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Abstract 

 

We are living in the era where each of us is connected with each other virtually across the 

globe. We are sharing the information electronically over the internet every second of our day. 

There are many networking devices involved in sending the information over the internet. They 

are routers, gateways, switches, PCs, laptops, handheld devices, etc. The switches are very crucial 

elements in delivering packets to the intended recipients. Now the networking field is moving 

towards Software Defined Networking and the network elements are being slowly replaced by the 

software applications run by OpenFlow protocols. For example the switching functionality in local 

area networks could be achieved with software switches like OpenvSwitch (OVS), LINC-Switch, 

etc. Now a days the organizations depend on the datacenters to run their services. The application 

servers are being run from virtual machines on the hosts to better utilize the computing resources 

and make the system more scalable. The application servers need to be continuously available to 

run the business for which they are deployed for. Software switches are used to connect virtual 

machines as an alternative to Top of Rack switches.  If such software switch fails then the 

application servers will not be able to connect to its clients. This may severely impact the business 

serviced by the application servers, deployed on the virtual machines. For reliable data 

connectivity, the switching elements need to be continuously functional. There is a need for 

reliable and robust switches to cater the todays networking infrastructure. In this study, the 

software switch LINC-Switch is implemented as distributed application on multiple nodes to make 



it resilient to failure. The fault-tolerance is achieved by using the distribution properties of the 

programming language Erlang. By implementing the switch on three redundant nodes and starting 

the application as a distributed application, the switch will be serving its purpose very promptly 

by restarting it on other node in case it fails on the current node by using failover/takeover 

mechanisms of Erlang. The tolerance to failure of the LINC-Switch is verified with Ping based 

experiment on the GENI test bed and on the Xen-cluster in our Lab. 
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Chapter 1: Introduction  

 There is a paradigm shift about to happen in networking that is being propelled by powerful 

network white boxes (e.g. Intelôs Open Network Platform, Pica8) that can be programmed to 

replace expensive ASIC-based middle boxes and switches. When networked applications run on 

such programmable platforms the application-specific requirements can be fulfilled with more 

transparency in the network operations than before. For example, application-dependent flow path 

setup is possible with programmability built directly into the application such as a Hadoop-

acceleration using OpenFlow protocol in [1]. Furthermore, such software-based networking 

systems can become fault-tolerant and highly available using the vast research and techniques 

developed in the area of distributed systems. A distributed system consists of a collection of 

autonomous computers connected by a network while running distributed middleware. The system 

enables the computers to share their resources and coordinate their activities so that the entire 

distributed system appears to a user as a single fabric. In this respect, one way to achieve fault 

tolerance is through introduction of redundancy, namely, running multiple software switches that 

are part of a distributed system. If one software switch fails, another one can start running 

(failover). The cost to host such extra software switches on the system is much less than the 

hardware counterparts. 

 To the best of our knowledge, there are two leading open source implementations of 

software switches: OpenvSwitch (written in C), and LINC (open-sourced by [2] and written in 

Erlang). Erlang programming language has built-in support for concurrency and distribution [3]. 
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An Erlang system can instantiate multiple nodes and provide the abstractions to specify a failover 

and take-over mechanism between the nodes. An Erlang node has a built-in protocol to 

communicate with another Erlang node.  

 This thesis presents a novel distributed software switch architecture that guarantees fault 

tolerance using the Erlang OTP (Open Telecommunications Platform) with OpenFlow-capable 

LINC switches.  

 We present the functionality of switches in transmitting the  frames between two end hosts 

in general, then  the advantage of moving into Software Defined Networking, functionality of 

OpenFlow switches. Then we explain Erlangô distributed system components and relevant 

operations. Next, we describe our experimental setup realized on the GENI (Global Environment 

for Network Innovation) infrastructure followed by our measurements of failover and take-over 

times. We conclude our work with some future work discussions. 

  



3 
 

Chapter 2: Literature Survey 

Fault-tolerance is achieved in distributed systems by using redundant hardware/software 

for a long time in the history. To achieve fault-tolerance in Tandem computers, the hardware 

architecture was designed using the following principles [4]: 

They system was decomposed into hierarchical modules having Mean Time Between 

Failures is more than a year; the modules sent Keep alive messages to other modules to let their 

presence; The modules exhibited fail-fast behavior that means they should work right or they 

should fail; Extra redundant modules were configured to pick up the loads of the failed modules 

with the takeover times of seconds to make the MTBF to be of millennia. By adopting above 

principles a MTBF of decades or centuries was achieved. 

The same principles were used in designing the Erlang OTP libraries used to build fault-

tolerant applications like AXD301in Ericson [5]. Fault-tolerance could be achieved by detecting 

failure of one machine by the other machine in the network provided if it has sufficient data to 

carry over the job of failed machine without noticed by its users. 

In [6], a survey has been made to analyze the techniques used in replicating the 

objects/services in distributed systems during mid-eighteen century. It claims that linearizability 

as the correctness criterion for replicated services which gives an illusion of replicated objects as 

a single system to its clients. The failure over of one object to other will be transparent to the client. 

There are two techniques explained in the paper namely primary backup and active backup for 

replicating objects/services. 
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 Distribution will be considered for sharing the resources like data, hardware or computing 

in an organization as well as to make the system fault-tolerant to failure. It is highly impossible to 

achieve fault-tolerance without redundancy, distribution is considered as a means for achieving 

fault-tolerance by replicating the system on more machines. In Delta-4 project [6], fault-tolerance 

is achieved by replicating software components on different machines interconnected by local area 

network. In this project, a sub layer protocol called Inter Replica Protocol (IRP) is used to 

coordinate messages exchanged between replicated endpoints on different nodes and hides the 

replication to the endpoints of the messages. It also emphasized that for the fault-tolerance to work 

smoothly, the distribution has to handle the network partitioning.  

 Fault-tolerance in switched networks has been studied from a distributed system 

perspective since the beginnings of networks. The most common solution to switch failures has 

been introduction of redundancy through extra ports, interfaces, and switch hardware [7].  

 Vicis, an ElastIC-style Network On the Chip (NoC) can tolerate loss of many network 

components by wear out introduced hard faults by employing N- Modular Redundancy based 

solutions in its network and router replications [8]. Built-in-self test is used for locating the hard 

faults and techniques like port swapping is used to mitigate the faults. The routers work together 

to run distribution algorithms to solve network-wide problems as well as protecting network from 

critical failures occurring in individual routers. 

To avoid Layer 2 loop formation caused by the redundant connection of switches, the 

following protocols were used in the Clemson University Network [9]: 
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¶ Unidirectional Link Detection (UDLD) prevents one-way links to ensure no loops. 

¶ Hot Standby Router Protocol (HSRP) makes it possible for redundant routers to act as a 

single virtual router. 

¶ Common Spanning Tree (CST) implements one spanning tree for an entire physical 

extended LAN. 

¶ Enhanced Interior Gateway Routing Protocol (EIGRP) for routing based on distance-vector 

IP routing. 

¶ Per VLAN Spanning Tree plus (PVST) allows distinct spanning trees to be formed on 

multiple VLANS on the same physical network. 

  Continuing on this premise of redundancy, some considerations on when and how failover 

may happen are: ñhot standbyò where the secondary takes over with no data loss; ñwarm standbyò 

where secondary takes over with some data loss; ñcold standbyò where secondary is started up 

when primary is detected to be off/failed/non-functional and then switched into services.  

In [10], an industrial case study has been made in the project called ADVERTISE, a 

distributed system for advertisement transmission to on-customerïhome set-top boxes (STB) over 

Digital TV network (iDTV) of a cable operator. The system was built using Erlang OTP. The size 

of the communication network was a challenge to manage as it had 100,000 customers and it was 

operational for 24/7. The system was designed to be resilient to node failure as well as network 

partitioning. It has been explained in [10] how to protect the distributed system from such failures. 

The CAP theorem was explained and the possibilities of having the properties together was 
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discussed. In a distributed system that share data, consistency should be preserved by not 

permitting two different operations on the same data at any time. Consistency is achieved by 

transaction mechanism which updated the data on all nodes beforehand. Availability is the 

requirement that the system should present to answer the requests sent from the clients. The 

answers should have meaning full values other than time out or not reachable messages. Partition-

tolerance is the key property in CAP theorem. The resiliency the system possess against network 

partitions. If the nodes cannot send or receive messages due to the unavailability of network then 

the previous two properties could not be achieved.  

  Fault tolerance in OpenFlow-based networks has been studied recently from controller 

failure perspective [11]. The failover and take-over during a switch failure is possible by creating 

copies or duplicate threads of software switches with an underlying distributed redundancy 

management system such as a CPRecovery component and others listed in [11].  
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Chapter 3: Forwarding Elements 

The role of the switch is to receive the incoming Data-link layer frames and forward them 

on to outgoing links as shown in figure1. The hosts and routers send and receive packets via 

switches in a LAN and the switches are transparent to them. 

 

Figure 1 Role of the Switches in Networking 

  The two main functions of the switches are [12]: 

1. Filtering   

The switch uses filtering function to decide whether to forward or drop an incoming 

frame. 

2. Forwarding 

The switch uses the forwarding function to decide to which output port it has to 

send the packet to reach a particular destination based on the incoming port and destination 

MAC address. 
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Both Filtering and Forwarding are done with a switch table also known as MAC-table. The 

MAC-table contains entries for some but not necessarily all hosts and routers on a LAN. The 

MAC-table entry contains 1. MAC-address of the host connected to an interface, 2. The interface 

Number and 3. The time at which the entry was placed in the MAC-table. The switch forwards 

packet arriving at its input port to one of its output port based on the 48 bit destination MAC 

address in the frame. 

 The switch has three options to deal with a packet which arrives on an interface x. 

I. Broadcasting: If there is no entry found in the MAC-table for the destination MAC address 

found in the frame, and then switch forwards the frame to all of its interfaces except to the 

interface on which it has arrived in.  

II.  Filtering : If there is entry for the MAC-address contained in the destination MAC field 

but it is associated to x itself, then the switch simply drops the frame. 

III.  Forwarding : There is an entry in the table for the MAC-address contained in destination 

MAC field but it is associating with an interface y, which is different than x. In this case 

the switch directs the frame to the interface y. 

 The interfaces of the switches have buffers attached to them to store the incoming frames 

if they arrive faster at the interface than the processing speed of the switch(the forwarding speed 

of the switch) to avoid the packets from being dropped at interfaces. 
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3.1 Self-Learning 

The switch builds the Mac-table by self-learning that means it builds the table 

automatically and dynamically without the intervention of network administrator or any 

configuration protocol. The table will be built as follows: 

I. The switch table is initially empty. 

II.  The switch stores the following details when it receives a packet at its interface very first 

time: 1. The MAC-address in the frameôs source address field, 2. the interface on which 

the frame came in, 3. the time at which the entry is created. If every host in the LAN sends 

a frame, then every host will be recorded in the table. There will be a timer with the value 

of ómac-aging-time is started. Whenever the switch receives a frame for the MAC-address 

available in the table from the same interface, it updates the time it received and restarts 

the timer. 

III.  The switch deletes an entry for a MAC-address if it didnôt receive any frame before the 

aging time expires from the host for which the MAC-address belongs to. 

 It also update the entries for any changes like if a host is moved from one port to another 

or a host is replaced by another host with a different MAC address. The port to MAC-address 

association will be updated for the changes once the MAC-aging time expires. The aging 

mechanism helps the switch to keep only the entries for current active hosts on the network. The 

aging time should be selected appropriate to the requirements. Too lengthy aging time keeps the 

entries for longer times in the table and thus exhausts the table space and also failed to update its 
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entries to accommodate the latest network changes. On the other hand too shot aging interval may 

result in removal of valid entries, causing unnecessary broadcasts, which may affect switch 

performance. The mac-aging time selected should be longer than the maximum interval in which 

the hosts normally transmits packets to avoid flooding in a network. For example, the traffic to the 

printers is less frequent, so the aging should be kept long to avoid flooding if the printer is idle. In 

the same way in data centers the servers connected to the switches are stable, so lengthy aging 

time avoids frequent flooding and thus helps to utilize the bandwidth for other useful traffic.  
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Chapter 4: Software Defined Networking 

 

4.1 Need for Change in Networking 

 The conventional networks are built with Ethernet switches connected in hierarchical 

structure to meet the static Client-Server model of computing. But they are not suitable for todayôs 

dynamic nature of computing and storage needs. The outburst of mobile devices, content and 

server virtualization and cloud services are among the key trends driving the need for new network 

paradigm [13]. 

4.2 Limitations of Current Network  

 The following are the limitations of current networks to meet the challenges imposed by 

the evolving computing and storage requirements, datacenters, campus and carrier environments 

[13]. 

Complexity: Adding new devices or to support moving devices and implementing network-wide 

policies are complex, time consuming, needs manual efforts. So network changes will results in 

service interruption and normally discouraged to undergo. 

Lack of ability to -Scale: The networks become more complex with the addition of hundreds and 

thousands of network devices that must be configured and managed to meet the requirements of 

datacenterôs dynamic traffic. The time-honored approach of over subscription to provision 

scalability is not efficient with todayôs unpredictable data center traffic. 
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Vendor Dependence: Enterprises are willing to deploy new capabilities and services to cater their 

business needs or user demands very quickly but the lengthy vendorôs equipment product cycles, 

lack of standard, open interfaces limit the ability of the network operators to tailor their network 

to their custom environment.  

4.3 SDN 

 According to the definition given by Open Network Foundation [13], Software-Defined 

Networking is an emerging architecture that is dynamically manageable, cost effective, and 

adaptable, making it ideal for the high bandwidth, dynamic nature of todayôs applications. SDN 

architecture separates the network control plane from forwarding plane. By decoupling the control 

functionality from forwarding functionality, the network control has made directly programmable. 

As the switches are now concentrating only forwarding, the speed of the forwarding will be 

increased and the efficiency of the switches are improved.  It also abstracts the underlying 

infrastructure to applications and network services. The OpenFlow protocol is a foundation 

element to build SDN solutions.  The architecture offers the following features: 

¶ Directly Programmable: Network control is directly programmable because it is 

decoupled from forwarding functions. 

¶ Agile: Abstracting control from forwarding administrators are able to dynamically adjust 

network-wide traffic flow to meet changing needs.  

¶ Centrally managed: The software based SDN controllers maintain a global view of the 

network by centralizing the intelligence in them. 
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¶ Programmatically configured: Network managers can configure, manage, secure and 

optimize the network resources very swiftly via dynamic programs on their own without 

depending on proprietary software. 

¶ Open-standards based and vendor-neutral: When implementing through open 

standards, SDN simplifies network design and operation because instructions are provided 

by SDN controllers instead of multiple, vendor specific devices and protocols. 

¶ Reduces Capital Expenditure: By allowing network functions to run on off-the shelf 

hardware SDN helps to reduce the capital expenditure spent on networking infrastructure. 

¶ Reduces Operational Expenditure: SDN has made it possible to design, deploy, manage 

and scale networks with reduced operational cost by supporting automation and algorithm 

control through increased programmability 

¶ Enable Innovation: It helps organizations to create new types of applications, services and 

business models.  

4.4 OpenFlow Switches 

 The OpenFlow protocol allows using any type and brand of data plane devices, because 

the underlying network hardware is addressable through the common abstraction it provides. 

Importantly, it facilitates the use of bare metal switches and eliminates traditional vendor lock-in, 

and gives the freedom of choice in networking similar to the other areas of IT infrastructure, such 

as servers. There are two types of OpenFlow switches. 
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¶ OpenFlow Enabled Switches: Hardware-based commercial switches that use the 

TCAM and the Operating system of the switch/router to implement the Flow table 

and the OpenFlow protocol. This type of switches supports Layer 2, Layer3 along 

with OpenFlow protocol to isolate the experimental traffic from production traffic.  

¶ Software-based (Dedicated OpenFlow) Switches: Software-based switches that use 

UNIX/Linux systems to implement the entire OpenFlow switch functions. E.g. 

OpenvSwitch, LINC-Switch, Indigo, SoftSwitch.  

 In general, OpenFlow Switch consists of three parts [14]: 

1. A flow Table, with an action associated with each flow entry, which defines how to process 

the flow i.e., whether to forward to a particular output port or to drop or to any of reserved 

ports. 

2. A secure channel that connects the switch to a remote controller, which allows commands 

and packets to be exchanged between the switch and the controller. 

3. OpenFlow protocol, which provides an open and standard way for a controller to 

communicate with the switch.  
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Figure 2 OpenFlow Switch, flows are inserted by the Controller from remote 

 

4.4.1 Dedicated OpenFlow Switches  

A dedicated OpenFlow switch is a dump data path element that forwards packet between 

ports as dictated by a remote controller as showed in the figure 2. In this environment flows are 

broadly defined and are limited by the capabilities of the particular implementation of the flow 

table. For example a flow could be a TCP connection, or all packets from a particular IP address 

or MAC address. A dedicated OpenFlow switch does not support normal Layer -2 and Layer-3 

processing. 

 Each Flow entry has a simple action associated with it; the three basic actions are: 

1. Forward this flowôs packet to a given port or ports. Thus packets are routed through the 

network at line rate. 
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2. Encapsulate and forward this flowôs packets to a controller in a secured connection. 

Normally first packet in a new flow will be sent to the controller and controller will decide 

whether the flow will be added to the table or not. In some cases all the packets could be 

sent to controller for processing based on the requirement imposed by the application. 

3. Drop this flowôs packets. This could be done for security to avoid denial of service attacks. 

4.4.2 OpenFlow-enabled Switches 

 When the commercial switches, routers and access pointes are enhanced with OpenFlow 

protocol, flow tables and secured channel then they are called as OpenFlow enabled switches. 

Normally the flow table will re-use the existing TCAM; the secure channel and protocol will be 

ported to run on the switchôs operating system. To isolate experimental traffic from production 

traffic the OpenFlow-enabled switches added the fourth action: 

4. Forward this flowôs packets through the switchôs normal processing pipeline.  

OR, the production traffic and experimental traffic can be isolated by defining separate 

VLANs for them. By defining either the above fourth action or adding VLAN tags, the switch will 

allow the regular production traffic to be processed in the usual way and at the same time allows 

the experimental traffic to be controlled by the way the experimenter wishes to process by the 

OpenFlow controller in a manner the experimenter wants to control. 
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Chapter 5: LINC -Switch 

 

 LINC (Link Is Not Closed) is a completely new open-source switching platform available 

through flow-forwarding.org, a community promoting free open source Apache 2 license 

implementation based on OpenFlow specifications. LINC-Switch is a software switch and ONFôs 

OpenFlow version 1.2/1.3 compliant capable Switch with support for OF-Config 1.1 Standard 

[15].  OpenFlow protocol separates the control plane from data plane and allows much flexibility 

to the applications by implementing control logic using software programming.  The OF-Config 

protocol allows separating the management functionalities from the OpenFlow switches to have 

efficient control over the networking resources like ports to better utilize them [16]. 

 LINC architecture is designed to use generally-available commodity x86 hardware (COT) 

and runs on a various platforms like Linux, Solaris, Windows, MacOS, and FreeBSD with Erlang 

runtime.  The multiple CPU cores and memory offered by x86 platform allows LINC to scale 

gracefully to increase and decrease compute resources. This is essential when many logical 

switches are instantiated on a single OpenFlow capable switch. These logical switches can have 

resource allocations based on the need. 

 LINC was implemented in the functional programming language Erlang, developed by 

Ericsson.  
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5.1 Features of Erlang 

 The following features offered by Erlang makes it suitable for developing LINC: 

¶ Erlang is a functional programming language designed to develop concurrent applications. 

Concurrency in Erlang belongs to the language and not to the Operating System [5]. 

¶ Erlang OTP (Open Telecom Platform) is a large collection of libraries for Erlang that 

provides solutions for Networking and Telecommunication problems. E.g. Supervision 

trees. 

¶ Bit manipulation capabilities of Erlang are suitable for protocol handling and low level 

communication. 

¶ Erlang has built-in support for process creation and management to simplify concurrent 

programming. As Erlang processes are light weight, it needs less computational effort to 

create and destroy processes [17]. 

¶  It allows achieving massive concurrency, i.e thousands of processes can be created without 

degrading the performance. Erlang process use share nothing semantics [5] principle and 

they communicate among themselves only by passing messages between them. Erlang 

processes work on a copy of the data it needs. As there is no data sharing between 

concurrent processes, efficiency will be more.  

¶ Any Erlang application is made distributed easily by running different parallel processes 

on different machines. 
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¶ Erlang makes best use of multi-core architecture available on the machine from which it is 

running which makes it best suitable for writing concurrent applications. 

5.2 LINC Architecture  

The main software blocks of LINC implementation are: OpenFlow Capable Switch, 

OpenFlow protocol module and OF_Config module. These are developed as separate applications 

and are designed using Erlang OTP principles. 

 The of_protocol librarary implements the OpenFlow protocol to define internel OpenFlow 

protocol strcutures, data types and enumerations. It affords encode and decode functions for 

OpenFlow protocol messages and validates their correctness. The figure 3 describes the software 

componets of LINC-Switch. 

 

Figure 3 Software Components of LINC-Switch 
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 The  linc library implements the OpenFlow capable switch functionality. It accepts OF-

Config commands and executes them in OpenFlow operational perspective. It handles one or more 

OpenFlow Logical Switches that consists of the channel component, replaceable back-ends and 

common logical switch logic. The channel componet act as the communication layer between the 

OpenFlow Logical Switch and the OpenFlow Controllers and by meeans of TCP/TLS connections 

between them. It passes parsed structures received from the OpenFlow Controller to the backend 

and forwards encoded messages from OpenFlow Switch to the Controllers. 

 The actual logic for switching the packets is implemented in replaceable back-ends. They 

manage flow tables, group table, ports, etc. and reply to OpenFlow protocol messages received 

from the Controller. LINCôs logical Switch can use any of the available backends with comman 

API (gen_switch). 

Common switch logic handles switch configuration, manages the channel component and 

OpenFlow reosurces like ports and dispatches messages received from the Controller. 

The of_config library application implements the OF-Config protocol which handles 

parsing, validation and interprets the OF-Config messages received from an OpenFlow 

configuration point and sends as commands to the OpenFlow capable switch application ólincô to 

configure OpenFlow Capable Switch. 

LINC has a supervision tree for fault-tolerance purposes in accordance with the OTP 

principles. A supervisor is responsible for starting, stopping and monitoring its child processes. 

The supervisor keep its child process alive by restarting them when necessary. 
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5.3 Distributed LINC -Switch 

 According to [18], ñDistributed Erlang applications can be implemented on loosely 

connected systems of computers with TCP/IP connectivity between themò, LINC-Switch is 

implemented on three inter connected multiple nodes to make it behave as a distributed 

application to achieve fault-tolerance by utilizing the distribution properties of Erlang. Figure 4 

depicts the redundant switch architecture. Fault-tolerance in Erlang applications are achieved as 

follows: When LINC-Switch on one node fails, then it will be running from other node (failover) 

and when the LINC-Switch on main node comes back again, the LINC-Switch from the back-up 

node will exit and stops running (takeover). Failover is the process of restarting an application on 

the node other than on the failed node [20].  

 

Figure 4 LINC-Switches as Distributed Switch 
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 Takeover is the process in which the node having higher precedence (main node) takes 

over the control when the application is running from a lower precedence secondary node [19]. 

 

 We have taken the replication factor as 3 to reduce the probability of failures as given in 

[5]. Erlang programming language has inherent distributed system support to enable such functions 

and tools to the programmer with mature messaging architecture between the instantiated nodes.   
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Chapter 6: How Distribution is achieved in Erlang 

 The Erlang language was designed specifically to develop fault-tolerant systems by 

keeping the following points as main criteria [21]: 

¶ Isolation between processes  

¶ Pure message passing between processes 

¶ Ability to detect errors in remote processes 

¶ Means to detect the cause for the errors. 

 In Erlang, one layer of the system performs the application logic while the other layer 

performs the error trapping functionality. It monitors the applications and restores the application 

to safe state if  it fails. The application structure is formalized in Erlang OTP system by means of 

supervisor trees. The supervisor trees define very accurately what should be done in case a process 

fails. OTP application organize the task into tree structured group of processes and the processes 

in higher level (supervisor) monitor the processes in lower level (worker) of the tree structure and 

correct if any error occurs in the worker process[17]. The worker processes perform the 

computation. 

 A distributed Erlang system consists of many Erlang run time systems known as nodes, 

communicating with each other. Each Erlang node is identified by an atom in the format óname@ 

hostnameô, where name is supplied by the user at the time of starting Erlang shell and hostname 

is full hostname if long name is used or part of the hostname if short name is used.  
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 Erlang Port Mapper daemon (EPMD) is started when an Erlang system is started, which is 

responsible for mapping the hostnames to IP addresses. The security of the networked Erlang 

nodes is ensured by setting the atom known as magic cookie. The nodes are allowed to 

communicate with each other only if their magic cookies match.  

 The Open Telecom platform (OTP) framework provides takeover and fail over 

mechanisms to make an Erlang distributed application as a fault tolerant system. The failover is a 

mechanism of starting the application on a different node than on a node where it is failed. The 

takeover is a mechanism of running back the application on a dead main node by gracefully 

terminating the application on backup/secondary nodes. The modules global, global group, 

net_adm, net_kernel, kernel are involved in making an Erlang application as distributed. 

6.1 Global Module 

 Global Module serves as a global name registration facility. It servers the following 

functionalities through the server called ôglobal_name_serverô, which resides on each node and it 

is started automatically when an Erlang node is started. The global denotes the set of nodes 

connected together. The global module takes care of the following functionalities: 

¶ Registration of global names 

¶ Global locks, 

¶ Maintenance of fully connected network 

 The ability of registering the names globally is the central concept in distributed 

programming. A registered name is an alias for a process identifier (PID). The global name server 
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monitors the registered process ids. If a process terminated, the associated PID with the process 

will be unregistered. The registered names are stored in replicated global name tables in all the 

nodes. Any change in a name table will results in same change in all the tables.   The global name 

server continuously monitors the changes in node configuration.  When a node, on which globally 

registered process goes down, the name will be globally unregistered. The global name server 

subscribes to node up and node down messages sent from the kernel. 

6.2 Global group 

 This module is responsible for grouping nodes to Global Name registration Group. This 

makes it possible to group the nodes into partitions, each partition having its own global name 

space refer to global. These partitions are called global groups. 

6.3 Net _kernel 

 The net_kernel is a system process, registered as net_kernel, running of which is very 

essential for distributed Erlang to work. The purpose of this module is to implement the 

distribution built-in functions spawn/4 and spawn_link/4, and to monitor the network. The 

connection to a node is automatically established when a node is referenced from another node. 

Through the built-in function monitor_node/2, the calling process subscribes or unsubscribes to 

node status change messages.  A node up message is delivered to all subscribing processes when 

a new node is connected and node down message is delivered when a node is disconnected. 
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6.4 Net_adm 

 This module defines various Net Administration Routines. One of the built in function 

world/1 calls names (Host) for all hosts which are specified in the Erlang host file, ó.hosts.erlangô, 

collects the replies and then evaluates ping (Node) on all of those nodes and returns the list of all 

nodes that were successfully pinged. This function is used, when a node is started, and the names 

of other nodes in the network are not initially known. 

6.5 Kernel 

 Distributed applications are controlled by both application controller and a distributed 

application controller process called dist_ac. Both are part of kernel application [22]. 

 The kernel application is the first application started in any Erlang system. It is mandatory 

to have minimal system based on Erlang OTP should consists of kernel and STDLIB modules. 

The configuration parameter ódistributedô specifies which application is distributed and on which 

nodes it may execute.  The parameter 

¶ distributed = [{Application, [Timeout, ] NodeDesc}]  specifies where (on which node) the 

application Application,  may execute. Where: 

o NodeDesc = [node | {node. . .  Node} ] is a list of node names in priority order. 

o Timeout = integer () specifies how many milliseconds to wait before restarting the 

application on another node. 

 The nodes on which, a distributed applications runs must contact each other and negotiate 

where to start the application. The following kernel configuration parameters specifies which 
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nodes are must and which nodes are optional for a particular node to start and how long it will wait 

for the mandatory and optional nodes to come up : 

¶ Sync_nodes_mandatory = [Node], specifies which other nodes must be started within the 

time sync_nodes_timeout. 

¶ Sync_node_optional = [node], specifies which other nodes can be started within the time 

sync_node_timeout. 

¶ sync_node_timeout = integer () | infinity, specifies how many milliseconds to wait for other 

nodes to start. 

 When started, the main node will wait for all the nodes specified by 

Sync_nodes_mandatory and Sync_node_optional to come up and when all the nodes have come 

up and the time specified by sync_nodes_timeout has elapsed, all applications will be started. If 

not all the syn_mandatory_ nodes have come up, the main node will terminate. 

Net_ticktime = TickTime specifies the net_kernel tick time in seconds. Once every 

TickTime/4 seconds, all connected nodes are ticked and if nothing has been received from another 

node within the last four tick times then that node is considered to be down. This ensures that 

nodes which are not responding for reasons such as hardware errors are considered to be 

down.  Thus a terminated node is detected immediately. 

6.5 Protocol Behind the Distribution (Distributed Protocol)  

 The communication between EPMD and Erlang nodes happens based on distribution 

protocol [23]. The protocol has four parts: 

¶ Low level socket connection 
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¶ Handshake, interchange node name and authenticate 

¶ Authentication (done by net_kernel) 

¶ Connected. 

 The EPMD starts automatically when an Erlang node starts up. It listens on the port 

4369.  A node fetches the port number of another node to initiate connection via EPMD. When a 

distributed node is started, it registers itself with EPMD using the message ALIVE2_REQ. The 

response from the EPMD is ALIVE2_RESP. The connection to the EPMD is kept open till the node 

is in distributed mode. The connection will be closed when the node unregisters from EPMD. 

When a node wants to connects with another node, it requests the distribution port number on 

which the node is listening through PORT_PLEASE2_REQ message to the EPMD of the 

destination port. The EPMD of the destination node responds with PORT2_RESP. 

 The TCP/IP distribution protocol uses connection based handshake to establish a 

connection. During the handshake, the cookies are sent and verified to ensure that the connection 

is between allowed nodes. 

6.6 Starting and Stopping Distributed Applications 

 When all the mandatory nodes have been started, the distributed application can be started 

by the application master on all the nodes by calling application: start (Application). This could be 

automatically done by a boot script. In our LINC-Switch application, the application master has 

called the application callback function, linc: start (normal, _StartArgs) on the node linc@s1. The 

application could be stopped by calling application: stop (Application) at all involved nodes. 
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Failover: 

 If the node where the application is running goes down, the application is restarted after 

the specified time at the next node in the NodeList by the application master calling Module: start 

(normal, StartArgs) at that node. This is called failover. When linc@s1 goes down, the application 

master will call the callback function, linc: start (normal, _StartArgs) at S2, if  linc@s2 could not 

be started then the application will be started from S3. 

 If the LINC-Switch application at linc@s2 goes down, then the application master at S3 

will start it at linc@s3 by calling linc: start (normal, _StartArgs) at S3. 

 

Figure 5 Failover and Takeover of application in Distributed Erlang 
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Takeover: 

 If a node which is having higher priority according to distributed parameter is started, then 

the distributed application currently running from a lower priority node will be stopped and starts 

running from the higher priority new node. This is known as takeover. The application is taken 

over to new higher priority node by the application master at that node calling Module: start 

({takeover, Node], StartArgs) where Node is the old node. 

 When LINC-Switch application is running from linc@s3, if we restart the application on 

linc@s1, the application master will call linc: start (takeover, _OtherNode}, []) from linc@s1 and 

causes LINC application to stop at linc@s3 and made it run from linc@s1. The failover and 

takeover events are portrayed in the following figure 5: 
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Chapter 7:  Experimental Setup 

 The LINC switch is installed on three PCs, communicating nodes h1 and h2 are connected 

with all three switches. The kernel parameter is configured in such a way that S1 will be primary 

switch and S2, S3 are mandatory nodes having priority in descending order. The Switches are 

started at once and the primary switch will wait for other mandatory switches to start up, once all 

the mandatory   nodes started, it will connect with the OpenFlow controller and waiting for packets 

to be forwarded through it as shown in the figure 6. 

 

Figure 6 Three switches are started and only S1 will be in running state, top left terminal belongs to controller 
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 The host1 starts sending packets to host2 through switch S1. The controller installs flow 

entries in the switch and the switch forwards the packets based on the flow table entries. If the 

switch S1 fails, then dist_ac of S2 waits for Time_out milliseconds for the node S1 to restart again, 

if S1 didnôt start within that interval then the switch S2 will be started automatically by the dist_ac 

at S2. Again if S2 fails, then S3 will start after Time_out milliseconds. If S1 restarts again, then S3 

will exit and the switch functionality will be taken over by S1 as it is having highest priority. The 

Erlang distribution ensures that at any instant of time only one switch will function and forward 

the packets between connected nodes. 

7.1 Topology on GENI 

 The Global environment for Network Innovations (GENI) is a suit of research 

infrastructure available for networking and distributed systems research, funded by National 

Science foundation [24]. It is a geographically distributed research network/test bed which 

contains diverse networking resources and supports simultaneous experiments and allows end 

users to use and exploit the experimental protocols.  The experimental topology is implemented 

and tested on the ProtoGeni test bed deployed on the GENI which is based on Emulab facility.   

 The LINC switch application is implemented on three PCs   pc529.emulab.net, 

pc541.emulab.net and pc557.emulab.net as a distributed application. The Open Flow controller 

application is running on pc534.emulab.net.  The communicating hosts are pc515.emulab.net and 

pc560.emulab.net. The topology is illustrated in figure 7.  
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 The kernel parameter of the sys.config file is configured to make an application as a 

distributed is generalized as follows: 

[{kernel,  

[{distributed, [{AppName, TimeOutBeforeRestart, NodeList}]}, 

{sync_nodes_mandatory, NecessaryNodes},  

{sync_nodes_optional, OptionalNodes}, 

{sync_nodes_timeout, MaxTime} 

]}].  

 

 During our experiments, we have set the parameters of fault tolerance as follows on S1: 

 

[{kernel, 

  [{distributed, [{linc, 5000, ['linc@s1', 'linc@s2', 'linc@s3']}]}, 

    {sync_nodes_mandatory, ['linc@s2', 'linc@s3']}, 

    {sync_nodes_timeout, 5000}]}]. 

 

 In the same way on S2: 

 

[{kernel, 

  [{distributed, [{linc, 5000, ['linc@s1', 'linc@s2', 'linc@s3']}]}, 

    {sync_nodes_mandatory, ['linc@s1', 'linc@s3']}, 

    {sync_nodes_timeout, 5000}]}]. 

 

 And on S3 as: 

 

[{kernel, 

  [{distributed, [{linc, 5000, ['linc@s1', 'linc@s2', 'linc@s3']}]}, 

    {sync_nodes_mandatory, ['linc@s1', 'linc@s2']}, 

    {sync_nodes_timeout, 5000}]}]. 

 

 Corresponding to 

 
Timeout 

BeforeRestart NodeList Necessary Nodes  MaxTime 

5000 msec S1 (primary), 

S2, S3 

S2 and S3 5000 msec 

 
Table 1Kernel Parameters 
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Figure 7 Distributed Fault-Tolerant system of LINC-Switches on GENI with Non- OpenFlow connect to connect 

host1 and host2 to the LINC-Switches 

 The LINC switch is started on three nodes linc@s1 (pc529.emulab.net), linc@s2 

(pc541.emulab.net), linc@s3 (pc557.emulab.net) as a distributed and embedded application at the 

same time, but it starts running on linc@s1 and connected to the controller running on 

pc534.emukab.net.  The host1 and host2 are now forwarding their data through linc@s1.  If the 

LINC application is stopped by quitting using CTRL + G and q, then LINC application is start run 

(fail over) from linc@s2, which is a secondary node having next higher priority and connected 

with the controller. Now the host1 and host2 are communicating through it.  If the LINC switch at 

linc@s2 fails, it will  run from linc@s3 by the dist_ac at S3 (fail over again).  If the LINC switch 

on the main node linc@s1 comes up alive and restarted, then the LINC application on the lower 
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priority secondary node linc@s3 will exit  and stop running and start running from linc@s1 

(takeover). 

7.2 Measurements 

  The distribution feature is tested with host1 sending ping (ICMP request) packets to host2 

through the LINC-Switch implemented as a distributed application on the three nodes but running 

from only one node at any time. 

  Figure 8 illustrates the tick message exchange between the Erlang nodes during normal 

operation. S1 is the primary switch handling the data transmissions. S2 and S3 are started but not 

in running state. S1 and S2 are the back-up nodes waiting for the other nodes to die. In distributed 

Erlang the dist_ac process classifies an application into running state from start state.  The global 

module makes sure that the application will run on only one node at anytime. 

 

Figure 8 LINC-Switches on three nodes started and sending Tick messages to each other; The LINC-Switch at S1 is 

running 
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  When S1 fails, the other nodes linc@s2 and linc@s3 will not receive tick messages from 

linc@s1. If linc@s2 and linc@s3 did not receive four consecutive tick messages then they considers 

that linc@s1 is dead and application master at S2 will start the LINC on S2 because it is having 

next priority to S1. This is illustrated in figure 9. 

 As soon as secondary node S2 starts running, it connects with the controller and exchange 

Hello messages with it. Once the controller sets the flow in S2,  ping exchange starts between host1 

and host2. We measured the number of ping messages lost during the failover time frame as shown 

in figure 12. 

 

Figure 9 LINC-Switche S1 stopped working and no tick messages seen from it, so LINC-Switch at S2 will be started 

by dist_ac (failover) 
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Figure 10 LINC-Switche S2 stopped working and no tick messages seen from it, so LINC-Switch at S3 will be 

started by dist_ac (failover) 

  Again if S2 fails, S3 will come to running state, connect with controller and resume 

forwarding the packets between host1 and host2 as in figure 10.  

 

Figure 11 While LINC-Switche on S3 is running, if LINC-Switch at S1 restarts then LINC-Switch at S3 will exit and 

S1 takesover. 
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  When S3 is running, if S1 is restarted S3 will stop working and exit as it is having lower 

priority than S1.  Figure 11 shows the S1 taking over the forwarding plane from S3 when back 

available.  

  Erlang system ensures such a primary node to take over from the secondary nodes when 

available again from dead state. 

  We measured the time gap between a failure of a software switch and the time that the 

secondary switch taking over the forwarding plane. The main goal is to determine how many 

packets of supported flows may be dropped during a failover event. This time gap has the following 

delay components. 

i. time to detect failure of S1;  

ii. time for S2 to go from ñstartò to ñrunningò; 

iii.  time for the ping requests to get directed to S2; 

iv. time for the S2 to connect with the controller;  

v. time delay until flows become active in the S2. 

 

7.2.1 TOPOLOGY ON GENI: connectivity with non-OpenFlow switches 

  The delay elements are bundled into one measurement in this study in order to present the 

potential impact of data loss during a failover and take-over situation. We have conducted a ping-

based measurement between host1 and host2 similar to the study in [11]. When failover or takeover 

happens, we found that on an average 42 pings were missing as the hardware (non- OpenFlow) 

switches on GENI testbed used to connect host1 and host2 to the redundant switch architecture take 

time to accomplish MAC learning as the path which connects host1 to host2 changes. For example 
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when S1 is running, the path to be traversed by the packets is host1 - S1 - host2 and when failover 

happens to S2 now the path is host1 - S2 - host2. The hosts are moved from one physical port to 

another: the new port-MAC mapping will be updated only after the expiration of MAC-aging time 

in the hardware switches.  

 MAC Age Time refers to the number of seconds a MAC address the switch has learned 

remains in the switchôs address table before being aged out (deleted). The default time interval 

preferred by the network administrators is 300 sec as per the HP manual [25]. 

 

Trial 

No. 

S1-S2 S2-S3 S3-S1 

No. 

of 

Pings 

lost 

RTT 

RTT * 

(No.of 

Pings 

lost) 

No. 

of 

Pings 

lost 

RTT 

RTT * 

(No.of 

Pings 

lost) 

No. 

of 

Pings 

lost 

RTT 

RTT * 

(No.of 

Pings 

lost) 

1 32 1.424 45.568 41 1.551 63.55 49 1.5151 74.235 

2 30 1.320 39.6 38 1.304 50.92 47 1.403 65.941 

3 33 1.370 45.21 39 1.348 52.572 27 1.432 38.664 

4 50 1.381 69.05 50 1.249 62.45 54 1.339 72.306 

5 46 1.329 61.134 45 1.382 62.19 29 1.341 38.889 

6 44 1.334 58.696 35 1.205 42.175 38 1.325 50.35 

7 43 1.241 53.363 42 1.185 49.77 49 1.291 63.259 

8 53 1.256 66.568 28 1.261 35.308 55 1.438 79.09 

9 44 1.356 59.664 46 1.316 60.536 35 1.226 42.91 

10 49 1.247 61.103 50 1.362 68.1 29 1.315 38.135 

Avg 42.4 1.3258 55.9956 41.4 1.3163 57.000 41.2 1.3625 56.3779 

Table 2 Results of sending of 200 Pings form host1 to host2 and making failover happens between S1 to S2 , S2 to 

S3 and takeover from S3 to S1 when Non-OpenFlow connect is used to connect hosts to fault-tolerant system. 

TimeOutBeforeRestart= 5000msec 
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 The Mac-Aging should be set appropriately. Too long aging interval may cause the MAC- 

address table to retain outdated entries, exhaust the MAC address table resources, the following 

table shows the experiments results obtained on GENI test bed with the HP Procurve 5406 Switch 

used as a connecting device to connect host1 and host2 to the fault-tolerant architecture. 

 

Figure 12 Measurements of failover and takeover times in terms of number of lost pings normalized with the average 

recorded RTT when HW Switches are used to connect hosts to fault-tolerant system with 

TimeOutBeforeRestart=5000 msec 

 

7.2.2 TOPOLOGY ON GENI: connectivity with OVS 

  As MAC-Aging time has serious impact on the number pings getting lost in the previous 

experiment, we want to know how much we could reduce the loss of ping replies when failover or 

take over happens by varying the MAC-Aging time of the switch. AS we have no access to hardware 

switchôs command line interface (CLI) to change the MAC-aging time on GENI, we repeated the 

same topology on GENI with the OpenvSwitch running from prebuilt image VMs to connect host1 
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and host2 to fault-tolerant switching architecture system. The ping test is conducted by setting 

various MAC-aging times on the OVS bridges which connect hosts to the redundant LINC-

Switches. We observed that the number of pings lost was minimum (15) and remains constant for 

MAC-aging-time from 1 to 15 seconds after that it shows increase in number of pings lost with 

increase in MAC-aging time as shown in figure 15. It shows that it takes at least 15 seconds to 

update the mac table entries. We conducted the tests only till MAC-aging-time equal to 30 seconds 

as we want to know how much we could reduce the loss by setting lower mac-aging-time. The 

default value for the mac-aging-time is 300 seconds as described in the OpenvSwitch manual [26].  

  We have implemented the same topology by installing LINC-Switch on three VMs on a 

Xen-cluster from our Laboratory and connected host1 and host2 to the fault-tolerant LINC-

Switches via the bridges xapi1 and xapi2 of the default switch OVS on the Xen hypervisor. We 

repeated the ping measurements by setting different MAC-aging-time on the bridges xapi1 and 

xapi2 as in figure13 and observed that we lost less number of pings with minimum values of MAC-

aging-times. 

 

Figure 13 Mac-aging time can bet to values between 15 to 3600 seconds using ovs-vsctl 

 

  The ovs-vswitchd daemon controls and manages the OpenvSwitch available on the local 

machine. The utility ovs-appctl is used to configure and run ovs daemons. The command óovs-
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appctl fdb/showô with bridge name will lists the MAC address/VLAN pair learned by the bridge 

along with port number to which the host belonging to the MAC address is attached and the age 

of the entry in seconds as in figure 14. 

 

Figure 14  MAC-table learned by the bridge xapi1of OVS1 

 

Mac-age in seconds No. of Pings lost (GENI) No. of Pings lost (Xen) 

1 15.46666667 15.625 

5 15.46666667 15.46666667 

10 15.46666667 15.4 

15 15.4 15.73333333 

20 20.53333333 20.66666667 

25 25.86666667 25.6 

30 28.33333333 30.46666667 

Table 3 Results of sending Pings form host1 to host2 and making failover happens between S1 to S2, S2 to S3 and 

takeover from S3 to S1 when OVS is used to connect hosts to fault-tolerant system with learning switch mode on 

GENI and on Xen for various Mac-Aging times. 
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Figure 15 No. of Ping replies are constant at 15 when mac-aging time is from 1 to 15 seconds on OVS 

 

7.2.3 TOPOLOGY ON GENI: connectivity with LINC  

  We also used LINC-Switches to connect host1 and host2 to the fault-tolerant architecture 

instead of OVS and used an OpenFlow controller which modifies the flow entries when the hosts 

are moved from one port another as depicted in figure 16. The topology of which is shown in figure 

17.  When failover happens the controller modifies the flow entries in the LINC-Switches which 

connects the hosts to fault-tolerant architecture and causes the ping packets to reach the new 

switchôs input port immediately. The following figure shows the controller output when the flow 

entries are being modified when host2 is moved from one port to another when fail over/take over 

happens. The RTT values are measured by sending a count of 200 ping requests from host1 to host2 

and the numbers of pings lost during the failover/takeover are also recorded. 
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Figure 16  Flow entries are modified by the controller when it sees the MAC address coming from different input port 

than before by using the message modify_strict 

  It is observed that with HW switches to connect hosts to fault-tolerant system, the average 

number of ping replies lost were 41.6 å 42 and with LINC-Switches to connect hosts to the fault-

tolerant system, it was about 5.6 å 6  when TimeOutBefore Restart =5000 msec. 

 

Figure 17Hardware switches used on GENI to connect communicating hosts are replaced by OpenFlow   switches 

OVS / LINC. 
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  In Erlang OTP with distributed application, when we made the TimeOutBeforeRestart value 

of kernel parameter equal to zero, there was no packet loss or very minimum loss and the average 

was 0.4 å 0. The following tables 4 and 5 shows the results of the experiment with LINC-Switch to 

connect host1 and host2 to fault-tolerant switches with TimeOutBeforeRestart=5000 msec and 0 

msec respectively. The figures 18 and 19 show the graph of normalized values of pings lost with 

Avg. RTT at different test runs. 

Trial 

No. 

S1-S2 S2-S3 S3-S1 

No. 

of 

Pings 

lost 

RTT 

RTT * 

(No.of 

Pings 

lost) 

No. 

of 

Pings 

lost 

RTT 

RTT * 

(No.of 

Pings 

lost) 

No. 

of 

Pings 

lost 

RTT 

RTT * 

(No.of 

Pings 

lost) 

1 5 6.199 30.995 6 6.232 37.392 7 6.038 42.266 

2 6 6.634 39.804 5 6.264 31.32 7 6.424 44.968 

3 5 6.231 31.155 5 6.098 30.49 6 6.462 38.772 

4 5 6.592 32.96 5 6.139 30.695 6 6.008 36.048 

5 5 6.153 30.765 5 6.128 30.64 6 6.463 38.778 

6 5 6.162 30.81 5 6.222 31.11 7 6.494 45.458 

7 5 6.213 31.065 6 4.651 27.906 7 6.527 45.689 

8 5 6.031 30.155 6 5.64 33.84 7 6.016 42.112 

9 5 6.445 32.225 5 5.921 29.605 6 6.323 37.938 

10 5 6.207 31.035 5 6.017 30.085 6 6.402 38.412 

Avg 5.1 6.286 32.0969 5.3 5.9312 31.3083 6.5 6.3157 41.0441 

 

Table 4 Results of sending of 200 Pings form host1 to host2 and making failover happens between S1 to S2, S2 to S3 

and takeover from S3 to S1 when LINC-Switch with OF Controller is used to connect hosts to fault-tolerant system. 

TimeOutBeforeRestart= 5000msec 
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Figure 18 Measurements of failover and takeover times in terms of number of lost pings normalized with the 

average recorded RTT when LINC-Switches are used to connect hosts to fault-tolerant system with 

TimeOutBeforeRestart=5000 msec 

Trial 

No. 

S1-S2 S2-S3 S3-S1 

No. 

of 

Pings 

lost 

RTT 

RTT * 

(No.of 

Pings 

lost) 

No. 

of 

Pings 

lost 

RTT 

RTT * 

(No.of 

Pings 

lost) 

No. 

of 

Pings 

lost 

RTT 

RTT * 

(No.of 

Pings 

lost) 

1 0 5.963 0 0 6.053 0 0 6.346 0 

2 0 6.016 0 0 6.314 0 1 6.383 6.383 

3 0 6.317 0 0 6.081 0 1 6.049 6.049 

4 1 6.443 6.443 0 6.229 0 1 5.95 5.95 

5 1 6.425 6.425 0 6.166 0 1 6.223 6.223 

6 1 6.606 6.606 0 6.158 0 1 6.426 6.426 

7 0 6.309 0 0 6.447 0 1 6.213 6.213 

8 0 6.349 0 0 6.092 0 1 6.705 6.705 

9 0 6.079 0 0 6.315 0 1 6.443 6.443 

10 0 6.221 0 1 6.519 6.519 1 6.451 6.451 

Avg 0.3 6.2728 1.9474 0.1 6.2374 0.6519 0.9 6.3189 5.6843 

 

Table 5 Results of sending of 200 Pings form host1 to host2 and making failover happens between S1 to S2, S2 to S3 

and takeover from S3 to S1 when LINC-Switch with OF Controller is used to connect hosts to fault-tolerant system. 

TimeOutBeforeRestart= 0msec 
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Figure 19 Measurements of failover and takeover times in terms of number of lost pings normalized with the 

average recorded RTT when LINC-Switches are used to connect hosts to fault-tolerant system with 

TimeOutBeforeRestart= 0 msec 
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Chapter 8 Conclusion 

 Fault tolerance is achieved by creating a redundancy based distributed system of LINC 

switches and using the built-in features of distributed Erlang. Furthermore, the built-in features of 

Erlang has helped to achieve fail-over and take-over functions to ensure a fault-tolerant system 

implementation. We have presented a sample experiment and measurements of time duration for 

a failover and take-over of  LINC switches with different experimental set ups. 

Although a fault-tolerance scheme can be realized among a redundant set of other software 

switches as well as hardware counterparts, Erlang shows some ease of programmability and fast 

deployment opportunity. Our goal is to continue the investigation of distributed system of software 

switches and the performance benefits realized through support of fault tolerance for example, the 

fault-tolerant switching architecture could be tested in Hadoop MapReduce frame work to connect 

nodes in the cluster to add more resiliency to the applications using Hadoop framework . 
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