Case and Parametric Study on the Collapse of the USS Salem Wharf

dc.contributor.advisorDawood, Mina
dc.contributor.committeeMemberBelarbi, Abdeldjelil
dc.contributor.committeeMemberSchuman, Paul M.
dc.creatorRussian-Aranda, Oswaldo Jose
dc.date.accessioned2018-11-30T21:35:00Z
dc.date.available2018-11-30T21:35:00Z
dc.date.createdAugust 2016
dc.date.issued2016-08
dc.date.submittedAugust 2016
dc.date.updated2018-11-30T21:35:00Z
dc.description.abstractThe research presented herein has two principal objectives, which are (i) to develop a numerical framework to predict the collapse load of highly redundant structures with stiff superstructures under vertical (gravity) loads considering the instability of severely corroded steel H-piles as the predominant failure mode, and (ii) to investigate the influence of sheet and battered piles, stiffness of the superstructure, redundancy of supporting elements, and distribution of corroded piles on the performance of wharf structures. The findings of this research indicated that higher collapse loads corresponded to an increase in the number of buckled piles and that the stiffness of the superstructure was a principal factor in the resulting load redistribution capabilities of this type of structure. Additionally, results indicated that the performance of the USS Salem Wharf structure could be maintained with a reduced number of piles, if the superstructure stiffness reached a level corresponding to un-cracked concrete sections.
dc.description.departmentCivil and Environmental Engineering, Department of
dc.format.digitalOriginborn digital
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10657/3572
dc.language.isoeng
dc.rightsThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).
dc.subjectStructure
dc.subjectPerformance
dc.subjectCollapse
dc.subjectBuckling
dc.subjectSubstructure
dc.subjectCorrosion
dc.titleCase and Parametric Study on the Collapse of the USS Salem Wharf
dc.type.dcmiText
dc.type.genreThesis
thesis.degree.collegeCullen College of Engineering
thesis.degree.departmentCivil and Environmental Engineering, Department of
thesis.degree.disciplineCivil Engineering
thesis.degree.grantorUniversity of Houston
thesis.degree.levelMasters
thesis.degree.nameMaster of Science in Civil Engineering

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RUSSIAN-ARANDA-THESIS-2016.pdf
Size:
16.03 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.82 KB
Format:
Plain Text
Description: