Reactance Based Self Sensing Well Cement

dc.contributor.advisorWong, George K.
dc.contributor.committeeMemberVipulanandan, Cumaraswamy
dc.contributor.committeeMemberSoliman, Mohamed Y.
dc.contributor.committeeMemberQin, Guan
dc.contributor.committeeMemberHale, Arthur
dc.creatorAldughather, Ahmed Nabil
dc.date.accessioned2023-06-04T20:44:41Z
dc.date.createdDecember 2022
dc.date.issued2023-01-06
dc.date.updated2023-06-04T20:44:42Z
dc.description.abstractZonal isolation failure can have severe consequences for health, safety, and the environment. Therefore, long term monitoring of well cement is an active area of research. One potential solution is to convert the cement into an intrinsic sensor. Self-sensing cement can detect applied stress through changes in electrical response. While significant progress has been made in civil engineering, this technology has yet to be adopted by the oil and gas industry due to lack of standardization. Hence, this study presents a method for designing a cement sensor that follows the guidelines set by the American Petroleum Institute. The method involves use of multiscale carbon fibers and the alternating current (AC) two-probe approach to evaluate the impedance response to stress. The test results showed an improvement in cement compressive strength and that the reactance response is more sensitive than the resistance at the measured frequency of 300 kHz. For the bulk cement, the dielectric components were extracted using an equivalent AC circuit containing a resistor and a capacitor in parallel. It was found that the capacitance had the highest sensitivity to stress due to dielectric loss. These findings suggest that the self-sensing mechanism is related to changes in electric permittivity with stress through dielectric breakdown and that reactance is a crucial component. The potential for using electric impedance spectroscopy to monitor well cement deformation in real-time quantitatively shows promise and warrants further study.
dc.description.departmentPetroleum Engineering, Department of
dc.format.digitalOriginborn digital
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/10657/14420
dc.language.isoeng
dc.rightsThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).
dc.subjectCement
dc.subjectSelf sensing
dc.subjectDielectric loss
dc.subjectCarbon fiber
dc.subjectWell cement
dc.subjectAC two probe method
dc.subjectReal time monitoring
dc.titleReactance Based Self Sensing Well Cement
dc.type.dcmiText
dc.type.genreThesis
dcterms.accessRightsThe full text of this item is not available at this time because the student has placed this item under an embargo for a period of time. The Libraries are not authorized to provide a copy of this work during the embargo period.
local.embargo.lift2024-12-01
local.embargo.terms2024-12-01
thesis.degree.collegeCullen College of Engineering
thesis.degree.departmentPetroleum Engineering, Department of
thesis.degree.disciplinePetroleum Engineering
thesis.degree.grantorUniversity of Houston
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy

Files

License bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
4.43 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.82 KB
Format:
Plain Text
Description: