INVESTIGATING THE EFFECT OF CLAY MINERALS ON A SANDSTONE RESERVOIR: A ROCK PHYSICS ANALYSIS OF MAGNOLIA FIELD GULF OF MEXICO

dc.contributor.advisorMurphy, Michael A.
dc.contributor.committeeMemberHan, De-Hua
dc.contributor.committeeMemberChesnokov, Evgeni M.
dc.contributor.committeeMemberNasser, Mosab
dc.creatorAdesoji, John Ireyemi 1986-
dc.date.accessioned2017-04-10T01:04:58Z
dc.date.available2017-04-10T01:04:58Z
dc.date.createdDecember 2014
dc.date.issued2014-12
dc.date.submittedDecember 2014
dc.date.updated2017-04-10T01:04:59Z
dc.description.abstractPetrophysical and Rock physics approaches have been used to investigate the effects of clay minerals within delineated reservoirs from the Magnolia field, offshore Louisiana. It is generally known that reservoir sandstones are rarely deposited alone rather they occur alongside finer clay minerals which are often of varying mineralogy, morphology, and distribution. Clay minerals are members of the hydrous aluminous phyllosilicates that dominate the fined-grained fractions of reservoir rocks (Worthington, 2003). A well-known approach often used to unravel clay mineral distributions within a clastic reservoir is through special core analysis. This process is capital intensive and usually gives non-continuous down-hole measurement. This study employs rock physics models to understand clay distribution within Magnolia field in the deep-water Northern Gulf of Mexico. The Thomas–Stieber model is used to predict and describe the porosity-shale volume relations resulting from various mode of sandstone–shale mixing. The Dvorkin and Gutierrez model predicts the associated P-wave velocities. The combination of Thomas-Stieber and Dvorkin-Gutierrez models gives a higher degree of confidence while evaluating formation properties. From the above approach, dominant clay distribution pattern observed in the reservoirs delineated in Magnolia field are laminated clay. Dispersed and structural clays are rarely observed within the reservoirs. Findings from this research show that rock physics analysis can be used as an alternative to core analysis in determining clay distribution patterns and local reservoir studies.
dc.description.departmentEarth and Atmospheric Sciences, Department of
dc.format.digitalOriginborn digital
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10657/1685
dc.language.isoeng
dc.rightsThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).
dc.subjectClay
dc.subjectClay mineral
dc.subjectRock physics
dc.titleINVESTIGATING THE EFFECT OF CLAY MINERALS ON A SANDSTONE RESERVOIR: A ROCK PHYSICS ANALYSIS OF MAGNOLIA FIELD GULF OF MEXICO
dc.type.dcmiText
dc.type.genreThesis
thesis.degree.collegeCollege of Natural Sciences and Mathematics
thesis.degree.departmentEarth and Atmospheric Sciences, Department of
thesis.degree.disciplineGeophysics
thesis.degree.grantorUniversity of Houston
thesis.degree.levelMasters
thesis.degree.nameMaster of Science

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ADESOJI-THESIS-2014.pdf
Size:
28.42 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.81 KB
Format:
Plain Text
Description: