Production Forecasting in Shale Volatile Oil Reservoirs

dc.contributor.advisorLee, W. John
dc.contributor.committeeMemberQin, Guan
dc.contributor.committeeMemberStewart, Robert R.
dc.creatorMakinde, Ibukun G.
dc.date.accessioned2016-08-15T03:50:08Z
dc.date.available2016-08-15T03:50:08Z
dc.date.createdMay 2014
dc.date.issued2014-05
dc.date.updated2016-08-15T03:50:08Z
dc.description.abstractThis thesis gives us a better understanding of the behavior of shale volatile oil reservoirs. The effects of fluid compositions as well as the sensitivity of certain variables on cumulative oil production and rates were analyzed using black-oil and compositional simulations. Two-phase (oil and gas) black-oil simulations gave better results than single-phase (oil) black-oil simulations. Compositional simulations were much better in comparison to two-phase black-oil simulations. Therefore, for thorough analysis of fluid composition effects and more accurate production forecasts (especially for reservoir fluids like volatile oils in shale formations), compositional simulations are necessary. In this research, single-phase and two-phase black-oil simulations were run on a base case model and the results were compared. Sensitivity studies were carried out by varying certain parameters in the base case model, then single-phase and two-phase black-oil simulations were run and the results were compared to the base case model. This was followed by analyzing six different fluid samples through compositional simulations. Flash calculations were later done on the fluid samples to obtain inputs for two-phase black-oil simulations. Finally, the simulation results from the compositional and two-phase black-oil simulations were then compared. The importance of shale oil and gas research cannot be over-emphasized, given the ever-rising global demand for energy. Research and studies like this, can lead to better well completions and design, improve reservoir management and economics as well as provide insight into potential alternative methods to enhance recovery from unconventional shale formations.
dc.description.departmentChemical and Biomolecular Engineering, Department of
dc.format.digitalOriginborn digital
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10657/1402
dc.language.isoeng
dc.rightsThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).
dc.subjectShales
dc.subjectVolatile oils
dc.subjectReservoirs
dc.subjectProduction forecasting
dc.titleProduction Forecasting in Shale Volatile Oil Reservoirs
dc.type.dcmiText
dc.type.genreThesis
thesis.degree.collegeCullen College of Engineering
thesis.degree.departmentChemical and Biomolecular Engineering, Department of
thesis.degree.disciplineChemical Engineering
thesis.degree.grantorUniversity of Houston
thesis.degree.levelMasters
thesis.degree.nameMaster of Science

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MAKINDE-THESIS-2014.pdf
Size:
2.81 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.84 KB
Format:
Plain Text
Description: