Rational Design of Trimetallic Electrocatalyst for Electrochemical Overall Water Splitting

dc.contributor.advisorBao, Jiming
dc.contributor.committeeMemberSun, Li
dc.contributor.committeeMemberYao, Yan
dc.contributor.committeeMemberRobles Hernandez, Francisco C.
dc.contributor.committeeMemberShan, Xiaonan
dc.contributor.committeeMemberDole, Nikhil
dc.creatorQin, Fan
dc.date.accessioned2018-11-30T18:03:58Z
dc.date.available2018-11-30T18:03:58Z
dc.date.createdMay 2018
dc.date.issued2018-05
dc.date.submittedMay 2018
dc.date.updated2018-11-30T18:03:58Z
dc.description.abstractNoble-metal-free bifunctional electrocatalysts for overall water splitting have attracted increasing attention due to their earth-abundancy and high efficiency. However, current bifunctional electrocatalysts suffer from the disadvantages of the complex synthetic process, low yield, or low energy conversion efficiency. Thus, it is highly desirable and significant to develop efficient electrocatalysts with high energy conversion efficiency through the facile process. The Co-Fe-W multi-metal oxides have been reported as one of the best OER catalysts, but their overall water splitting activity is not reported yet, which might be due to the poor HER activities. In Chapter 3, we develop a trimetallic CoFeW film on Ni foam by hydrothermal deposition and subsequent thermal annealing process. The trimetallic CoFeW exhibits great HER activity (ƞ10=147 mV) due to the improved conductivity and increased electrochemical active surface area after annealing. Benefitting from the enhanced HER and remained OER activities, the trimetallic CoFeW electrodes require a cell voltage of 1.57 V (10 mA∙cm-2) to drive overall water splitting. However, the overall performance is still limited and a more efficient trimetallic system needs to be developed. In Chapter 4, we have developed a trimetallic NiFeMo film on Ni foam via a similar process with different precursors. This electrode successfully integrates the benchmark HER (Ni-Mo) and OER (Ni-Fe) species into a single electrode. As a result of remarkable activities for both HER and OER, the NiFeMo electrode exhibits a low voltage of 1.45 V for overall water splitting, which outperforms the current reported bifunctional electrocatalysts. High-resolution transmission electron microscopy reveals that nanometer-sized single crystal domains of Ni, Fe, and Mo are intimately integrated, which enables a synergistic effect of metallic Ni, Fe, and Mo for efficient HER; while self-formed Ni-Fe-Mo (oxy)hydroxides on the surface of NiFeMo anode become active sites for OER. Such multi-metallic alloy and its (oxy)hydroxides represent a typical HER/OER catalyst couple, and our method provides a new route to develop efficient low-cost metallic alloys for overall water splitting.
dc.description.departmentElectrical and Computer Engineering, Department of
dc.format.digitalOriginborn digital
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10657/3497
dc.language.isoeng
dc.rightsThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).
dc.subjectTrimetallic electrocatalysts
dc.subjectCoFeW
dc.subjectNiFeMo
dc.subjectOverall water splitting
dc.titleRational Design of Trimetallic Electrocatalyst for Electrochemical Overall Water Splitting
dc.type.dcmiText
dc.type.genreThesis
local.embargo.lift2020-05-01
local.embargo.terms2020-05-01
thesis.degree.collegeCullen College of Engineering
thesis.degree.departmentElectrical and Computer Engineering, Department of
thesis.degree.disciplineMaterials Engineering
thesis.degree.grantorUniversity of Houston
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
QIN-DISSERTATION-2018.pdf
Size:
8.34 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
4.42 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.81 KB
Format:
Plain Text
Description: