Investigation of the Mechano-Electrochemical Coupling of Solid Polyethylene Oxide and Stretchable Lithium Ion Batteries

dc.contributor.advisorArdebili, Haleh
dc.contributor.committeeMemberWhite, Kenneth W.
dc.contributor.committeeMemberKulkarni, Yashashree
dc.contributor.committeeMemberRyou, Jae-Hyun
dc.contributor.committeeMemberSun, Li
dc.creatorKelly, Taylor Hidemi
dc.creator.orcid0000-0001-6478-907X
dc.date.accessioned2018-12-06T17:54:04Z
dc.date.available2018-12-06T17:54:04Z
dc.date.createdDecember 2016
dc.date.issued2016-12
dc.date.submittedDecember 2016
dc.date.updated2018-12-06T17:54:04Z
dc.description.abstractIt is necessary to develop deformable energy storage devices that are compatible with the next generation flexible and stretchable electronics such as medical implants and wearable devices. Lithium ion batteries are a popular energy storage method for modern technology that provides high energy density and efficiency. However, the electrochemical instability of the organic liquid electrolytes poses a real hazard to using conventional lithium ion batteries in deformable electronics. Replacing the liquid electrolyte with a solid polymer reduces the risk of the battery setting aflame among many other benefits. Solid polymer electrolytes are of particular interest to battery scientists because they allow for the development of safe and deformable batteries. On the other hand, solid polymer electrolytes are also disadvantaged because of their poor ion transport properties. There has been extensive research in improving the ion conductivity of solid polymer electrolytes, but the best achievable conductivities are still two orders of magnitude less than that of liquid electrolytes. The present study investigates the feasibility of using solid polymer electrolytes (i.e. polyethylene oxide) in stretchable lithium ion batteries. The ion conductivity of a solid polymer electrolyte film is demonstrated to increase with tensile strain and this research delves into the mechanisms behind this conductivity improvement. The coefficients of ion conductivity enhancement are found to be similar in both in-plane and out-of-plane directions. Furthermore, molecular weight blending (i.e. 100k and 600k Mw) is used to enhance the electrochemical properties of the solid polymer electrolyte while minimally affecting the polymer’s mechanical stability. The relatively optimized stretchable polymer electrolyte is tested inside a sliding electrode battery and the effect of tensile strain on overall battery performance is investigated.
dc.description.departmentChemical and Biomolecular Engineering, Department of
dc.format.digitalOriginborn digital
dc.format.mimetypeapplication/pdf
dc.identifier.citationPortions of this document appear in: Kelly, Taylor, Bahar Moradi Ghadi, Sean Berg, and Haleh Ardebili. "In situ study of strain-dependent ion conductivity of stretchable polyethylene oxide electrolyte." Scientific reports 6 (2016): 20128.
dc.identifier.urihttp://hdl.handle.net/10657/3686
dc.language.isoeng
dc.rightsThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. UH Libraries has secured permission to reproduce any and all previously published materials contained in the work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).
dc.subjectLithium-ion batteries (LIB)
dc.subjectSolid polymer electrolyte
dc.subjectPolyethylene Oxide
dc.subjectBatteries
dc.subjectStretchable Batteries
dc.titleInvestigation of the Mechano-Electrochemical Coupling of Solid Polyethylene Oxide and Stretchable Lithium Ion Batteries
dc.type.dcmiText
dc.type.genreThesis
thesis.degree.collegeCullen College of Engineering
thesis.degree.departmentChemical and Biomolecular Engineering, Department of
thesis.degree.disciplineMaterials Engineering
thesis.degree.grantorUniversity of Houston
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
KELLY-DISSERTATION-2016.pdf
Size:
26.4 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.81 KB
Format:
Plain Text
Description: