Binary Frames, Codes and Euclidean Embeddings

dc.contributor.advisorBodmann, Bernhard G.
dc.contributor.committeeMemberKalantar, Mehrdad
dc.contributor.committeeMemberLabate, Demetrio
dc.contributor.committeeMemberWard, Rachel A.
dc.creatorMendez, Robert Paul 1974-
dc.creator.orcid0000-0002-7788-1665
dc.date.accessioned2019-09-10T16:12:30Z
dc.date.createdDecember 2018
dc.date.issued2018-12
dc.date.submittedDecember 2018
dc.date.updated2019-09-10T16:12:31Z
dc.description.abstractThis dissertation has two parts. The first part is concerned with using Euclidean embeddings and random hyperplane tessellations to construct binary block codes. The construction proceeds in two stages. First, an auxiliary ternary code is chosen which consists of vectors in the union of coordinate subspaces. The subspaces are selected so that any two vectors of different support have a sufficiently large distance. In addition, any two ternary vectors from the auxiliary codebook with common support are at a guaranteed minimum distance. In the second stage, the auxiliary ternary code is converted to a binary code by an additional random hyperplane tessellation. The second part of this dissertation is dedicated to Binary Parseval frames, which share many structural properties with real and complex ones. On the other hand, there are subtle differences, for example that the Gramian of a binary Parseval frame is characterized as a symmetric idempotent whose range contains at least one odd vector. Here, we study binary Parseval frames obtained from the orbit of a vector under a group representation, in short, binary Parseval group frames. In this case, the Gramian of the frame is in the algebra generated by the right regular representation. We identify equivalence classes of such Parseval frames with binary functions on the group that satisfy a convolution identity. This allows us to find structural constraints for such frames. We use these constraints to catalogue equivalence classes of binary Parseval frames obtained from group representations. As an application, we study the performance of binary Parseval frames generated with abelian groups for purposes of error correction. We show that if p is an odd prime, then the group Zq/p is always preferable to Zq/p when searching for best performing codes associated with binary Parseval group frames.
dc.description.departmentMathematics, Department of
dc.format.digitalOriginborn digital
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/10657/4436
dc.language.isoeng
dc.rightsThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).
dc.subjectBinary codes
dc.subjectBinary frames
dc.subjectBinary Parseval frames
dc.subjectRandom hyperplane tessellations
dc.subjectHamming cube embedding
dc.subjectEuclidean embedding
dc.subjectGroup codes
dc.subjectBinary group codes
dc.subjectBinary Parseval group frames
dc.subjectGroup frames
dc.subjectGroup algebra
dc.subjectGroup representation
dc.subjectBinary Parseval frames
dc.titleBinary Frames, Codes and Euclidean Embeddings
dc.type.dcmiText
dc.type.genreThesis
local.embargo.lift2020-12-01
local.embargo.terms2020-12-01
thesis.degree.collegeCollege of Natural Sciences and Mathematics
thesis.degree.departmentMathematics, Department of
thesis.degree.disciplineMathematics
thesis.degree.grantorUniversity of Houston
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
MENDEZ-DISSERTATION-2018.pdf
Size:
851.5 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
4.43 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.81 KB
Format:
Plain Text
Description: