Syntheses, Characterizations, and Properties of Suboxides and Layered Titanium-based Pnictide Oxide Superconductors

dc.contributor.advisorGuloy, Arnold M.
dc.contributor.committeeMemberHalasyamani, P. Shiv
dc.contributor.committeeMemberMoeller, Angela
dc.contributor.committeeMemberLorenz, Bernd
dc.contributor.committeeMemberYang, Ding-Shyue
dc.creatorDoan, Phuong 1981-
dc.date.accessioned2018-02-15T20:07:15Z
dc.date.available2018-02-15T20:07:15Z
dc.date.createdDecember 2012
dc.date.issued2012-12
dc.date.submittedDecember 2012
dc.date.updated2018-02-15T20:07:15Z
dc.description.abstractWe investigated the effects of oxygen interstitial in the phase Ce3Si2Ox. The binary Ce3Si2 was found to exhibit antiferromagnetic behavior, with the Neel temperature of TN = 8 K. The oxygen interstitial phase, Ce3Si2O0.82 was found to be paramagnetic. This indicates that the introduction of oxygen as interstitial leads to the loss of long range magnetic ordering in Ce3Si2 structure at low temperatures. Herein we will report the fine tuning of the interstitial oxygen content aimed at further understanding the transition from antiferromagnetic to paramagnetic behavior in the range of Ce3Si2Ox (x = 0.00-0.82). This was done by investigating the range of the interstitial content that can be incorporated into the host, and use it to “tune” the electron count of the pseudo-binary electronic structure. We also report the discovery of a new intergrowth structure, Ce8Si5O0.52, which features alternate stacking of Ce3O2O0.52 and Ce5Si3 layers. Motivated by the search for new classes of layered pnictide oxide superconductors, the compound BaTi2Sb2O was synthesized by high-temperature solid-state reaction within inert container. Its crystal structure was determined using X-ray powder diffraction and Rietveld refinement. BaTi2Sb2O crystallizes in a layered variant of the CeCr2Si2C structure type (space group P4/mmm (No.123)), and features [Ti2Sb2O]2- layers separated by layers of Ba atoms. The [Ti2Sb2O]2- layers can be described as being formed from O-centered square nets of Ti atoms, Ti2O, inverse to the CuO2 layers in the superconducting cuprates. The Ti2O sheets are then capped by Sb atoms above and below the sheet to form a nominal network of Ti4Sb2 octahedral units bridged by oxygen. Magnetic susceptibility measurements shows BaTi2Sb2O to exhibit a magnetic transition (at Tc = 54 K) that can be attributed to spin density wave (SDW) or charge density wave (CDW) transitions. This is reminiscent of the un-doped phases of the FeAs-based high-Tc superconductors. Chemical substitution experiments were performed for the purpose of suppressing the magnetic transition and possibly inducing a superconducting state. In this regard a series of p-doped phases, Ba(1-x)NaxTi2Sb2O with x = 0.05-0.33 were prepared. Structural parameters show a systematic change, associated with an elongation of the c-axis and contraction of the a-axis, with the increasing of Na content. A systematic lowering of the magnetic transition temperature is observed with the increasing Na content. More importantly, superconducting transitions are also observed with Na content, x = 0.05-0.33. The superconducting transition temperature Tc increases from 2.8 K (Na = 5%) to 5.5 K (Na = 15%). Bulk superconductivity is observed through dc magnetization, resistivity and heat capacity measurements. Elemental chemical analysis, using inductively coupled plasma / mass spectrometer (ICP-MS), confirm the stoichiometric of the doped phases with regarding to Ba and Na content.
dc.description.departmentChemistry, Department of
dc.format.digitalOriginborn digital
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10657/2193
dc.language.isoeng
dc.rightsThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).
dc.subjectSuboxides
dc.subjectAntiferromagnetic
dc.subjectLayered transition based oxide superconductors
dc.subjectTitanium-based pnictide oxides
dc.subjectSpin density wave
dc.subjectCharge density wave
dc.subjectSolid state synthesis
dc.titleSyntheses, Characterizations, and Properties of Suboxides and Layered Titanium-based Pnictide Oxide Superconductors
dc.type.dcmiText
dc.type.genreThesis
thesis.degree.collegeCollege of Natural Sciences and Mathematics
thesis.degree.departmentChemistry, Department of
thesis.degree.disciplineInorganic Chemistry
thesis.degree.grantorUniversity of Houston
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thesis_After Defense_Final1.pdf
Size:
4.1 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.11 KB
Format:
Plain Text
Description: