Improving the Interpretation of Magnetic Tensor Data Using Deep Learning

dc.contributor.advisorSun, Jiajia
dc.contributor.committeeMemberZhu, Jennifer
dc.contributor.committeeMemberWang, Guoquan
dc.creatorBarker, Keenan
dc.date.accessioned2023-06-14T17:36:23Z
dc.date.createdMay 2023
dc.date.issued2023-05-05
dc.date.updated2023-06-14T17:36:24Z
dc.description.abstractThe accurate interpretation of magnetic tensor data can be difficult to perform without a strong knowledge of local geology and experience in reading magnetic data. I examined ways in which machine learning techniques can be applied to magnetic tensor data to automatically locate possible kimberlite targets and a method to sharpen smoothness based inversion models to provide a clearer image of the subsurface. While machine learning networks like the U-Net have shown success in other fields for image processing, these methods have not been used extensively in geophysics for magnetic interpretation. I trained the U-Net to predict kimberlite pipe locations by forward modelling magnetic susceptibility models to corresponding magnetic tensor data. I examined the use of different neural network architectures and methods for calculating loss to determine the effect on prediction accuracy. The U-Net was adapted in order to sharpen inversion models by changing from a two dimensional layer architecture to three dimensions. To train this second U-Net I first created a smoothing function which closely matches the effects of a smoothness based inversion and then applied this smoothing function to three dimensional magnetic susceptibility models. I also compared the effectiveness of using a general smoothing function against a smoothing function specifically designed to match a smoothness inversion. This study shows that the use of the U-Net architecture in the field of magnetics shows great promise in the areas of automatically detecting targets and sharpening inverted models.
dc.description.departmentEarth and Atmospheric Sciences, Department of
dc.format.digitalOriginborn digital
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/10657/14540
dc.language.isoeng
dc.rightsThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).
dc.subjectMagnetic tensor data
dc.subjectU-Net
dc.subjectKimberlite
dc.subjectMachine learning
dc.subjectDeep learning
dc.titleImproving the Interpretation of Magnetic Tensor Data Using Deep Learning
dc.type.dcmiText
dc.type.genreThesis
dcterms.accessRightsThe full text of this item is not available at this time because the student has placed this item under an embargo for a period of time. The Libraries are not authorized to provide a copy of this work during the embargo period.
local.embargo.lift2025-05-01
local.embargo.terms2025-05-01
thesis.degree.collegeCollege of Natural Sciences and Mathematics
thesis.degree.departmentEarth and Atmospheric Sciences, Department of
thesis.degree.disciplineGeophysics
thesis.degree.grantorUniversity of Houston
thesis.degree.levelMasters
thesis.degree.nameMaster of Science

Files

License bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
4.43 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.81 KB
Format:
Plain Text
Description: