Genetic Background and Environment Influence the Effects of Mutations in pykF and Help Reveal Mechanisms Underlying Their Benefit

dc.contributor.advisorCooper, Timothy F.
dc.contributor.committeeMemberDobson, Renwick
dc.contributor.committeeMemberOstrowski, Elizabeth
dc.contributor.committeeMemberYeo, Hye-Jeong
dc.creatorPeng, Fen 1988-
dc.date.accessioned2017-08-07T21:19:35Z
dc.date.available2017-08-07T21:19:35Z
dc.date.createdAugust 2015
dc.date.issued2015-08
dc.date.submittedAugust 2015
dc.date.updated2017-08-07T21:19:35Z
dc.description.abstractResolving the relationship between genotypic and their effects remains a central challenge in the study of adaptation. Although parallel mutations, a signature of adaptation, have been observed a lot in natural and lab-evolved populations, it is unknown if they are equally adaptive, or even if they affect similar biological processes to cause phenotypic changes. Using eight independently occurring mutations in pykF identified from a long-term evolution experiment with Escherichia coli, I found the mutations confer similar benefits in the ancestral background, but variable effects in the background in which they were evolved. Differences in mutation × background interactions were found to be driven by different suites of mutations in each genetic background, rather than by different pykF mutations. Through biochemical and physiological studies with the pykF mutations in the ancestor, I found that although the mutations affect enzymes in a range of different ways, the net effect of these changes is to lead to changes in the same biological pathways, and thus to confer similar fitness effects. An adaptive mutation may no longer be beneficial if the given genetic background or environment changes. Relatively few studies, however, have examined the combined effect of genetic and environmental context on fitness effects of a mutation. To do this, I measured fitness effect conferred by one pykF mutation in 23 divergent genetic backgrounds and five environments. I found the environment, genetic background, and interactions between them, all significantly affect fitness of the mutation, which makes it harder to predict evolutionary fate of new mutations. Nevertheless, I found that initial fitness of a progenitor strain can be used to predict contribution of a mutation: a mutation will contribute less when added to fitter progenitors.
dc.description.departmentBiology and Biochemistry, Department of
dc.format.digitalOriginborn digital
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10657/1978
dc.language.isoeng
dc.rightsThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).
dc.subjectParallel mutations
dc.subjectPyruvate kinase
dc.subjectEpistasis
dc.titleGenetic Background and Environment Influence the Effects of Mutations in pykF and Help Reveal Mechanisms Underlying Their Benefit
dc.type.dcmitext
dc.type.genreThesis
thesis.degree.collegeCollege of Natural Sciences and Mathematics
thesis.degree.departmentBiology and Biochemistry, Department of
thesis.degree.disciplineBiology
thesis.degree.grantorUniversity of Houston
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PENG-DISSERTATION-2015.pdf
Size:
5.47 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.81 KB
Format:
Plain Text
Description: