Physical-Model Simulations of Spills of Ethanol- and Methanol-Blended Fuels and Pore Water Impacts

dc.contributor.advisorRixey, William G.
dc.contributor.committeeMemberChellam, Shankar
dc.contributor.committeeMemberVipulanandan, Cumaraswamy
dc.creatorQuon, Linda
dc.date.accessioned2019-09-17T00:44:30Z
dc.date.available2019-09-17T00:44:30Z
dc.date.createdAugust 2014
dc.date.issued2014-08
dc.date.submittedAugust 2014
dc.date.updated2019-09-17T00:44:30Z
dc.description.abstractTo assess source formation, phase separation, capillary zone depression, alcohol transport and potential pore-water impacts, unsaturated zone releases of ethanol- and methanol-blended fuels were compared in two-dimensional continuous flow experiments. Experiments were conducted with blends of varying alcohol content (15, 25, 50 and 85 vol. %). Visualization and image analysis of the releases showed decreases in residual NAPL saturation and increases in area impacted by NAPL with increasing alcohol content for blends of both alcohols. Comparing equivalent alcohol-content fuels, spill areas were less for the methanol blends than for the corresponding ethanol blends while residual saturations were greater for the methanol blends. Aqueous methanol and hydrocarbon concentrations were measured downstream of an M15 release and compared with a source dissolution and transport model. Source depletion of hydrocarbons was significantly faster than that predicted for equilibrium dissolution of the NAPL, suggesting flow bypassing of a portion of the NAPL source.
dc.description.departmentCivil and Environmental Engineering, Department of
dc.format.digitalOriginborn digital
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/10657/4743
dc.language.isoeng
dc.rightsThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).
dc.subjectEthanol fuels
dc.subjectMethanol fuels
dc.subjectMethanol
dc.subjectGroundwater
dc.titlePhysical-Model Simulations of Spills of Ethanol- and Methanol-Blended Fuels and Pore Water Impacts
dc.type.dcmiText
dc.type.genreThesis
thesis.degree.collegeCullen College of Engineering
thesis.degree.departmentCivil and Environmental Engineering, Department of
thesis.degree.disciplineEnvironmental Engineering
thesis.degree.grantorUniversity of Houston
thesis.degree.levelMasters
thesis.degree.nameMaster of Science

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
QUON-THESIS-2014.pdf
Size:
1.98 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.84 KB
Format:
Plain Text
Description: