently in the con-

tiguous subspaces of the area of interest and then uses these signatures to annotate
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urban patches, as depicted in Figure 5.2.

Figure 5.2: Example of a spatial clustering of buildings annotated by popular signa-
tures

As we can see in Figure 5.2, the popular signature S4 is used to annotate regions

in the northwest and southwest corner of the display. The challenge of generating

such maps is that if we annotate a region by a popular signature, this makes sense

only if the region’s signature is close to the popular signature associated with it.

To accomplish that, we need a spatial clustering algorithm to partition the spatial

dataset into regions whose signatures are a good match with respect to a given set

of popular signatures.

In the remainder of this section we will propose a framework for annotating

regions with the matching popular signatures. It first collects signatures using a

sampling approach; second, it identifies a set of popular signatures from the collected
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signatures using a clustering approach; third, it uses a spatial clustering algorithm

to identify regions with a good match with the set of popular signatures. As steps

1 and 2 are kind of straightforward, we will not discuss those further. As far as

the third step is concerned, we run CLEVER using the following popular signature

interestingness function iPOP (c):

Let cld = d(s(c), closest(s(c), P ))

iPOP (c) =


0, cld > D

(D − cld)η, otherwise

(5.5)

where s(c) is the signature of a cluster c, P is a set of popular signatures, closest(s(c), P )

computes the closest signature in P to s(c), d denotes the Euclidean distance, D is

a match threshold, and η is a form parameter having a value in (0,∞).

Popular building-type signatures describe the compositions of urban patches

which frequently occur in different parts of a city. To obtain a set of popular sig-

natures, we first randomly created 1000 small spatial clusters and extracted their

building-type signatures. Next, we applied a distance-based outlier detection tech-

nique to remove 10% of the building-type signatures as outliers - signatures were

sorted by their 3-nearest neighbor distances to other signatures in the set. Signa-

tures with the largest 3-nearest neighbor distances were removed from the signature

set. Next, we clustered the remaining signature set using K-means with different k

values ranging between 6 and 10 several times, and identied the clustering with the

lowest squared average distance of the objects in the dataset to the cluster centroid

they belong to. Finally, we extracted the centroids from the best clustering as the
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popular signatures. Table 5.1 lists nine popular building-type signatures that were

obtained as the result of this process.

Table 5.1: Popular building-type signatures for 2008
Signature

ID
Single
House Garage

Commercial
Building

Light
Building

Collective
House School

S1 77% 3% 2% 2% 17% 0%
S2 87% 4% 1% 3% 4% 1%
S3 2% 6% 0% 0% 92% 0%
S4 99% 0% 0% 0% 0% 0%
S5 48% 1% 46% 3% 2% 0%
S6 4% 0% 96% 0% 0% 0%
S7 37% 22% 4% 1% 32% 4%
S8 62% 6% 13% 12% 4% 1%
S9 85% 1% 14% 0% 0% 0%

Dataset 78% 4% 7% 3% 8% 1%

Table 5.2 summarizes a popular signature clustering result which was created

using CLEVER and the popular signature interestingness function with parameters

k′ = 20, β = 1.005, D = 0.1, and θ = 2. We use 0.1 as the threshold for the

Euclidean distance between a cluster signature and its closest popular signature to

indicate a good match. 14 out of 16 urban patches have good matches with their

popular signatures. Cluster 3 is quite unusual as it is dominated by light buildings

and is not close to any popular signature in Table 5.1 at all, which is indicated by

its very high Euclidean distance of 0.49 to its closest popular signature S8.

Our approach uses a spatial clustering algorithm to identify the scope of a popular

signature. We claim that the urban patches identified by our approach exhibit a much

better match with the popular signature set.
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Table 5.2: Popular building-type clustering result for 2008
Cluster

ID
Single
House Garage

Commercial
Building

Light
Building

Collective
House School

No. of
Buildings

Closest
Signature

Distance

0 89% 4% 2% 0% 5% 0% 56 S2 0.04
1 75% 7% 4% 0% 13% 0% 69 S1 0.07
2 73% 8% 6% 2% 12% 0% 52 S1 0.09
3 29% 2% 9% 45% 15% 0% 55 S8 0.49
4 72% 6% 11% 1% 10% 0% 157 S1 0.13
5 88% 4% 2% 3% 5% 0% 199 S2 0.02
6 100% 0% 0% 0% 0% 0% 112 S4 0.01
7 44% 1% 46% 5% 4% 0% 100 S5 0.05
8 87% 4% 1% 3% 3% 1% 335 S2 0.01
9 85% 1% 13% 1% 1% 0% 320 S9 0.01
10 77% 5% 8% 0% 10% 0% 39 S1 0.09
11 77% 3% 1% 1% 17% 2% 198 S1 0.03
12 36% 20% 3% 4% 34% 4% 142 S7 0.05
13 99% 1% 0% 0% 0% 0% 121 S4 0.01
14 98% 2% 0% 0% 0% 0% 57 S4 0.02
15 89% 0% 0% 0% 11% 0% 27 S2 0.09

5.3.3 Querying a spatial dataset with signatures

Although the presented popular signature mining algorithm has been originally de-

veloped to determine the scope of a set of popular signatures, it can be used in

conjunction with any signature set P . This enables us to use the same algorithm

for querying spatial datasets for the presence of particular query signatures. For ex-

ample, in the experiment summarized in Table 5.2, we came across cluster 3, which

was dominated by light buildings and it might be interesting to see if its signature

Q1 = (29%, 2%, 9%, 45%, 15%, 0%) occurs in other areas of the city; along the same

line we might want to see, if there are regions with a high density of schools in

residential areas captured by the signature Q2 = (70%, 0%, 0%, 0%, 0%, 30%). Fi-

nally, we might like to see if the popular signature Q3 = (2%, 6%, 0%, 0%, 92%, 0%)

(named S3 in Table 5.1) occurs anywhere in the dataset, as it did not match any

cluster signature.
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We run CLEVER using the popular signature interestingness function for the

signature set P = {Q1, Q2, Q3} with parameters D = 0.1, η = 3, and β = 1.2. The

spatial clusters shown in Figure 5.2 are annotated with the corresponding signatures

if the distance between the cluster signature and its closest query signature in P is

0.1 or less. Table 5.3 lists the signatures of these three clusters that are close to the

query signatures as well as the closest query signatures and their distances to the

closest query signatures.

Q1

Q2

Q3

Figure 5.3: Visualization of clusters matching query signatures
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Table 5.3: Clusters matching query signatures
Cluster

ID
Matched
Signature

Single
House Garage

Commercial
Building

Light
Building

Collective
House

School Distance

5 Q1 29.63% 1.85% 9.26% 44.44% 14.81% 0% 0.009
11 Q3 2.78% 5.56% 0% 0% 91.67% 0% 0.010
13 Q2 66.67% 0% 0% 0% 0% 33.33% 0.047

As can be seen, the algorithm rediscovered the same region (cluster 5) with a

majority of light buildings identified by the popular signature clustering algorithm

but no other regions which match the query signature Q1. Moreover, a single region

(cluster 11) which almost perfectly matches the popular signature Q3 was found.

Finally, we were able to find a single region (cluster 13) with a mixture of schools

and single houses, but the match of its signature with the query signature Q2 is

of medium quality, as the Euclidean distance between the two signatures is about

0.047.

5.3.4 Sensitivity analysis

CLEVER has been designed to find a “good” solution for what is, in general, an

NP-hard problem relying on randomized hill climbing. As all optimization proce-

dures that start with randomly created initial solutions, CLEVER - as K-means -

is sensitive to initialization, as different initializations may lead to different, alter-

native solutions. In this section we discuss the results of two experiments which

analyze CLEVER’s sensitivity to initialization, and how close CLEVER gets to the

“optimal” solution.

To analyze CLEVER’s sensitivity to initialization, we ran the building-type purity

clustering procedure 20 times with parameters k′ = 20, β = 1.05, η = 3, and th = 0.5,
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and collected the following run characteristics: q(X), number of the clusters in the

final clustering, number of iterations, and the number of clusterings generated during

the run. The sampling procedure used in this (and the next) experiment is as follows:

first sample 15 clusterings in the neighborhood of the current clustering, then - if

there is no improvement - 30 solutions, and finally 180 solutions; if none of the

225 sampled clusterings improves the current clustering, the search ends. According

to the results reported in Table 5.4, CLEVER terminated after at an average 32

iterations and searched on average 1400 clusterings. Although CLEVER starts from

different initial clusterings, the quality of the clustering results is relatively stable

around 729 with a standard deviation of 24; however, the number of the obtained

final clusters differs quite significantly between the twenty runs, ranging between 3

and 23. This fact indicates that the obtained 20 final clusterings - although having

a similar quality with respect to q(X) - differ from each other significantly.

5.3.5 Performance analysis for CLEVER

Table 5.5 gives some performance characteristics for the clustering results that were

reported in Section 5.3 in terms of the iterations needed, the number of clusterings

generated, and the wall clock time. CLEVER was run on a dataset containing 2039

objects on a computer with the processor running at 3 GHz and 8 GB main memory.

105



Table 5.4: Building-type purity sensitivity results
Run ID q(X) No. of

Clusters
No. of

Iterations
Generated
Clusterings

1 776.81 7 38 1635
2 764.68 8 43 1920
3 756.20 10 25 645
4 747.56 11 39 1830
5 746.39 12 29 1245
6 744.51 9 30 1470
7 741.23 11 24 1170
8 738.21 3 31 1470
9 737.03 13 29 1245
10 736.27 16 45 1950
11 727.90 11 39 2010
12 726.31 8 48 2175
13 719.12 10 23 960
14 716.62 23 36 1395
15 715.18 14 20 525
16 710.86 16 26 1380
17 707.44 9 31 1140
18 693.47 18 37 1605
19 688.78 16 31 1665
20 685.85 16 24 1005

Mean 729.02 12.05 32.40 1422
STD 24.63 4.55 7.88 444.40
Max 776.81 23.00 48.00 2175.00
Min 685.85 3.00 20.00 525.00

Table 5.5: Performance characteristics of the reported clustering results
No. of

Iterations
No. of

Clusterings
Time Elapsed

Section 5.3.1 30 1485 32.92 S
Section 5.3.2 35 1590 33.65 S
Section 5.3.3 44 2670 38.26 S
Section 5.3.4 34 1422 31.15 S
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5.4 Conclusion

This chapter introduced a spatial clustering algorithm to identify contiguous regions

in the space of the spatial attributes which are uniform with respect to their signa-

tures, which represent statistical summaries for the objects belonging to a particular

cluster. The second idea advocated in the chapter is to mine spatial data for the

presence of particular signatures. We claim that these two types of signature-based

spatial clustering have broad applications in urban computing.

The proposed method defines the task of finding uniform regions formally as

a maximization problem. Various objective functions and corresponding algorithms

were introduced. In particular, we introduced a prototype-based clustering algorithm

named CLEVER, which identies uniform regions in a spatial dataset by maximizing

a plug-in measure of uniformity, relying on a randomized hill climbing approach.

Moreover, polygon models which capture the scope of a spatial cluster and histogram-

style distribution signatures were used to annotate the content of a spatial cluster;

both play a key role in summarizing the composition of a spatial dataset. We claim

that the presented approach is novel and unique as existing clustering algorithms

are not suitable for this task as they minimize distance-based objective functions,

whereas assessing uniformity relies on non-distance based uniformity measures. The

efficacy of the proposed method was demonstrated by a challenging real-world case

study centering on analyzing the composition of the city of Strasbourg in France

based on building characteristics.
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Chapter 6

Conclusion

In this research we have addressed the problem of spatial and spatio-temporal cluster-

ing and post-processing, which are important tasks in spatial data mining. Specif-

ically, we have focused on clustering polygons, analyzing and creating summaries

for clusters of polygons. Our research is motivated by the fact that polygons can

represent many types of spatial objects, such as buildings, pollution hotspots, and

counties. The goal of our research is to produce spatially compact and conceptually

coherent clusters of polygons, and to provide potentially useful information and sum-

marized knowledge for domain experts using our post-processing analysis techniques.

6.1 Summary of significant research contributions

Specific contributions of this research in the area of polygon-based spatial data min-

ing are listed below.
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• Distance of spatial polygons: We have developed two distance functions, i.e.,

the Overlay distance function and the Hybrid distance function to measure the

distance between a pair of polygons, especially overlapping polygons.

• Density-based spatial clustering: We have proposed a density-based spatial

clustering algorithm for polygons known as Poly-SNN that extends the density-

based concepts of the shared nearest neighbor algorithm from points to poly-

gons.

• Density-based spatio-temporal clustering: We have introduced two spatio-

temporal clustering algorithms for polygons by taking into account both spatial

and temporal domains of polygons.

• Post-processing analysis: We have developed several post-processing analysis

techniques to further analyze the identified spatial clusters of polygons and

spatio-temporal clusters of polygons, to evaluate the clusters, and to create

summarizes.

• Change analysis: We have proposed an algorithm to discover the change pat-

terns within spatio-temporal clusters of polygons.

• Identify uniform regions from spatial datasets: A formal definition of the task

of finding uniform regions from spatial datasets is given. We also investigate

an algorithm to identify such uniform regions from spatial datasets.
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6.2 Directions for future research

This research can be extended in many different directions for future research, in-

cluding:

• Automatic procedures for the parameter selection for the spatial and spatio-

temporal clustering algorithms: The shared nearest neighbor based spatial and

spatio-temporal clustering algorithms require several user-defined parameters

that have significant impact on clustering results. These user-defined parame-

ters need to be changed and adapted according to the datasets being clustered

and the desired granularity of cluster results. Automatic procedures for optimal

parameter selection need to be investigated for this task.

• Constraint-based clustering algorithm: The constraint-based spatial and spatio-

temporal clustering algorithms need to be developed to take into consideration

physical obstacles and facilitators that may be present when clustering spatial

and spatio-temporal data.

• New algorithms for obtaining a set of popular signatures from spatial datasets:

Currently we use sampling and k-means to obtain a set of popular signatures

of spatial data. Such popular signatures lose the spatial meaning since they

are aligned with cluster centroids. New algorithms need to be investigated to

address this limitation.
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