A Proteomic Signature of Dormancy in the Actinobacterium: Micrococcus luteus

dc.contributor.advisorBark, Steven J.
dc.contributor.committeeMemberSchwartz, Robert J.
dc.contributor.committeeMemberWidger, William R.
dc.contributor.committeeMemberWillson, Richard C.
dc.creatorMali, Sujina 1987-
dc.date.accessioned2018-11-29T19:54:20Z
dc.date.available2018-11-29T19:54:20Z
dc.date.createdMay 2018
dc.date.issued2018-05
dc.date.submittedMay 2018
dc.date.updated2018-11-29T19:54:20Z
dc.description.abstractDormancy is a protective state in which diverse pathogenic and non-pathogenic bacteria curtail metabolic activity to survive external stresses, including antibiotics. Evidence suggests dormancy consists of a continuum of interrelated states including viable-but-non-culturable (VBNC) and persistence states that contribute to the antibiotic tolerance. Reactivation from latent infection are observed in many serious pathogens including Mycobacterium turberculosis, Staphylococcus, Streptococcus, and Borrelia bacteria. Despite the obvious threat presented by dormant bacteria, the protein mechanisms regulating these dormancy states are not well understood. We have studied VBNC dormancy in Micrococcus luteus NCTC 2665 by tandem mass spectrometry-based quantitative proteomics to uncover some of these mechanisms. M. luteus is a nonpathogenic actinobacterium exhibiting a uniquely well-defined and reproducible VBNC state induced by nutrient deprivation. Dormant M. luteus demonstrated a global loss of protein diversity accompanied by increased levels of eighteen proteins that are conserved across actinobacteria including M. tuberculosis. Four of these proteins have been previously associated with latent tuberculosis, but the other 14 proteins are novel protein targets for dormancy studies. We have developed rapid methods to quantitate dormancy-related proteins across growth phases by targeted proteomics. The proteins upregulated during dormancy implicate important roles for anaplerotic metabolism, redox and amino acid metabolism, ribosomal regulatory processes, and nucleoid associated proteins in dormancy. Our data show that M. luteus is a viable model system for dissecting the protein mechanisms underlying dormancy and we identified new protein targets for future studies on therapeutics active against dormant bacterial infections, which is a severe limitation of current antibiotics.
dc.description.departmentBiology and Biochemistry, Department of
dc.format.digitalOriginborn digital
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10657/3412
dc.language.isoeng
dc.rightsThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).
dc.subjectBacterial dormancy
dc.subjectProteomics
dc.subjectMass spectrometry
dc.subjectQuantitative proteomics
dc.subjectMicrococcus luteus
dc.titleA Proteomic Signature of Dormancy in the Actinobacterium: Micrococcus luteus
dc.type.dcmiText
dc.type.genreThesis
local.embargo.lift2020-05-01
local.embargo.terms2020-05-01
thesis.degree.collegeCollege of Natural Sciences and Mathematics
thesis.degree.departmentBiology and Biochemistry, Department of
thesis.degree.disciplineBiochemistry
thesis.degree.grantorUniversity of Houston
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
MALI-DISSERTATION-2018.pdf
Size:
5.41 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
4.43 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.81 KB
Format:
Plain Text
Description: