ORIGIN OF RIFTED CRATONIC BASINS: TESTING THE SLOW STRETCHING MODEL

dc.contributor.advisorVan Wijk, Jolante W.
dc.contributor.committeeMemberSnow, Jonathan E.
dc.contributor.committeeMemberBird, Dale
dc.creatorOyepeju, Alli Oluwaseun 1980-
dc.date.accessioned2015-08-25T01:17:38Z
dc.date.available2015-08-25T01:17:38Z
dc.date.createdAugust 2013
dc.date.issued2013-08
dc.date.updated2015-08-25T01:17:38Z
dc.description.abstractCratonic basins are large depressions filled with sediments that are located on cratonic shields. They are huge repositories of hydrocarbons, fresh water aquifers, and other important resources, and therefore are of important economic importance. Cratonic basins are characterized by having a long history of subsidence, a saucer-oval shape and 2-9 km of sediment thickness. Despite this economic and geodynamic importance, the process (or processes) that form these basins are still debated. One widely accepted hypothesis suggests that cratonic basins are formed by slow rifting of the lithosphere followed by a long period of thermal subsidence. In this work I investigated this hypothesis by using 2D geodynamic numerical models of the lithosphere. These models are developed to understand the thermal subsidence during and following slow rifting, the deformation of the crust and mantle lithosphere, and the lithospheric stress field. Several models were tested in which I varied the lithosphere thickness, strain rates, and stretching factors. The model allows the lithosphere to rift, thereby creating accommodation space, shallowing of the Moho, and allowing passive upwelling of mantle material. I found that minor rifting is followed by a phase of ~175 million years of cooling of the lithosphere, and thermal subsidence. So, according to the models, the slow rifting hypothesis for the origin of cratonic basins can account for the long subsidence phase experienced by these basins. For cratonic basins where there is no record of minor rifting, other processes such as downgoing mantle flow, dynamic topography, and phase changes drive the slow subsidence.
dc.description.departmentEarth and Atmospheric Sciences, Department of
dc.format.digitalOriginborn digital
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10657/1068
dc.language.isoeng
dc.rightsThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).
dc.subjectRifted cratonic basins
dc.subjectThermal subsidence
dc.subject.lcshGeology
dc.titleORIGIN OF RIFTED CRATONIC BASINS: TESTING THE SLOW STRETCHING MODEL
dc.type.dcmiText
dc.type.genreThesis
thesis.degree.collegeCollege of Natural Sciences and Mathematics
thesis.degree.departmentEarth and Atmospheric Sciences, Department of
thesis.degree.disciplineGeology
thesis.degree.grantorUniversity of Houston
thesis.degree.levelMasters
thesis.degree.nameMaster of Science

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OYEPEJU-THESIS-2013.pdf
Size:
2.44 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.84 KB
Format:
Plain Text
Description: