Controlling a Swarm of Robots Using Global Inputs

dc.contributor.advisorBecker, Aaron T.
dc.contributor.committeeMemberKavraki, Lydia
dc.contributor.committeeMemberBrankovic, Stanko R.
dc.contributor.committeeMemberMayerich, David
dc.contributor.committeeMemberFaghih, Rose T.
dc.creatorShahrokhi, Shiva
dc.creator.orcid0000-0002-3268-799X
dc.date.accessioned2019-05-23T15:18:25Z
dc.date.createdAugust 2018
dc.date.issued2018-08
dc.date.submittedAugust 2018
dc.date.updated2019-05-23T15:18:25Z
dc.description.abstractMicrorobotics has the potential to revolutionize many applications, including targeted material delivery, assembly, and surgery. The same properties that promise breakthrough solutions---small size and large populations---present unique challenges for controlling motion. When there are more particles than control inputs, the system is underactuated and requires new control techniques. Rather than focusing on a specific microrobotic system, this dissertation designs control laws and algorithms for steering many particles controlled by global fields. First, we identify key parameters for particle manipulation by using a collection of online games where players steer swarms of up to 500 particles to complete manipulation challenges. Inspired by techniques where human operators performed well, we investigate controllers that only use the mean and variance of the swarm. We next derive automatic controllers for these and a hysteresis-based switching control to regulate the first two moments of the particle distribution. Torque control is also necessary for manipulating objects as well as for aligning sensors, emitters, or redirecting an incoming signal. Second, this dissertation proves that swarm torque control is possible, then presents algorithms to automate the task. Torque control enables us to control the position and orientation of an object. Finally, this dissertation investigates particle control with uniform magnetic gradients (the same force is applied everywhere in the workspace). We provide position control algorithms that only require non-slip wall contact in 2D. The walls of in vivo and artificial environments often have surface roughness such that the particles do not move unless actuation pulls them away from the wall. We assume that particles in contact with the boundaries have zero velocity if the shared control input pushes the particle into the wall. All the results are validated with simulations and hardware implementations.
dc.description.departmentElectrical and Computer Engineering, Department of
dc.format.digitalOriginborn digital
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/10657/4012
dc.language.isoeng
dc.rightsThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).
dc.subjectSwarm control
dc.subjectGlobal Control
dc.subjectShared Input
dc.subjectObject Manipulation
dc.titleControlling a Swarm of Robots Using Global Inputs
dc.type.dcmiText
dc.type.genreThesis
local.embargo.lift2020-08-01
local.embargo.terms2020-08-01
thesis.degree.collegeCullen College of Engineering
thesis.degree.departmentElectrical and Computer Engineering, Department of
thesis.degree.disciplineElectrical Engineering
thesis.degree.grantorUniversity of Houston
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
SHAHROKHI-DISSERTATION-2018.pdf
Size:
41.68 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
4.43 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.82 KB
Format:
Plain Text
Description: