

COPYRIGHT BY

Gandhimathi Velusamy

Spring Graduation- April, 2014

OPENFLOW-BASED DISTRIBUTED AND FAULT -TOLERANT SOFTWARE

SWITCH ARCHITECTURE

A Thesis

Submitted to

The Faculty of the Department of Engineering Technology

University of Houston

In Partial Fulfillment

Of the Requirements for the Degree

Of

Master of Science in Engineering Technology

By

Gandhimathi Velusamy

April, 2014

 OPENFLOW-BASED DISTRIBUTED AND FAULT-TOLERANT SOFTWARE SWITCH

ARCHITECTURE

An Abstract of a Thesis

Submitted to

The Faculty of the Department of Engineering Technology

University of Houston

In Partial Fulfillment

Of the Requirements for the Degree

Of

Master of Science in Engineering Technology

By

Gandhimathi Velusamy

Spring, 2014

 ACKNOWLEDGEMENTS

 First and foremost, I would like to express my sincere gratitude to my thesis advisor, Dr.

Deniz Gurkan, for giving me research opportunities and supporting me throughout the entire thesis

work. She has been the driving force behind all of my achievements at UOH. She has been my

inspiration to carry out the research in OpenFlow-based networking field. She has motivated and

encouraged me to participate and present my research work in conferences. Without her

continuous support, countless efforts and encouragement, this work would be impossible.

 I would like to thank my committee members, Dr. Fatima Merchant and Dr. Ricardo Lent,

for showing interest and reviewing my research work.

 I would like to thank University library for all the literature support and resources. I would

also like to thank every member of the Networking lab research group for their support and

motivation throughout my studies at UOH.

 I would like to thank linc-dev, ProtoGeni-users mailing list and Hebert Fred, author of

ñLearn You Some Erlang for Great Goodò, Dr. Sandya Narayan, Mr. Shivaram Mysore, Infoblox

Inc., for clarifying my doubts in various courses time during my thesis. Last but not the least, I

would like to thank my family for supporting me in my work.

Abstract

We are living in the era where each of us is connected with each other virtually across the

globe. We are sharing the information electronically over the internet every second of our day.

There are many networking devices involved in sending the information over the internet. They

are routers, gateways, switches, PCs, laptops, handheld devices, etc. The switches are very crucial

elements in delivering packets to the intended recipients. Now the networking field is moving

towards Software Defined Networking and the network elements are being slowly replaced by the

software applications run by OpenFlow protocols. For example the switching functionality in local

area networks could be achieved with software switches like OpenvSwitch (OVS), LINC-Switch,

etc. Now a days the organizations depend on the datacenters to run their services. The application

servers are being run from virtual machines on the hosts to better utilize the computing resources

and make the system more scalable. The application servers need to be continuously available to

run the business for which they are deployed for. Software switches are used to connect virtual

machines as an alternative to Top of Rack switches. If such software switch fails then the

application servers will not be able to connect to its clients. This may severely impact the business

serviced by the application servers, deployed on the virtual machines. For reliable data

connectivity, the switching elements need to be continuously functional. There is a need for

reliable and robust switches to cater the todays networking infrastructure. In this study, the

software switch LINC-Switch is implemented as distributed application on multiple nodes to make

it resilient to failure. The fault-tolerance is achieved by using the distribution properties of the

programming language Erlang. By implementing the switch on three redundant nodes and starting

the application as a distributed application, the switch will be serving its purpose very promptly

by restarting it on other node in case it fails on the current node by using failover/takeover

mechanisms of Erlang. The tolerance to failure of the LINC-Switch is verified with Ping based

experiment on the GENI test bed and on the Xen-cluster in our Lab.

Table of Contents

Abstract .. II

Chapter 1: Introduction ... 1

Chapter 2: Literature Survey .. 3

Chapter 3: Forwarding Elements .. 7

3.1 Self-Learning ... 9

Chapter 4: Software Defined Networking .. 11

4.1 Need for Change in Networking .. 11

4.2 Limitations of Current Network .. 11

4.3 SDN .. 12

4.4 OpenFlow Switches ... 13

4.4.1 Dedicated OpenFlow Switches .. 15

4.4.2 OpenFlow-enabled Switches ... 16

Chapter 5: LINC -Switch .. 17

5.1 Features of Erlang ... 18

5.2 LINC Architecture .. 19

5.3 Distributed LINC-Switch ... 21

Chapter 6: How Distribution is achieved in Erlang ... 23

6.1 Global Module ... 24

6.2 Global group .. 25

6.3 Net _kernel ... 25

6.4 Net_adm ... 26

6.5 Kernel ... 26

6.5 Protocol Behind the Distribution (Distributed Protocol) .. 27

6.6 Starting and Stopping Distributed Applications .. 28

Chapter 7: Experimental Setup .. 31

7.1 Topology on GENI .. 32

7.2 Measurements ... 35

7.2.1 TOPOLOGY ON GENI: connectivity with non-OpenFlow switches 38

7.2.2 TOPOLOGY ON GENI: connectivity with OVS .. 40

7.2.3 TOPOLOGY ON GENI: connectivity with LINC .. 43

Chapter 8 Conclusion ... 48

List of Figures

Figure 1 Role of the Switches in Networking ... 7

Figure 2 OpenFlow Switch, flows are inserted by the Controller from remote .. 15

Figure 3 Software Components of LINC-Switch ... 19

Figure 4 LINC-Switches as Distributed Switch .. 21

Figure 5 Failover and Takeover of application in Distributed Erlang .. 29

Figure 6 Three switches are started and only S1 will be in running state ... 31

Figure 7 Distributed Fault-Tolerant system of LINC-Switches on GENI with Non- OpenFlow connect

to connect host1 and host2 to the LINC-Switches ... 34

Figure 8 LINC-Switches on three nodes started and sending Tick messages to each other; The LINC-

Switch at S1 is running... 35

Figure 9 LINC-Switche S1 stopped working and no tick messages seen from it, so LINC-Switch at S2

will be started by dist_ac (failover) .. 36

Figure 10 LINC-Switche S2 stopped working and no tick messages seen from it, so LINC-Switch at

S3 will be started by dist_ac (failover) ... 37

Figure 11 While LINC-Switche on S3 is running, if LINC-Switch at S1 restarts then LINC-Switch at

S3 will exit and S1 takesover. .. 37

Figure 12 Measurements of failover and takeover times in terms of number of lost pings normalized

with the average recorded RTT when HW Switches are used to connect hosts to fault-

tolerant system with TimeOutBeforeRestart=5000 msec .. 40

Figure 13 Mac-aging time can bet to values between 15 to 3600 seconds using ovs-vsctl 41

Figure 14 MAC-table learned by the bridge xapi1of OVS1 .. 42

Figure 15 No. of Ping replies are constant at 15 when mac-aging time is from 1 to 15 seconds on

OVS .. 43

Figure 16 Flow entries are modified by the controller when it sees the MAC address coming from

different input port than before by using the message modify_strict .. 44

Figure 17 Hardware switches used on GENI to connect communicating hosts are replaced by

OpenFlow switches OVS / LINC. .. 44

Figure 18 Measurements of failover and takeover times in terms of number of lost pings normalized

with the average recorded RTT when LINC-Switches are used to connect hosts to fault-

tolerant system with TimeOutBeforeRestart=5000 msec .. 46

Figure 19 Measurements of failover and takeover times in terms of number of lost pings normalized

with the average recorded RTT when LINC-Switches are used to connect hosts to fault-

tolerant system with TimeOutBeforeRestart= 0 msec ... 47

1

Chapter 1: Introduction

 There is a paradigm shift about to happen in networking that is being propelled by powerful

network white boxes (e.g. Intelôs Open Network Platform, Pica8) that can be programmed to

replace expensive ASIC-based middle boxes and switches. When networked applications run on

such programmable platforms the application-specific requirements can be fulfilled with more

transparency in the network operations than before. For example, application-dependent flow path

setup is possible with programmability built directly into the application such as a Hadoop-

acceleration using OpenFlow protocol in [1]. Furthermore, such software-based networking

systems can become fault-tolerant and highly available using the vast research and techniques

developed in the area of distributed systems. A distributed system consists of a collection of

autonomous computers connected by a network while running distributed middleware. The system

enables the computers to share their resources and coordinate their activities so that the entire

distributed system appears to a user as a single fabric. In this respect, one way to achieve fault

tolerance is through introduction of redundancy, namely, running multiple software switches that

are part of a distributed system. If one software switch fails, another one can start running

(failover). The cost to host such extra software switches on the system is much less than the

hardware counterparts.

 To the best of our knowledge, there are two leading open source implementations of

software switches: OpenvSwitch (written in C), and LINC (open-sourced by [2] and written in

Erlang). Erlang programming language has built-in support for concurrency and distribution [3].

2

An Erlang system can instantiate multiple nodes and provide the abstractions to specify a failover

and take-over mechanism between the nodes. An Erlang node has a built-in protocol to

communicate with another Erlang node.

 This thesis presents a novel distributed software switch architecture that guarantees fault

tolerance using the Erlang OTP (Open Telecommunications Platform) with OpenFlow-capable

LINC switches.

 We present the functionality of switches in transmitting the frames between two end hosts

in general, then the advantage of moving into Software Defined Networking, functionality of

OpenFlow switches. Then we explain Erlangô distributed system components and relevant

operations. Next, we describe our experimental setup realized on the GENI (Global Environment

for Network Innovation) infrastructure followed by our measurements of failover and take-over

times. We conclude our work with some future work discussions.

3

Chapter 2: Literature Survey

Fault-tolerance is achieved in distributed systems by using redundant hardware/software

for a long time in the history. To achieve fault-tolerance in Tandem computers, the hardware

architecture was designed using the following principles [4]:

They system was decomposed into hierarchical modules having Mean Time Between

Failures is more than a year; the modules sent Keep alive messages to other modules to let their

presence; The modules exhibited fail-fast behavior that means they should work right or they

should fail; Extra redundant modules were configured to pick up the loads of the failed modules

with the takeover times of seconds to make the MTBF to be of millennia. By adopting above

principles a MTBF of decades or centuries was achieved.

The same principles were used in designing the Erlang OTP libraries used to build fault-

tolerant applications like AXD301in Ericson [5]. Fault-tolerance could be achieved by detecting

failure of one machine by the other machine in the network provided if it has sufficient data to

carry over the job of failed machine without noticed by its users.

In [6], a survey has been made to analyze the techniques used in replicating the

objects/services in distributed systems during mid-eighteen century. It claims that linearizability

as the correctness criterion for replicated services which gives an illusion of replicated objects as

a single system to its clients. The failure over of one object to other will be transparent to the client.

There are two techniques explained in the paper namely primary backup and active backup for

replicating objects/services.

4

 Distribution will be considered for sharing the resources like data, hardware or computing

in an organization as well as to make the system fault-tolerant to failure. It is highly impossible to

achieve fault-tolerance without redundancy, distribution is considered as a means for achieving

fault-tolerance by replicating the system on more machines. In Delta-4 project [6], fault-tolerance

is achieved by replicating software components on different machines interconnected by local area

network. In this project, a sub layer protocol called Inter Replica Protocol (IRP) is used to

coordinate messages exchanged between replicated endpoints on different nodes and hides the

replication to the endpoints of the messages. It also emphasized that for the fault-tolerance to work

smoothly, the distribution has to handle the network partitioning.

 Fault-tolerance in switched networks has been studied from a distributed system

perspective since the beginnings of networks. The most common solution to switch failures has

been introduction of redundancy through extra ports, interfaces, and switch hardware [7].

 Vicis, an ElastIC-style Network On the Chip (NoC) can tolerate loss of many network

components by wear out introduced hard faults by employing N- Modular Redundancy based

solutions in its network and router replications [8]. Built-in-self test is used for locating the hard

faults and techniques like port swapping is used to mitigate the faults. The routers work together

to run distribution algorithms to solve network-wide problems as well as protecting network from

critical failures occurring in individual routers.

To avoid Layer 2 loop formation caused by the redundant connection of switches, the

following protocols were used in the Clemson University Network [9]:

5

¶ Unidirectional Link Detection (UDLD) prevents one-way links to ensure no loops.

¶ Hot Standby Router Protocol (HSRP) makes it possible for redundant routers to act as a

single virtual router.

¶ Common Spanning Tree (CST) implements one spanning tree for an entire physical

extended LAN.

¶ Enhanced Interior Gateway Routing Protocol (EIGRP) for routing based on distance-vector

IP routing.

¶ Per VLAN Spanning Tree plus (PVST) allows distinct spanning trees to be formed on

multiple VLANS on the same physical network.

 Continuing on this premise of redundancy, some considerations on when and how failover

may happen are: ñhot standbyò where the secondary takes over with no data loss; ñwarm standbyò

where secondary takes over with some data loss; ñcold standbyò where secondary is started up

when primary is detected to be off/failed/non-functional and then switched into services.

In [10], an industrial case study has been made in the project called ADVERTISE, a

distributed system for advertisement transmission to on-customerïhome set-top boxes (STB) over

Digital TV network (iDTV) of a cable operator. The system was built using Erlang OTP. The size

of the communication network was a challenge to manage as it had 100,000 customers and it was

operational for 24/7. The system was designed to be resilient to node failure as well as network

partitioning. It has been explained in [10] how to protect the distributed system from such failures.

The CAP theorem was explained and the possibilities of having the properties together was

6

discussed. In a distributed system that share data, consistency should be preserved by not

permitting two different operations on the same data at any time. Consistency is achieved by

transaction mechanism which updated the data on all nodes beforehand. Availability is the

requirement that the system should present to answer the requests sent from the clients. The

answers should have meaning full values other than time out or not reachable messages. Partition-

tolerance is the key property in CAP theorem. The resiliency the system possess against network

partitions. If the nodes cannot send or receive messages due to the unavailability of network then

the previous two properties could not be achieved.

 Fault tolerance in OpenFlow-based networks has been studied recently from controller

failure perspective [11]. The failover and take-over during a switch failure is possible by creating

copies or duplicate threads of software switches with an underlying distributed redundancy

management system such as a CPRecovery component and others listed in [11].

7

Chapter 3: Forwarding Elements

The role of the switch is to receive the incoming Data-link layer frames and forward them

on to outgoing links as shown in figure1. The hosts and routers send and receive packets via

switches in a LAN and the switches are transparent to them.

Figure 1 Role of the Switches in Networking

 The two main functions of the switches are [12]:

1. Filtering

The switch uses filtering function to decide whether to forward or drop an incoming

frame.

2. Forwarding

The switch uses the forwarding function to decide to which output port it has to

send the packet to reach a particular destination based on the incoming port and destination

MAC address.

8

Both Filtering and Forwarding are done with a switch table also known as MAC-table. The

MAC-table contains entries for some but not necessarily all hosts and routers on a LAN. The

MAC-table entry contains 1. MAC-address of the host connected to an interface, 2. The interface

Number and 3. The time at which the entry was placed in the MAC-table. The switch forwards

packet arriving at its input port to one of its output port based on the 48 bit destination MAC

address in the frame.

 The switch has three options to deal with a packet which arrives on an interface x.

I. Broadcasting: If there is no entry found in the MAC-table for the destination MAC address

found in the frame, and then switch forwards the frame to all of its interfaces except to the

interface on which it has arrived in.

II. Filtering : If there is entry for the MAC-address contained in the destination MAC field

but it is associated to x itself, then the switch simply drops the frame.

III. Forwarding : There is an entry in the table for the MAC-address contained in destination

MAC field but it is associating with an interface y, which is different than x. In this case

the switch directs the frame to the interface y.

 The interfaces of the switches have buffers attached to them to store the incoming frames

if they arrive faster at the interface than the processing speed of the switch(the forwarding speed

of the switch) to avoid the packets from being dropped at interfaces.

9

3.1 Self-Learning

The switch builds the Mac-table by self-learning that means it builds the table

automatically and dynamically without the intervention of network administrator or any

configuration protocol. The table will be built as follows:

I. The switch table is initially empty.

II. The switch stores the following details when it receives a packet at its interface very first

time: 1. The MAC-address in the frameôs source address field, 2. the interface on which

the frame came in, 3. the time at which the entry is created. If every host in the LAN sends

a frame, then every host will be recorded in the table. There will be a timer with the value

of ómac-aging-time is started. Whenever the switch receives a frame for the MAC-address

available in the table from the same interface, it updates the time it received and restarts

the timer.

III. The switch deletes an entry for a MAC-address if it didnôt receive any frame before the

aging time expires from the host for which the MAC-address belongs to.

 It also update the entries for any changes like if a host is moved from one port to another

or a host is replaced by another host with a different MAC address. The port to MAC-address

association will be updated for the changes once the MAC-aging time expires. The aging

mechanism helps the switch to keep only the entries for current active hosts on the network. The

aging time should be selected appropriate to the requirements. Too lengthy aging time keeps the

entries for longer times in the table and thus exhausts the table space and also failed to update its

10

entries to accommodate the latest network changes. On the other hand too shot aging interval may

result in removal of valid entries, causing unnecessary broadcasts, which may affect switch

performance. The mac-aging time selected should be longer than the maximum interval in which

the hosts normally transmits packets to avoid flooding in a network. For example, the traffic to the

printers is less frequent, so the aging should be kept long to avoid flooding if the printer is idle. In

the same way in data centers the servers connected to the switches are stable, so lengthy aging

time avoids frequent flooding and thus helps to utilize the bandwidth for other useful traffic.

11

Chapter 4: Software Defined Networking

4.1 Need for Change in Networking

 The conventional networks are built with Ethernet switches connected in hierarchical

structure to meet the static Client-Server model of computing. But they are not suitable for todayôs

dynamic nature of computing and storage needs. The outburst of mobile devices, content and

server virtualization and cloud services are among the key trends driving the need for new network

paradigm [13].

4.2 Limitations of Current Network

 The following are the limitations of current networks to meet the challenges imposed by

the evolving computing and storage requirements, datacenters, campus and carrier environments

[13].

Complexity: Adding new devices or to support moving devices and implementing network-wide

policies are complex, time consuming, needs manual efforts. So network changes will results in

service interruption and normally discouraged to undergo.

Lack of ability to -Scale: The networks become more complex with the addition of hundreds and

thousands of network devices that must be configured and managed to meet the requirements of

datacenterôs dynamic traffic. The time-honored approach of over subscription to provision

scalability is not efficient with todayôs unpredictable data center traffic.

12

Vendor Dependence: Enterprises are willing to deploy new capabilities and services to cater their

business needs or user demands very quickly but the lengthy vendorôs equipment product cycles,

lack of standard, open interfaces limit the ability of the network operators to tailor their network

to their custom environment.

4.3 SDN

 According to the definition given by Open Network Foundation [13], Software-Defined

Networking is an emerging architecture that is dynamically manageable, cost effective, and

adaptable, making it ideal for the high bandwidth, dynamic nature of todayôs applications. SDN

architecture separates the network control plane from forwarding plane. By decoupling the control

functionality from forwarding functionality, the network control has made directly programmable.

As the switches are now concentrating only forwarding, the speed of the forwarding will be

increased and the efficiency of the switches are improved. It also abstracts the underlying

infrastructure to applications and network services. The OpenFlow protocol is a foundation

element to build SDN solutions. The architecture offers the following features:

¶ Directly Programmable: Network control is directly programmable because it is

decoupled from forwarding functions.

¶ Agile: Abstracting control from forwarding administrators are able to dynamically adjust

network-wide traffic flow to meet changing needs.

¶ Centrally managed: The software based SDN controllers maintain a global view of the

network by centralizing the intelligence in them.

13

¶ Programmatically configured: Network managers can configure, manage, secure and

optimize the network resources very swiftly via dynamic programs on their own without

depending on proprietary software.

¶ Open-standards based and vendor-neutral: When implementing through open

standards, SDN simplifies network design and operation because instructions are provided

by SDN controllers instead of multiple, vendor specific devices and protocols.

¶ Reduces Capital Expenditure: By allowing network functions to run on off-the shelf

hardware SDN helps to reduce the capital expenditure spent on networking infrastructure.

¶ Reduces Operational Expenditure: SDN has made it possible to design, deploy, manage

and scale networks with reduced operational cost by supporting automation and algorithm

control through increased programmability

¶ Enable Innovation: It helps organizations to create new types of applications, services and

business models.

4.4 OpenFlow Switches

 The OpenFlow protocol allows using any type and brand of data plane devices, because

the underlying network hardware is addressable through the common abstraction it provides.

Importantly, it facilitates the use of bare metal switches and eliminates traditional vendor lock-in,

and gives the freedom of choice in networking similar to the other areas of IT infrastructure, such

as servers. There are two types of OpenFlow switches.

14

¶ OpenFlow Enabled Switches: Hardware-based commercial switches that use the

TCAM and the Operating system of the switch/router to implement the Flow table

and the OpenFlow protocol. This type of switches supports Layer 2, Layer3 along

with OpenFlow protocol to isolate the experimental traffic from production traffic.

¶ Software-based (Dedicated OpenFlow) Switches: Software-based switches that use

UNIX/Linux systems to implement the entire OpenFlow switch functions. E.g.

OpenvSwitch, LINC-Switch, Indigo, SoftSwitch.

 In general, OpenFlow Switch consists of three parts [14]:

1. A flow Table, with an action associated with each flow entry, which defines how to process

the flow i.e., whether to forward to a particular output port or to drop or to any of reserved

ports.

2. A secure channel that connects the switch to a remote controller, which allows commands

and packets to be exchanged between the switch and the controller.

3. OpenFlow protocol, which provides an open and standard way for a controller to

communicate with the switch.

15

Figure 2 OpenFlow Switch, flows are inserted by the Controller from remote

4.4.1 Dedicated OpenFlow Switches

A dedicated OpenFlow switch is a dump data path element that forwards packet between

ports as dictated by a remote controller as showed in the figure 2. In this environment flows are

broadly defined and are limited by the capabilities of the particular implementation of the flow

table. For example a flow could be a TCP connection, or all packets from a particular IP address

or MAC address. A dedicated OpenFlow switch does not support normal Layer -2 and Layer-3

processing.

 Each Flow entry has a simple action associated with it; the three basic actions are:

1. Forward this flowôs packet to a given port or ports. Thus packets are routed through the

network at line rate.

16

2. Encapsulate and forward this flowôs packets to a controller in a secured connection.

Normally first packet in a new flow will be sent to the controller and controller will decide

whether the flow will be added to the table or not. In some cases all the packets could be

sent to controller for processing based on the requirement imposed by the application.

3. Drop this flowôs packets. This could be done for security to avoid denial of service attacks.

4.4.2 OpenFlow-enabled Switches

 When the commercial switches, routers and access pointes are enhanced with OpenFlow

protocol, flow tables and secured channel then they are called as OpenFlow enabled switches.

Normally the flow table will re-use the existing TCAM; the secure channel and protocol will be

ported to run on the switchôs operating system. To isolate experimental traffic from production

traffic the OpenFlow-enabled switches added the fourth action:

4. Forward this flowôs packets through the switchôs normal processing pipeline.

OR, the production traffic and experimental traffic can be isolated by defining separate

VLANs for them. By defining either the above fourth action or adding VLAN tags, the switch will

allow the regular production traffic to be processed in the usual way and at the same time allows

the experimental traffic to be controlled by the way the experimenter wishes to process by the

OpenFlow controller in a manner the experimenter wants to control.

17

Chapter 5: LINC -Switch

 LINC (Link Is Not Closed) is a completely new open-source switching platform available

through flow-forwarding.org, a community promoting free open source Apache 2 license

implementation based on OpenFlow specifications. LINC-Switch is a software switch and ONFôs

OpenFlow version 1.2/1.3 compliant capable Switch with support for OF-Config 1.1 Standard

[15]. OpenFlow protocol separates the control plane from data plane and allows much flexibility

to the applications by implementing control logic using software programming. The OF-Config

protocol allows separating the management functionalities from the OpenFlow switches to have

efficient control over the networking resources like ports to better utilize them [16].

 LINC architecture is designed to use generally-available commodity x86 hardware (COT)

and runs on a various platforms like Linux, Solaris, Windows, MacOS, and FreeBSD with Erlang

runtime. The multiple CPU cores and memory offered by x86 platform allows LINC to scale

gracefully to increase and decrease compute resources. This is essential when many logical

switches are instantiated on a single OpenFlow capable switch. These logical switches can have

resource allocations based on the need.

 LINC was implemented in the functional programming language Erlang, developed by

Ericsson.

18

5.1 Features of Erlang

 The following features offered by Erlang makes it suitable for developing LINC:

¶ Erlang is a functional programming language designed to develop concurrent applications.

Concurrency in Erlang belongs to the language and not to the Operating System [5].

¶ Erlang OTP (Open Telecom Platform) is a large collection of libraries for Erlang that

provides solutions for Networking and Telecommunication problems. E.g. Supervision

trees.

¶ Bit manipulation capabilities of Erlang are suitable for protocol handling and low level

communication.

¶ Erlang has built-in support for process creation and management to simplify concurrent

programming. As Erlang processes are light weight, it needs less computational effort to

create and destroy processes [17].

¶ It allows achieving massive concurrency, i.e thousands of processes can be created without

degrading the performance. Erlang process use share nothing semantics [5] principle and

they communicate among themselves only by passing messages between them. Erlang

processes work on a copy of the data it needs. As there is no data sharing between

concurrent processes, efficiency will be more.

¶ Any Erlang application is made distributed easily by running different parallel processes

on different machines.

19

¶ Erlang makes best use of multi-core architecture available on the machine from which it is

running which makes it best suitable for writing concurrent applications.

5.2 LINC Architecture

The main software blocks of LINC implementation are: OpenFlow Capable Switch,

OpenFlow protocol module and OF_Config module. These are developed as separate applications

and are designed using Erlang OTP principles.

 The of_protocol librarary implements the OpenFlow protocol to define internel OpenFlow

protocol strcutures, data types and enumerations. It affords encode and decode functions for

OpenFlow protocol messages and validates their correctness. The figure 3 describes the software

componets of LINC-Switch.

Figure 3 Software Components of LINC-Switch

20

 The linc library implements the OpenFlow capable switch functionality. It accepts OF-

Config commands and executes them in OpenFlow operational perspective. It handles one or more

OpenFlow Logical Switches that consists of the channel component, replaceable back-ends and

common logical switch logic. The channel componet act as the communication layer between the

OpenFlow Logical Switch and the OpenFlow Controllers and by meeans of TCP/TLS connections

between them. It passes parsed structures received from the OpenFlow Controller to the backend

and forwards encoded messages from OpenFlow Switch to the Controllers.

 The actual logic for switching the packets is implemented in replaceable back-ends. They

manage flow tables, group table, ports, etc. and reply to OpenFlow protocol messages received

from the Controller. LINCôs logical Switch can use any of the available backends with comman

API (gen_switch).

Common switch logic handles switch configuration, manages the channel component and

OpenFlow reosurces like ports and dispatches messages received from the Controller.

The of_config library application implements the OF-Config protocol which handles

parsing, validation and interprets the OF-Config messages received from an OpenFlow

configuration point and sends as commands to the OpenFlow capable switch application ólincô to

configure OpenFlow Capable Switch.

LINC has a supervision tree for fault-tolerance purposes in accordance with the OTP

principles. A supervisor is responsible for starting, stopping and monitoring its child processes.

The supervisor keep its child process alive by restarting them when necessary.

21

5.3 Distributed LINC -Switch

 According to [18], ñDistributed Erlang applications can be implemented on loosely

connected systems of computers with TCP/IP connectivity between themò, LINC-Switch is

implemented on three inter connected multiple nodes to make it behave as a distributed

application to achieve fault-tolerance by utilizing the distribution properties of Erlang. Figure 4

depicts the redundant switch architecture. Fault-tolerance in Erlang applications are achieved as

follows: When LINC-Switch on one node fails, then it will be running from other node (failover)

and when the LINC-Switch on main node comes back again, the LINC-Switch from the back-up

node will exit and stops running (takeover). Failover is the process of restarting an application on

the node other than on the failed node [20].

Figure 4 LINC-Switches as Distributed Switch

22

 Takeover is the process in which the node having higher precedence (main node) takes

over the control when the application is running from a lower precedence secondary node [19].

 We have taken the replication factor as 3 to reduce the probability of failures as given in

[5]. Erlang programming language has inherent distributed system support to enable such functions

and tools to the programmer with mature messaging architecture between the instantiated nodes.

23

Chapter 6: How Distribution is achieved in Erlang

 The Erlang language was designed specifically to develop fault-tolerant systems by

keeping the following points as main criteria [21]:

¶ Isolation between processes

¶ Pure message passing between processes

¶ Ability to detect errors in remote processes

¶ Means to detect the cause for the errors.

 In Erlang, one layer of the system performs the application logic while the other layer

performs the error trapping functionality. It monitors the applications and restores the application

to safe state if it fails. The application structure is formalized in Erlang OTP system by means of

supervisor trees. The supervisor trees define very accurately what should be done in case a process

fails. OTP application organize the task into tree structured group of processes and the processes

in higher level (supervisor) monitor the processes in lower level (worker) of the tree structure and

correct if any error occurs in the worker process[17]. The worker processes perform the

computation.

 A distributed Erlang system consists of many Erlang run time systems known as nodes,

communicating with each other. Each Erlang node is identified by an atom in the format óname@

hostnameô, where name is supplied by the user at the time of starting Erlang shell and hostname

is full hostname if long name is used or part of the hostname if short name is used.

24

 Erlang Port Mapper daemon (EPMD) is started when an Erlang system is started, which is

responsible for mapping the hostnames to IP addresses. The security of the networked Erlang

nodes is ensured by setting the atom known as magic cookie. The nodes are allowed to

communicate with each other only if their magic cookies match.

 The Open Telecom platform (OTP) framework provides takeover and fail over

mechanisms to make an Erlang distributed application as a fault tolerant system. The failover is a

mechanism of starting the application on a different node than on a node where it is failed. The

takeover is a mechanism of running back the application on a dead main node by gracefully

terminating the application on backup/secondary nodes. The modules global, global group,

net_adm, net_kernel, kernel are involved in making an Erlang application as distributed.

6.1 Global Module

 Global Module serves as a global name registration facility. It servers the following

functionalities through the server called ôglobal_name_serverô, which resides on each node and it

is started automatically when an Erlang node is started. The global denotes the set of nodes

connected together. The global module takes care of the following functionalities:

¶ Registration of global names

¶ Global locks,

¶ Maintenance of fully connected network

 The ability of registering the names globally is the central concept in distributed

programming. A registered name is an alias for a process identifier (PID). The global name server

25

monitors the registered process ids. If a process terminated, the associated PID with the process

will be unregistered. The registered names are stored in replicated global name tables in all the

nodes. Any change in a name table will results in same change in all the tables. The global name

server continuously monitors the changes in node configuration. When a node, on which globally

registered process goes down, the name will be globally unregistered. The global name server

subscribes to node up and node down messages sent from the kernel.

6.2 Global group

 This module is responsible for grouping nodes to Global Name registration Group. This

makes it possible to group the nodes into partitions, each partition having its own global name

space refer to global. These partitions are called global groups.

6.3 Net _kernel

 The net_kernel is a system process, registered as net_kernel, running of which is very

essential for distributed Erlang to work. The purpose of this module is to implement the

distribution built-in functions spawn/4 and spawn_link/4, and to monitor the network. The

connection to a node is automatically established when a node is referenced from another node.

Through the built-in function monitor_node/2, the calling process subscribes or unsubscribes to

node status change messages. A node up message is delivered to all subscribing processes when

a new node is connected and node down message is delivered when a node is disconnected.

26

6.4 Net_adm

 This module defines various Net Administration Routines. One of the built in function

world/1 calls names (Host) for all hosts which are specified in the Erlang host file, ó.hosts.erlangô,

collects the replies and then evaluates ping (Node) on all of those nodes and returns the list of all

nodes that were successfully pinged. This function is used, when a node is started, and the names

of other nodes in the network are not initially known.

6.5 Kernel

 Distributed applications are controlled by both application controller and a distributed

application controller process called dist_ac. Both are part of kernel application [22].

 The kernel application is the first application started in any Erlang system. It is mandatory

to have minimal system based on Erlang OTP should consists of kernel and STDLIB modules.

The configuration parameter ódistributedô specifies which application is distributed and on which

nodes it may execute. The parameter

¶ distributed = [{Application, [Timeout,] NodeDesc}] specifies where (on which node) the

application Application, may execute. Where:

o NodeDesc = [node | {node. . . Node}] is a list of node names in priority order.

o Timeout = integer () specifies how many milliseconds to wait before restarting the

application on another node.

 The nodes on which, a distributed applications runs must contact each other and negotiate

where to start the application. The following kernel configuration parameters specifies which

27

nodes are must and which nodes are optional for a particular node to start and how long it will wait

for the mandatory and optional nodes to come up :

¶ Sync_nodes_mandatory = [Node], specifies which other nodes must be started within the

time sync_nodes_timeout.

¶ Sync_node_optional = [node], specifies which other nodes can be started within the time

sync_node_timeout.

¶ sync_node_timeout = integer () | infinity, specifies how many milliseconds to wait for other

nodes to start.

 When started, the main node will wait for all the nodes specified by

Sync_nodes_mandatory and Sync_node_optional to come up and when all the nodes have come

up and the time specified by sync_nodes_timeout has elapsed, all applications will be started. If

not all the syn_mandatory_ nodes have come up, the main node will terminate.

Net_ticktime = TickTime specifies the net_kernel tick time in seconds. Once every

TickTime/4 seconds, all connected nodes are ticked and if nothing has been received from another

node within the last four tick times then that node is considered to be down. This ensures that

nodes which are not responding for reasons such as hardware errors are considered to be

down. Thus a terminated node is detected immediately.

6.5 Protocol Behind the Distribution (Distributed Protocol)

 The communication between EPMD and Erlang nodes happens based on distribution

protocol [23]. The protocol has four parts:

¶ Low level socket connection

28

¶ Handshake, interchange node name and authenticate

¶ Authentication (done by net_kernel)

¶ Connected.

 The EPMD starts automatically when an Erlang node starts up. It listens on the port

4369. A node fetches the port number of another node to initiate connection via EPMD. When a

distributed node is started, it registers itself with EPMD using the message ALIVE2_REQ. The

response from the EPMD is ALIVE2_RESP. The connection to the EPMD is kept open till the node

is in distributed mode. The connection will be closed when the node unregisters from EPMD.

When a node wants to connects with another node, it requests the distribution port number on

which the node is listening through PORT_PLEASE2_REQ message to the EPMD of the

destination port. The EPMD of the destination node responds with PORT2_RESP.

 The TCP/IP distribution protocol uses connection based handshake to establish a

connection. During the handshake, the cookies are sent and verified to ensure that the connection

is between allowed nodes.

6.6 Starting and Stopping Distributed Applications

 When all the mandatory nodes have been started, the distributed application can be started

by the application master on all the nodes by calling application: start (Application). This could be

automatically done by a boot script. In our LINC-Switch application, the application master has

called the application callback function, linc: start (normal, _StartArgs) on the node linc@s1. The

application could be stopped by calling application: stop (Application) at all involved nodes.

29

Failover:

 If the node where the application is running goes down, the application is restarted after

the specified time at the next node in the NodeList by the application master calling Module: start

(normal, StartArgs) at that node. This is called failover. When linc@s1 goes down, the application

master will call the callback function, linc: start (normal, _StartArgs) at S2, if linc@s2 could not

be started then the application will be started from S3.

 If the LINC-Switch application at linc@s2 goes down, then the application master at S3

will start it at linc@s3 by calling linc: start (normal, _StartArgs) at S3.

Figure 5 Failover and Takeover of application in Distributed Erlang

30

Takeover:

 If a node which is having higher priority according to distributed parameter is started, then

the distributed application currently running from a lower priority node will be stopped and starts

running from the higher priority new node. This is known as takeover. The application is taken

over to new higher priority node by the application master at that node calling Module: start

({takeover, Node], StartArgs) where Node is the old node.

 When LINC-Switch application is running from linc@s3, if we restart the application on

linc@s1, the application master will call linc: start (takeover, _OtherNode}, []) from linc@s1 and

causes LINC application to stop at linc@s3 and made it run from linc@s1. The failover and

takeover events are portrayed in the following figure 5:

31

Chapter 7: Experimental Setup

 The LINC switch is installed on three PCs, communicating nodes h1 and h2 are connected

with all three switches. The kernel parameter is configured in such a way that S1 will be primary

switch and S2, S3 are mandatory nodes having priority in descending order. The Switches are

started at once and the primary switch will wait for other mandatory switches to start up, once all

the mandatory nodes started, it will connect with the OpenFlow controller and waiting for packets

to be forwarded through it as shown in the figure 6.

Figure 6 Three switches are started and only S1 will be in running state, top left terminal belongs to controller

32

 The host1 starts sending packets to host2 through switch S1. The controller installs flow

entries in the switch and the switch forwards the packets based on the flow table entries. If the

switch S1 fails, then dist_ac of S2 waits for Time_out milliseconds for the node S1 to restart again,

if S1 didnôt start within that interval then the switch S2 will be started automatically by the dist_ac

at S2. Again if S2 fails, then S3 will start after Time_out milliseconds. If S1 restarts again, then S3

will exit and the switch functionality will be taken over by S1 as it is having highest priority. The

Erlang distribution ensures that at any instant of time only one switch will function and forward

the packets between connected nodes.

7.1 Topology on GENI

 The Global environment for Network Innovations (GENI) is a suit of research

infrastructure available for networking and distributed systems research, funded by National

Science foundation [24]. It is a geographically distributed research network/test bed which

contains diverse networking resources and supports simultaneous experiments and allows end

users to use and exploit the experimental protocols. The experimental topology is implemented

and tested on the ProtoGeni test bed deployed on the GENI which is based on Emulab facility.

 The LINC switch application is implemented on three PCs pc529.emulab.net,

pc541.emulab.net and pc557.emulab.net as a distributed application. The Open Flow controller

application is running on pc534.emulab.net. The communicating hosts are pc515.emulab.net and

pc560.emulab.net. The topology is illustrated in figure 7.

33

 The kernel parameter of the sys.config file is configured to make an application as a

distributed is generalized as follows:

[{kernel,

[{distributed, [{AppName, TimeOutBeforeRestart, NodeList}]},

{sync_nodes_mandatory, NecessaryNodes},

{sync_nodes_optional, OptionalNodes},

{sync_nodes_timeout, MaxTime}

]}].

 During our experiments, we have set the parameters of fault tolerance as follows on S1:

[{kernel,

 [{distributed, [{linc, 5000, ['linc@s1', 'linc@s2', 'linc@s3']}]},

 {sync_nodes_mandatory, ['linc@s2', 'linc@s3']},

 {sync_nodes_timeout, 5000}]}].

 In the same way on S2:

[{kernel,

 [{distributed, [{linc, 5000, ['linc@s1', 'linc@s2', 'linc@s3']}]},

 {sync_nodes_mandatory, ['linc@s1', 'linc@s3']},

 {sync_nodes_timeout, 5000}]}].

 And on S3 as:

[{kernel,

 [{distributed, [{linc, 5000, ['linc@s1', 'linc@s2', 'linc@s3']}]},

 {sync_nodes_mandatory, ['linc@s1', 'linc@s2']},

 {sync_nodes_timeout, 5000}]}].

 Corresponding to

Timeout

BeforeRestart NodeList Necessary Nodes MaxTime

5000 msec S1 (primary),

S2, S3

S2 and S3 5000 msec

Table 1Kernel Parameters

34

Figure 7 Distributed Fault-Tolerant system of LINC-Switches on GENI with Non- OpenFlow connect to connect

host1 and host2 to the LINC-Switches

 The LINC switch is started on three nodes linc@s1 (pc529.emulab.net), linc@s2

(pc541.emulab.net), linc@s3 (pc557.emulab.net) as a distributed and embedded application at the

same time, but it starts running on linc@s1 and connected to the controller running on

pc534.emukab.net. The host1 and host2 are now forwarding their data through linc@s1. If the

LINC application is stopped by quitting using CTRL + G and q, then LINC application is start run

(fail over) from linc@s2, which is a secondary node having next higher priority and connected

with the controller. Now the host1 and host2 are communicating through it. If the LINC switch at

linc@s2 fails, it will run from linc@s3 by the dist_ac at S3 (fail over again). If the LINC switch

on the main node linc@s1 comes up alive and restarted, then the LINC application on the lower

35

priority secondary node linc@s3 will exit and stop running and start running from linc@s1

(takeover).

7.2 Measurements

 The distribution feature is tested with host1 sending ping (ICMP request) packets to host2

through the LINC-Switch implemented as a distributed application on the three nodes but running

from only one node at any time.

 Figure 8 illustrates the tick message exchange between the Erlang nodes during normal

operation. S1 is the primary switch handling the data transmissions. S2 and S3 are started but not

in running state. S1 and S2 are the back-up nodes waiting for the other nodes to die. In distributed

Erlang the dist_ac process classifies an application into running state from start state. The global

module makes sure that the application will run on only one node at anytime.

Figure 8 LINC-Switches on three nodes started and sending Tick messages to each other; The LINC-Switch at S1 is

running

36

 When S1 fails, the other nodes linc@s2 and linc@s3 will not receive tick messages from

linc@s1. If linc@s2 and linc@s3 did not receive four consecutive tick messages then they considers

that linc@s1 is dead and application master at S2 will start the LINC on S2 because it is having

next priority to S1. This is illustrated in figure 9.

 As soon as secondary node S2 starts running, it connects with the controller and exchange

Hello messages with it. Once the controller sets the flow in S2, ping exchange starts between host1

and host2. We measured the number of ping messages lost during the failover time frame as shown

in figure 12.

Figure 9 LINC-Switche S1 stopped working and no tick messages seen from it, so LINC-Switch at S2 will be started

by dist_ac (failover)

37

Figure 10 LINC-Switche S2 stopped working and no tick messages seen from it, so LINC-Switch at S3 will be

started by dist_ac (failover)

 Again if S2 fails, S3 will come to running state, connect with controller and resume

forwarding the packets between host1 and host2 as in figure 10.

Figure 11 While LINC-Switche on S3 is running, if LINC-Switch at S1 restarts then LINC-Switch at S3 will exit and

S1 takesover.

38

 When S3 is running, if S1 is restarted S3 will stop working and exit as it is having lower

priority than S1. Figure 11 shows the S1 taking over the forwarding plane from S3 when back

available.

 Erlang system ensures such a primary node to take over from the secondary nodes when

available again from dead state.

 We measured the time gap between a failure of a software switch and the time that the

secondary switch taking over the forwarding plane. The main goal is to determine how many

packets of supported flows may be dropped during a failover event. This time gap has the following

delay components.

i. time to detect failure of S1;

ii. time for S2 to go from ñstartò to ñrunningò;

iii. time for the ping requests to get directed to S2;

iv. time for the S2 to connect with the controller;

v. time delay until flows become active in the S2.

7.2.1 TOPOLOGY ON GENI: connectivity with non-OpenFlow switches

 The delay elements are bundled into one measurement in this study in order to present the

potential impact of data loss during a failover and take-over situation. We have conducted a ping-

based measurement between host1 and host2 similar to the study in [11]. When failover or takeover

happens, we found that on an average 42 pings were missing as the hardware (non- OpenFlow)

switches on GENI testbed used to connect host1 and host2 to the redundant switch architecture take

time to accomplish MAC learning as the path which connects host1 to host2 changes. For example

39

when S1 is running, the path to be traversed by the packets is host1 - S1 - host2 and when failover

happens to S2 now the path is host1 - S2 - host2. The hosts are moved from one physical port to

another: the new port-MAC mapping will be updated only after the expiration of MAC-aging time

in the hardware switches.

 MAC Age Time refers to the number of seconds a MAC address the switch has learned

remains in the switchôs address table before being aged out (deleted). The default time interval

preferred by the network administrators is 300 sec as per the HP manual [25].

Trial

No.

S1-S2 S2-S3 S3-S1

No.

of

Pings

lost

RTT

RTT *

(No.of

Pings

lost)

No.

of

Pings

lost

RTT

RTT *

(No.of

Pings

lost)

No.

of

Pings

lost

RTT

RTT *

(No.of

Pings

lost)

1 32 1.424 45.568 41 1.551 63.55 49 1.5151 74.235

2 30 1.320 39.6 38 1.304 50.92 47 1.403 65.941

3 33 1.370 45.21 39 1.348 52.572 27 1.432 38.664

4 50 1.381 69.05 50 1.249 62.45 54 1.339 72.306

5 46 1.329 61.134 45 1.382 62.19 29 1.341 38.889

6 44 1.334 58.696 35 1.205 42.175 38 1.325 50.35

7 43 1.241 53.363 42 1.185 49.77 49 1.291 63.259

8 53 1.256 66.568 28 1.261 35.308 55 1.438 79.09

9 44 1.356 59.664 46 1.316 60.536 35 1.226 42.91

10 49 1.247 61.103 50 1.362 68.1 29 1.315 38.135

Avg 42.4 1.3258 55.9956 41.4 1.3163 57.000 41.2 1.3625 56.3779

Table 2 Results of sending of 200 Pings form host1 to host2 and making failover happens between S1 to S2 , S2 to

S3 and takeover from S3 to S1 when Non-OpenFlow connect is used to connect hosts to fault-tolerant system.

TimeOutBeforeRestart= 5000msec

40

 The Mac-Aging should be set appropriately. Too long aging interval may cause the MAC-

address table to retain outdated entries, exhaust the MAC address table resources, the following

table shows the experiments results obtained on GENI test bed with the HP Procurve 5406 Switch

used as a connecting device to connect host1 and host2 to the fault-tolerant architecture.

Figure 12 Measurements of failover and takeover times in terms of number of lost pings normalized with the average

recorded RTT when HW Switches are used to connect hosts to fault-tolerant system with

TimeOutBeforeRestart=5000 msec

7.2.2 TOPOLOGY ON GENI: connectivity with OVS

 As MAC-Aging time has serious impact on the number pings getting lost in the previous

experiment, we want to know how much we could reduce the loss of ping replies when failover or

take over happens by varying the MAC-Aging time of the switch. AS we have no access to hardware

switchôs command line interface (CLI) to change the MAC-aging time on GENI, we repeated the

same topology on GENI with the OpenvSwitch running from prebuilt image VMs to connect host1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 1 0

N
o
.o

f
p
in

g
s
 l
o
s
t
*

A
v
g

.R
T

T
 (

m
s
e
c
)

Trial No.

s1-s2

s2-s3

s3-s1

41

and host2 to fault-tolerant switching architecture system. The ping test is conducted by setting

various MAC-aging times on the OVS bridges which connect hosts to the redundant LINC-

Switches. We observed that the number of pings lost was minimum (15) and remains constant for

MAC-aging-time from 1 to 15 seconds after that it shows increase in number of pings lost with

increase in MAC-aging time as shown in figure 15. It shows that it takes at least 15 seconds to

update the mac table entries. We conducted the tests only till MAC-aging-time equal to 30 seconds

as we want to know how much we could reduce the loss by setting lower mac-aging-time. The

default value for the mac-aging-time is 300 seconds as described in the OpenvSwitch manual [26].

 We have implemented the same topology by installing LINC-Switch on three VMs on a

Xen-cluster from our Laboratory and connected host1 and host2 to the fault-tolerant LINC-

Switches via the bridges xapi1 and xapi2 of the default switch OVS on the Xen hypervisor. We

repeated the ping measurements by setting different MAC-aging-time on the bridges xapi1 and

xapi2 as in figure13 and observed that we lost less number of pings with minimum values of MAC-

aging-times.

Figure 13 Mac-aging time can bet to values between 15 to 3600 seconds using ovs-vsctl

 The ovs-vswitchd daemon controls and manages the OpenvSwitch available on the local

machine. The utility ovs-appctl is used to configure and run ovs daemons. The command óovs-

42

appctl fdb/showô with bridge name will lists the MAC address/VLAN pair learned by the bridge

along with port number to which the host belonging to the MAC address is attached and the age

of the entry in seconds as in figure 14.

Figure 14 MAC-table learned by the bridge xapi1of OVS1

Mac-age in seconds No. of Pings lost (GENI) No. of Pings lost (Xen)

1 15.46666667 15.625

5 15.46666667 15.46666667

10 15.46666667 15.4

15 15.4 15.73333333

20 20.53333333 20.66666667

25 25.86666667 25.6

30 28.33333333 30.46666667

Table 3 Results of sending Pings form host1 to host2 and making failover happens between S1 to S2, S2 to S3 and

takeover from S3 to S1 when OVS is used to connect hosts to fault-tolerant system with learning switch mode on

GENI and on Xen for various Mac-Aging times.

43

Figure 15 No. of Ping replies are constant at 15 when mac-aging time is from 1 to 15 seconds on OVS

7.2.3 TOPOLOGY ON GENI: connectivity with LINC

 We also used LINC-Switches to connect host1 and host2 to the fault-tolerant architecture

instead of OVS and used an OpenFlow controller which modifies the flow entries when the hosts

are moved from one port another as depicted in figure 16. The topology of which is shown in figure

17. When failover happens the controller modifies the flow entries in the LINC-Switches which

connects the hosts to fault-tolerant architecture and causes the ping packets to reach the new

switchôs input port immediately. The following figure shows the controller output when the flow

entries are being modified when host2 is moved from one port to another when fail over/take over

happens. The RTT values are measured by sending a count of 200 ping requests from host1 to host2

and the numbers of pings lost during the failover/takeover are also recorded.

0

5

10

15

20

25

30

35

1 5 10 15 20 25 30

N
o

.
o

f.
P

in
g
s
 l
o

s
t

Mac-aging-time in seconds

Mac-age Vs No.of Pings lost

GENI

XEN

44

Figure 16 Flow entries are modified by the controller when it sees the MAC address coming from different input port

than before by using the message modify_strict

 It is observed that with HW switches to connect hosts to fault-tolerant system, the average

number of ping replies lost were 41.6 å 42 and with LINC-Switches to connect hosts to the fault-

tolerant system, it was about 5.6 å 6 when TimeOutBefore Restart =5000 msec.

Figure 17Hardware switches used on GENI to connect communicating hosts are replaced by OpenFlow switches

OVS / LINC.

45

 In Erlang OTP with distributed application, when we made the TimeOutBeforeRestart value

of kernel parameter equal to zero, there was no packet loss or very minimum loss and the average

was 0.4 å 0. The following tables 4 and 5 shows the results of the experiment with LINC-Switch to

connect host1 and host2 to fault-tolerant switches with TimeOutBeforeRestart=5000 msec and 0

msec respectively. The figures 18 and 19 show the graph of normalized values of pings lost with

Avg. RTT at different test runs.

Trial

No.

S1-S2 S2-S3 S3-S1

No.

of

Pings

lost

RTT

RTT *

(No.of

Pings

lost)

No.

of

Pings

lost

RTT

RTT *

(No.of

Pings

lost)

No.

of

Pings

lost

RTT

RTT *

(No.of

Pings

lost)

1 5 6.199 30.995 6 6.232 37.392 7 6.038 42.266

2 6 6.634 39.804 5 6.264 31.32 7 6.424 44.968

3 5 6.231 31.155 5 6.098 30.49 6 6.462 38.772

4 5 6.592 32.96 5 6.139 30.695 6 6.008 36.048

5 5 6.153 30.765 5 6.128 30.64 6 6.463 38.778

6 5 6.162 30.81 5 6.222 31.11 7 6.494 45.458

7 5 6.213 31.065 6 4.651 27.906 7 6.527 45.689

8 5 6.031 30.155 6 5.64 33.84 7 6.016 42.112

9 5 6.445 32.225 5 5.921 29.605 6 6.323 37.938

10 5 6.207 31.035 5 6.017 30.085 6 6.402 38.412

Avg 5.1 6.286 32.0969 5.3 5.9312 31.3083 6.5 6.3157 41.0441

Table 4 Results of sending of 200 Pings form host1 to host2 and making failover happens between S1 to S2, S2 to S3

and takeover from S3 to S1 when LINC-Switch with OF Controller is used to connect hosts to fault-tolerant system.

TimeOutBeforeRestart= 5000msec

46

Figure 18 Measurements of failover and takeover times in terms of number of lost pings normalized with the

average recorded RTT when LINC-Switches are used to connect hosts to fault-tolerant system with

TimeOutBeforeRestart=5000 msec

Trial

No.

S1-S2 S2-S3 S3-S1

No.

of

Pings

lost

RTT

RTT *

(No.of

Pings

lost)

No.

of

Pings

lost

RTT

RTT *

(No.of

Pings

lost)

No.

of

Pings

lost

RTT

RTT *

(No.of

Pings

lost)

1 0 5.963 0 0 6.053 0 0 6.346 0

2 0 6.016 0 0 6.314 0 1 6.383 6.383

3 0 6.317 0 0 6.081 0 1 6.049 6.049

4 1 6.443 6.443 0 6.229 0 1 5.95 5.95

5 1 6.425 6.425 0 6.166 0 1 6.223 6.223

6 1 6.606 6.606 0 6.158 0 1 6.426 6.426

7 0 6.309 0 0 6.447 0 1 6.213 6.213

8 0 6.349 0 0 6.092 0 1 6.705 6.705

9 0 6.079 0 0 6.315 0 1 6.443 6.443

10 0 6.221 0 1 6.519 6.519 1 6.451 6.451

Avg 0.3 6.2728 1.9474 0.1 6.2374 0.6519 0.9 6.3189 5.6843

Table 5 Results of sending of 200 Pings form host1 to host2 and making failover happens between S1 to S2, S2 to S3

and takeover from S3 to S1 when LINC-Switch with OF Controller is used to connect hosts to fault-tolerant system.

TimeOutBeforeRestart= 0msec

20

30

40

50

1 2 3 4 5 6 7 8 9 10

N
o
.o

f
P

in
g

s
 l
o
s
t*

 a
v
g

.R
T

T
 (

m
s
e
c
)

Trial No

s1-s2

s2-s3

s3-s1

47

Figure 19 Measurements of failover and takeover times in terms of number of lost pings normalized with the

average recorded RTT when LINC-Switches are used to connect hosts to fault-tolerant system with

TimeOutBeforeRestart= 0 msec

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 1 0

N
o
.o

f.
 P

in
g

s
 l
o
s
t
*a

v
g

 R
T

T
(m

s
e
c
)

Trial No

s1-s2

s2-s3

s3-s1

48

Chapter 8 Conclusion

 Fault tolerance is achieved by creating a redundancy based distributed system of LINC

switches and using the built-in features of distributed Erlang. Furthermore, the built-in features of

Erlang has helped to achieve fail-over and take-over functions to ensure a fault-tolerant system

implementation. We have presented a sample experiment and measurements of time duration for

a failover and take-over of LINC switches with different experimental set ups.

Although a fault-tolerance scheme can be realized among a redundant set of other software

switches as well as hardware counterparts, Erlang shows some ease of programmability and fast

deployment opportunity. Our goal is to continue the investigation of distributed system of software

switches and the performance benefits realized through support of fault tolerance for example, the

fault-tolerant switching architecture could be tested in Hadoop MapReduce frame work to connect

nodes in the cluster to add more resiliency to the applications using Hadoop framework .

49

References:

[1] Narayan, Sandhya, Stuart Bailey, and Anand Daga. "Hadoop Acceleration in an OpenFlow-based

cluster." In High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC

Companion:, pp. 535-538. IEEE, 2012.

[2] GitHub, Inc. ñLINC-Switchò FlowForwarding.org. https://github.com/FlowForwarding/LINC-Switch

(accessed June, 26, 2013).

[3] Armstrong, Joe. "The development of Erlang." ACM SIGPLAN Notices 32, no. 8 (1997): 196-203.

[4] Gray, Jim. "Why do computers stop and what can be done about it?." InSymposium on reliability in

distributed software and database systems, pp. 3-12. 1986.

[5] Armstrong, Joe. "Erlang." Communications of the ACM 53.9 (2010): 68-75.

[6] Chérèque, Marc, David Powell, Philippe Reynier, J-L. Richier, and Jacques Voiron. "Active

replication in Delta-4." In Fault-Tolerant Computing, 1992. FTCS-22. Digest of Papers., Twenty-

Second International Symposium on, pp. 28-37. IEEE, 1992.

[7] LeMahieu, Paul, Vasken Bohossian, and Jehoshua Bruck. "Fault-tolerant switched local area

networks." In Parallel Processing Symposium, 1998. IPPS/SPDP 1998. Proceedings of the First

Merged International... and Symposium on Parallel and Distributed Processing 1998, pp. 747-751.

IEEE, 1998.

[8] Fick, David, Andrew DeOrio, Jin Hu, Valeria Bertacco, David Blaauw, and Dennis Sylvester. "Vicis:

a reliable network for unreliable silicon." InProceedings of the 46th Annual Design Automation

Conference, pp. 812-817. ACM, 2009.

[9] Ujcich, Benjamin, Kuang-Ching Wang, Brian Parker, and Daniel Schmiedt. "Thoughts on the

Internet architecture from a modern enterprise network outage." In Network Operations and

Management Symposium (NOMS), 2012 IEEE, pp. 494-497. IEEE, 2012.

50

[10] López, Macías, Laura M. Castro, and David Cabrero. "Failover and takeover contingency

mechanisms for network partition and node failure." In Proceedings of the eleventh ACM SIGPLAN

workshop on Erlang workshop, pp. 51-60. ACM, 2012.

[11] Fonseca, Paulo, Ricardo Bennesby, Edjard Mota, and Alexandre Passito. "A replication component

for resilient OpenFlow-based networking." In Network Operations and Management Symposium

(NOMS), 2012 IEEE, pp. 933-939. IEEE, 2012.

[12] Kurose, Jim, Keith Ross. Computer Networking, A Top-Down approach. 6th ed. New Jersey:

Addison-Wesley, 2012.

[13] Open Networking Foundation. ñSoftware Defined Networking (SDN) Definition.ò

Opennetworking.org. https://www.opennetworking.org/sdn-resources/sdn-definition (accessed

March 21, 2013).

[14] McKeown, Nick, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer

Rexford, Scott Shenker, and Jonathan Turner. "OpenFlow: enabling innovation in campus

networks." ACM SIGCOMM Computer Communication Review 38, no. 2 (2008): 69-74.

[15] Rutka, Krzysztof, Konrad Kaplita, Sandhya Narayan, Stuart Bailey, Resources flowforwarding.org

http://www.opennetsummit.org/pdf/2013/research_track/poster_papers/ons2013-final36.pdf

(accessed August 23, 2013).

[16] Narisetty, RajaRevanth, Levent Dane, Anatoliy Malishevskiy, Deniz Gurkan, Stuart Bailey,

Sandhya Narayan, and Shivaram Mysore. "OpenFlow Configuration Protocol: Implementation for

the of Management Plane." In Research and Educational Experiment Workshop (GREE), 2013

Second GENI, pp. 66-67. IEEE, 2013.

[17] Armstrong, Joe. "Concurrency oriented programming in erlang." Invited talk, FFG (2003).

[18] Wikström, Claes. "Distributed programming in Erlang." In PASCO'94-First International Symposium

on Parallel Symbolic Computation. 1994.

51

[19] Guerraoui, Rachid, and André Schiper. "Fault-tolerance by replication in distributed systems."

In Reliable Software TechnologiesðAda-Europe'96, pp. 38-57. Springer Berlin Heidelberg, 1996.

[20] Hebert Fred , ñ Distributed OTP Application.ò learnyousomeerlang.com

http://learnyousomeerlang.com/distributed-otp-application (accessed August 23, 2013).

[21] Armstrong, Joe. "Making reliable distributed systems in the presence of software errors." Ph.D

Thesis, Royal Institute of Technology, Stockholm 2003.

[22] Ericsson AB. ñKernel.ò Erlang.org http://www.erlang.org/doc/man/kernel_app.html (accessed

August 23, 2013).

[23] Ericsson AB. ñDistributed Erlang.ò Erlang.org

http://www.erlang.org/doc/apps/erts/erl_dist_protocol.html (accessed August 23, 2013).

[24] Berman, Mark, Jeffrey S. Chase, Lawrence Landweber, Akihiro Nakao, Max Ott, Dipankar

Raychaudhuri, Robert Ricci, and Ivan Seskar. "GENI: A federated testbed for innovative network

experiments." Computer Networks (2014).

[25] Hewlett-Packard Development Company, L.P. ñHP Switch Software Basic Operation Guide

K/KA.15.14ò hp.com

http://h20565.www2.hp.com/portal/site/hpsc/template.BINARYPORTLET/public/kb/docDisplay/res

ource.process/?spf_p.tpst=kbDocDisplay_ws_BI&spf_p.rid_kbDocDisplay=docDisplayResURL&j

avax.portlet.begCacheTok=com.vignette.cachetoken&spf_p.rst_kbDocDisplay=wsrp-

resourceState%3DdocId%253Demr_na-c03990949-

1%257CdocLocale%253Den_US&javax.portlet.endCacheTok=com.vignette.cachetoken

(accessed February 3, 2014).

[26] OpenvSwitch. ñOpenvSwitch Manual.ò openvswitch.org http://openvswitch.org/ovs-

vswitchd.conf.db.5.pdf (accessed February 3, 2014).

