COPYRIGHT BY

Gandhimathi Velusamy

Spring GraduationApril, 2014

OPENFLOW-BASED DISTRIBUTED AND FAULT -TOLERANT SOFTWARE
SWITCH ARCHITECTURE

A Thesis
Submitted to
The Faculty othe Department of Engineering Technology

University of Houston

In Partial Fulfillment
Of the Requirements for the Degree
Of

Master ofSciencan Engineering Technology

By
Gandhinathi Velusamy

April, 2014

OPENFLOWBASED DISTRIBUTED AND FAULT-TOLERANT SOFTWARE SWITCH
ARCHITECTURE

An Abstract of a Thesis
Submitted to
The Faculty of the Department of Engineering Technology

University of Houston

In Partial Fulfillment
Of theRequirements for the Degree
Of

Master ofSciencean Engineering Technology

By
Gandhimathi Velusamy

Spring, 2014

ACKNOWLEDGEMENTS

First and foremost, | would like to express my sincere gratitude to my thesis advisor, Dr.
Deniz Gurkan, for giving me research opportunities and supporting me throughout the entire thesis
work. She has been the driving force behatidof my achievements at UOKBhe has been my
inspiration to carry out the research in OpenFlmged networking fidl She has motivated and
encouraged me to participate and present my research work in conferdfitesut her

continuous support, countless efforts and encouragement, thiswealt beimpossible

| would like to thank my committee@mbersDr. FatimaMerchantandDr. Ricardo Lent

for showing interest and reviewing my research work.

| would like to thank University library for all the literature support and resources. | would
also like to thank every member of thetworkinglab research group for eir support and

motivation throughout mgtudiesat UOH

| would like to thank linedev, ProtoGentusers mailing list and Hebert Fred, author of
ALearn You Some Erl ang for Great Goodo, Dr.
Inc., for clarifying my doubts in various courses time during my thdsast but not thdeast,|

would like to thank my family for supporting me in my work.

Abstract

We are living in theera where each of us is connected with each other virtually across the
globe. We are sharing the information electronically over the internet every second of our day.
There are many networking devices involved in sending the information over the intémet.
are routers, gateways, switches, PCs, laptops, handheld devices, etc. The switches are very crucial
elements in delivering packets to the intended recipients. Now the networking field is moving
towards Software Defined Networking and the network efgsnare being slowly replaced by the
software applications run by OpenFlow protocols. For example the switching functionality in local
area networks could be achieved with software switches like OpenvSwitch (OVS),SQuiN¢h,
etc. Now a days the organiiats depend on the datacenters to run their services. The application
servers are being run from virtual machines on the hosts to better utilize the computing resources
and make the system more scalable. The application servers need to be continudablg &vai
run the business for which they are deployed for. Software switches are used to connect virtual
machinesas an alternativéo Top of Rack switches. If such software switch fails then the
application servers will not be abdlo connect to its clients. This may severely impact the business
serviced by the application servers, deployed on the virtual machines. For reliable data
connectivity the switching elements need to be continuously functional. There is a need for
reliable and robust switches to cater the todays networking infrastructure. In this study, the

software switchLINC-Switch is implemented alistributed application on multiple nodes to make

it resilient to failure. The faultolerance is achieved by using thistdbution properties of the
programming language Erlang. By implementing the switch on three redundant nodes and starting
the application as a distributed application, the switch will be serving its purpose very promptly
by restarting it on other node mase it fails on the current node by using failover/takeover
mechanisms of Erlang. The tolerance to failure of the LB¥@tch is verified with Ping based

experiment on the GENI test bed and on the-Zlester in our Lab.

Table of Contents

AADSTIACT ...t bbb I
Chapter L: INTTOAUCTIONc.viiiiiiiiee ettt b e n e 1
Chapter 2: LILEMATUINE SUIVEYcoiiiiiiiiitiieeieeee ettt nb bbbt b b b n e 3
Chapter 3: FOrwarding EIEMENTS..........cccoiiiii it s sreene 7
T RS T= T LT I=T= 14 1] o [P 9
Chapter 4: Software Defined NetWOIKING..........coiiiiiiiiiieeee s 11
4.1 Need for Change in NEtWOIKING..........ccoiiiiiiiiiieeeeeee e 11
4.2 Limitations of CUIrent NEtWOIKccoiiiiiiiiiiie e 11
4.3 SDINL .ttt b bRt R R et R e e R Rt e R e e eRe e ehe e she e aRb e e be e beenreenrnenrne s 12
4.4 OPENFIOW SWILCNES. ... ettt bbbttt b b b e 13
4.4.1 Dedicated OpenFIOW SWItChES..........ccviiiiiccc e e 15
4.4.2 OpenFlowenabled SWILCNES.........cccoi i 16
Chapter 5: LINC -SWILCI ..ottt 17
5.1 FEALUIES OF EFANGc.eiiiiiieiiiiee bbbttt 18
5.2 LINC ATFCRITECIUIE ...ttt 19
5.3 Distributed LINC -SWICH ..ot 21

Chapter 6: How Distribution is achieved in Erang..........cccooiiiiiiniiceees s 23

(SRR] (o] o =1 LY o 1o U] [R TTTRPR 24

(S22 €10 o =1 e | (01U o H USSR 25
LSRG L=y A = 1 = TSSO 25
LS L= - Vo [o S OSSSSRSN 26
6.5 KBIMEL....ce ettt 26
6.5 Protocol Behind the Distribution (Distributed Protocol)..........c.ccccveviiieieniiiicieceece e 27
6.6 Starting and Stopping Distributed APPliICAtIONS..........cccoiiieieieccre e 28
Chapter 7: EXPeriMeENntal SETUP.........cooiiiieieeie et 31
7.1 TOPOIOGY ON GENIL....ooiiiiiiice et bbbttt nb et b e 32
7.2 MBASUIEIMEINTS. ..ottt ettt ar e r e e e e ar e n e sr e r e nrenre s 35
7.2.1 TOPOLOGY ON GENI: connectivity with non-OpenFlow switches............c.ccccooveenane 38
7.2.2 TOPOLOGY ON GENI: connectivity With OVS.........cccooiiiiiiiiieeceeese e 40
7.2.3 TOPOLOGY ON GENI: connectivity With LINCccccoiiiiiiiiieiecceeesese e 43

(O{ T o (=T gt S @0 Tod (1] o] o RSSO 48

List of Figures

Figure 1 Role of the Switches in NetWOrking.............oueeiiiiiiieaneee e 7.
Figure 2 OpenFlovBwitch, flows are inserted by the Controller from remate..........cccccevvvvveeeeennnn. 15
Figure 3 Software Components of LINEIWItCH............uuuuiiiiiiiiiemre e eee e 19
Figure 4LINC-Switches as Distributed SWILCH.............ooiiiiiiiiii e 21
Figure 5 Failover and Takeover of application in Distributed Efang...........cccccceeviicceniieeeieenennnnn., 29
Figure 6Three switches are started and only S1 will be in running.state...............cccceeriivineeenen. 31

Figure 7DistributedFault Tolerantsystem of LINGSwitches on GENI with NerOpenFlow connect

to connect hostl and host2 to the LHSWIIChES. ... 34
Figure 8 LINGSwitches on three nodes started and sending Tick messages to each other; The LINC

SWItCh At S1 S FUNNING......cci i e e e e e e e e e e e e e eee e s e e e s e e e e eas 35
Figure 9LINC-Switche S1 stopped working and no tick messages seen from it, seSWiNch at S2

will be started by dist_ac (AIIOVED)........ccooee i 36
Figure 10 LINGSwitche S2 stopped working and no tick messages seen from it, seSuich at

S3 will be started by dist_ac (fAllOVEL)..........cccuuiiiiiii e 37
Figure 11 WhileLINC-Switche on S3 is running, if LINGwitch at S1 restarts then LIN&witch at

S3 Will €Xit ANA SL tAKESOVEN.........uuiiiiiiieeiiiiieeee et ees e e e e e eneea 37
Figure 12Measurements of failover and takeover times in terms of number of lost pings normalized

with the average recorded RTwhen HW Switches are used to connect hosts to-fault

tolerant system with TimeOutBeforeRestart=5000 MSEC..........cccccevriiiiccnrrreeeieeeeeeeeeeeeeen 40
Figure 13 Maeaging time can bet to values between 15 to 3600 seconds usiagativs................... 41

Figure 14 MAGtable learned by the bridge xapilof OV.SL.........ccccuviiiiiiiiieeneeee e 42

Figure 15 Noof Ping replies are constant at 15 when +aging time is from 1 to 15 seconds on
L0 1 T PP P PP PPP 43
Figure 16Flow entries are modified by the controller when it sees the MAC address coming from
different input port than before by using the message modify .strict...........cccccuvieeee...... 44
Figure 17 Hardware switches used on GENI to connect communicating hosts are replaced by
OpenFlow switches OVS / LINC.........oooiiiiiiiieieeeeeeee et eeee e 44
Figure 18 Measurements of failover and takeover times in terms of number of lost pings normalized
with the average recorded RTT whieiNC-Switches are used to connect hosts to fault
tolerant system with TimeOutBeforeRestart=5000 MSEC..........ccccceerriiiiccnereereeeeeeeeeeeeeeen 46
Figure 19 Measurements failover and takeover times in terms of number of lost pings normalized
with the average recorded RTT when LINsWitches are used to connect hosts to fault

tolerant system with TimeOutBeforeRestart= 0 MSEC.............coovvivirieeeiccciiicceieee e a7

Chapter 1: Introduction

There is a paradigm shift about to happen in networking that is being propelled by powerful
net work white boxes (e.g. I ntel ds Open Net wo
replace expensive AStBased middle boxes and switches. When networkelicappns run on
such programmable platforms the applicatspecific requirements can be fulfilled with more
transparency in the network operations than before. For example, appiaapiendent flow path
setup is possible with programmability built ditly into the application such as a Hadeop
acceleration using OpenFlow protocol in [1]. Furthermore, such softveesed networking
systems can become fatdlerant and highly available using the vast research and techniques
developed in the area of disnted systems. A distributed system consists of a collection of
autonomous computers connected by a network while running distributed middleware. The system
enables the computers to share their resources and coordinate their activities so that the entire
distributed system appears to a user as a single fabric. Ireipsct, one way to achieve fault
tolerance is through introduction of redundancy, namely, running multiple software switches that
are part of a distributed system. If one software switch fails, another onstactmunning
(failover). The cost to host sh extra software switches on the system is much less than the

hardware counterparts.

To the best of our knowledge, there are two leading open source implementations of
software switches: OpenvSwitch (written in C), and LINC (epeurced by [2] and wrigh in

Erlang). Erlang programming language has kailsupport for concurrency and distribution [3].

An Erlang system can instantiate multiple nodes and provide the abstractions to specify a failover
and takeover mechanism between the nodes. An Erlandenbas a buiin protocol to

communicate with another Erlang node.

This thesis presents a novel distributed software switch architecture that guarantees fault
tolerance using the Erlang OTP (Open Telecommunications Platform) with Opecéjaivle

LINC switches.

We presenthefunctionality ofswitches intransmitting the frames between two end hosts
in general, then the advantage of moving into Software Defined Networking, functionality of
OpenFlow switches. Then we explaihr | ang 6 di s tcompdnentseadd redeyastt e m
operationsNext, we describe our experimental setup realized on the GENI (Global Environment
for Network Innovation) infrastructure followed by our measurements of failover anavake

times. We conclude our work with some figwrork discussions.

Chapter 2: Literature Survey

Faulttolerance is achieved in distributed systems by using redundant hardware/software
for a long time in the history. To achieve fatdterance in Tandem computers, the hardware

architecture wadesignedisingthe followingprinciples[4]:

They systemwas decomposed into hierarchical modules having Mean Time Between
Failures is more than a yedine modules sent Keegghve messages tother modules to let their
presence; The modules exhibited faist behavior that means they should work right or they
should fail; Extra redundant modules were configured to pick up the loads of the failed modules
with the takeover times of secath make the MTBF to be ahillennia By adopting above

principles aMTBF of decades or centuries was achieved.

The same principles were usieddesigning theerlangOTP libraries used to build fault
tolerant applications lik@XD301in Ericson p]. Faulttolerance could be achieved by detecting
failure of one machine by the other machine in the network provided if it has sufficient data to

carry over the job of failed machine without noticed by its users.

In [6], a survey has been made to analyze tbchniques used in replicating the
objects/services in distributed systems during-eighteen century. It clainthat linearizability
as the correctnessiterionfor replicatedservices which gives an illusion of replicated objects as
a single systenotits clients. The failure over of one object to other will be transparent to the client.
There are two techniques explainedhe papemamely primary backup and active backup for

replicating objects/services.

Distribution will be considered for sharitige resources like data, hardware or computing
in an organization as well as to make the system-faldtant to failure. It is highly impossible to
achieve faukltolerance without redundancy, distribution is considered as a means for achieving
fault-tolerance by replicating the system on more machines. In-Bgtaject p], fault-tolerance
is achieved by replicating software components on different machines interconnected by local area
network. In this project, @ub layer protocotalled Inter ReplicaProtocol (IRP) is used to
coordinate messages exchanged between replicated endpoints on different nodes and hides the
replication to the endpoints of the messages. It also emphasized that for thaldearice to work

smoothly, the distribution has t@hdle the network partitioning.

Faulttolerance in switched networks has been studied from a distributed system
perspective since the beginnings of networks. The most common solution to switch failures has

been introduction of redundancy through extregonterfaces, and switch hardwarg [

Vicis, an ElastlGstyle Network On the Chip (NoC) can tolerate loss of many network
components by wear out introduced hard faults by employimniyldtular Redundancy based
solutions in its network and router replicatid8s Built-in-self test is used for locating the hard
faults and techniques like port swapping is used to mitigate the faults. The routers work together
to run distribution algoritims to solve networkvide problems as well as protecting network from

critical failures occurring in individual routers.

To avoid Layer 2 loop formation caused by the redundant connection of switches, the

following protocols were used in the Clemson Uniitgrisletwork [9]:

1 Unidirectional Link Detection (UDLD) prevents omey links to ensure no loops.

1 Hot Standby Router Protocol (HSRP) makes it possible for redundant routers to act as a
single virtual router.

1 Common Spanning Tree (CST) implemente @panniig tree for an entire physical
extended LAN.

1 Enhanced Interior Gateway Routing Protocol (EIGRP) for routing based on distoioe
IP routing.

1 Per VLAN Spanning Treelus (PVST) allows distinct spanning trees to be formed on

multiple VLANS on the same physical network.

Continuing on this premise of redundancy, some considerations on when and how failover
may happen are: fAhot standbyo dhetael 6he;, sewamni
where secondary takes over with some data | os

when primary is detected to be off/failed/Aumctional and then switched into services.

In [10], an industrialcase study has beenade in the project called ADVERTISE, a
distributed system for advertisement transmission toustomerhome setop boxes (STB) over
Digital TV network (iDTV) of a cable operator. The system was built using Erlang OTP. The size
of the communication netwlbwasa challenge to manage as it Hai0,000 customers andwias
operational for 24/7. The system was designed to be rediiene failure as well as network
partitioning.lt has been expla@gd in[10] how to protect the distributed system from stahures.

The CAP theoremwas explainedand the possibilities of having the properties togetivas

discussed In a distributed system that share datansistency shouldbe preserved by not
permitting two different operations on the same data at any @Quoesistency is achieved by
transaction mechanism which updated the data on all nodes beforehand. Availability is the
requirement that the system should present to answer the requests sent from the clients. The
answers should have meaning full values othan time out or not reachable messaBestition

tolerance is the key property in CAP theorem. The resiliency the spstesessagainst network
partitions. If the nodes cannot send or receive messages due to the unavailability of network then

the prevous two properties could not be achieved.

Fault tolerance in OpenFlebased networks has been studied recently from controller
failure perspectivelll]. The failover and takever during a switch failure is possible by creating
copies or duplicate thrda of software switches with an underlying distributed redundancy

management system such as a CPRecovery component and others listgd in

Chapter 3: Forwarding Elements

The role of the switch is to receive the incomibatalink layer frames and forward them
on to outgoinglinks asshown in figurel The hosts and routers send and recpiaekets via

switches in a LAN and the switches are transparent to them.

Router Server Hosts

Switch
X MAC-table

Server Hosts
Figure 1Role of the Switches in Networking
The two man functions of the switches afE2]:
1. Filtering
The switch uses filtering function to decide whether to forward or drop an incoming
frame.
2. Forwarding
The switch uses the forwarding functiondecide to which output port it has to
send the paek to reach a particular destination based omit@mingportand destination

MAC address.

Both Filtering and Forwarding are done with a switch table also known astslfA€. The
MAC-table contains entries for some but not necessarily all hosts andsroat@ LAN. The
MAC-table entry containt. MAC-address of thbost connected to an interface The irterface
Number and 3The time at which the entry was placed in the M#aGle. The switch forwards
packet arrivingat its input port to one of iteutput port based on the 48 bit destination MAC

addressn the frame.

Theswitch has three options to deal with a packet which arrives on an interface

I. Broadcasting If there is no entry found in the MA@ble for the destination MAC address
found in the frameand therswitch forward the frame to all of its interfaces except to the
interface on which it has arrived in.

Il. Filtering: If thereis entry for the MAC-addesscontained in the destination MAfzId
but it isassociated taitself, then theswitch simply drops th&rame.

lll. Forwarding: There is an entry in the table for the MA@dressontained in destination
MAC field but it isassociating with an interfage which is different tharx. In this case

the switch directs the frame to the interfgce

The interfaces of the switches have buffers attached to them to store the incoming frames
if they arrive faster at the interface than the processing speed efittie(the forwarding speed

of the switch) to avoid the packdtem being droppedt interfaces.

3.1Self-Learning
The switch builds the Matable by seHearning that means it builds the table
automatically and dynamically without the intervention métwork administrator or any
configuration protocol. The table will be built as follows:
I. The switch table is initially empty.
II. The switch storethe following details when it receives a packet at its intenface first
time: 1. The MAGaddress inthe framm6 s s our c e thdintarfacs an wiiche | d
the frame came in, &hetime at which the entry is creatdfievery host in the LAN sends
a frame, then every host will be recorded in the taldtere will be a timer with the value
of éagireytimeis startedWhenever the switcteceives a framtor the MAC-address
available in the tablérom the same interface, it updates the time it received and restarts
the timer.
lll. The switch deletes anentryforaMACddr ess i f it dibefaeGhe r ecei

aging time expires from the host for which the MAGdress belongs to.

It also update the entries for any changes like if a host is moved from one port to another
or a host is replaced by another hasth a different MAC addressThe port toMAC-address
association will be updatetbr the change®nce the MAGaging time expiresThe aging
mechanisnhelps the switch to keep only the entriesdorrentactive hosts on the networkh@
aging time should be selectadpropriate tadhe requiremest Too engthyaging time keeps the

entries for longer times in the table ahdsexhausts the table spamedalsofailed to update its

entries to accommodate the latest network changes. On the other hand too shot aging interval may
result in removal ofvalid entries, causing unnecessary broadcasts, which may affect switch
performanceThe maeaging time selected should be longer than the maximum interval in which

the hosts normally transmits packets to avoid flooding in a network. For exanedieftic to the

printersis less frequent, so the aging should be kept long to avoid flooding if the printer is idle. In
the same way in data centers the servers connected to the switches are stable, so lengthy aging

time avoids frequent flooding and thus helpsitilize the bandwidth for other useful traffic.

10

Chapter 4: Software Defined Networking

4.1 Need for Change in Networking

The conventional networks are built with Ethernet switches connected in hierarchical
structure to meet the static Cliesérvetmo d el of computi ng. But they
dynamic nature of computing and storage needs. The outburst of mobile devices, content and
server virtualization and cloud services are among the key trends driving the need for new network

paradigm[13].

4.2 Limitations of Current Network

The following are the limitations of current networks to meet the challenges imposed by
the evolving computing and storage requirements, datacenters, campus an@maroaments
[13].
Complexity: Adding new devices or to supparioving devices and implementing netwavide
policies are complex, time consuming, needs manual efforts. So network changes will results in
service interruption and normally discouragedindergo.
Lack of ability to-Scak: The retworks become more complex with the addition of hundreds and
thousands of network devices that must be configured and managed to meet the requirements of

d at a csedynandcr té@affic. The timéonored approach of over subscription to provision

scalabiltyi s not efficient with todayds unpredictab

11

Vendor DependenceEnterprisesarewilling to deploy new capabilities and services to cater their
business needs or user demands very quickly b
lack of standard, open interfaces limit the ability of the network operators to tailor theirketwo

to their custom environment.

4.3SDN

Accordingto the definition given by Open Network Foundatidr3], SoftwareDefined
Networking is an emerging architecture that is dynaihjcmanageable, cost effective, and
adaptable, making ideal for the highbandwidth, ¢ nami ¢ nature of todayos
architectureseparatethe network contrgblanefrom forwardingplane. By decoupling the control
functionality from forwarding functionalitythe network control has madeectly programmable
As the switches are now concentrating only forwarding, the speed of the forwarding will be
increased and the efficiency of the switches are improviédalso abstractshe underlying
infrastructureto applications and network serviceShe OpenFlow protml is a foundation

elemento build SDN solutions. The architecture offers the following features:

1 Directly Programmable: Network control is directly programmable because it is

decoupled from forwarding functions.

1 Agile: Abstracting control from forwaraig administratorsare able talynamically adjust

networkwide traffic flow to meet changing needs.

1 Centrally managed The software base®DN controlleramaintain aglobal view of the

networkby centralizing the intelligence in them

12

1 Programmatically configured: Network managers can configure, manage, secure and
optimize the network resources very swiftly via dynamic programs on their own without
depending on proprietary software.

1 Openstandards based and vendoeneutral: When implementing through open
standards, SDN simplifies network design and operation beteisgctionsare provided
by SDN controllers instead of multiple, vendor specific devices and protocols.

1 Reduces Capital Expenditure By allowing network functions to run on eifie shelf
hardware SDN helps to reduce the capital expendgpent on networking infrastructure.

1 Reduces Operational Expenditure SDN has made it possiktie design, deploy, manage
and scale networksith reduced operational cdsy supporting automation and algorithm
control through increased programmability

1 Enable Innovation: It helpsorganizatiosto create new types of applications, services and

business models.

4.4 OpenFlow Switches

The OpenFlow protocol allowssingany type and brand of data plane devices, because
the underlying network hardware is addressable through the common abstraction it provides.
Importantly, it facilitates the use of bare metal switches and eliminates traditional vendior, lock
and gives th freedom of choice in networkirsgmilar to theother areas of IT infrastructure, such

as serversThere are two types of OpenFl@witches.

13

1 OpenFlow Enabled Switchebtardwarebased commercial switches that use the
TCAM and the Operating system of theitsl/router to implement the Flow table
and the OpenFlow protocarhis type of switches supports Layer 2, Layer3 along
with OpenFlow protocol to isolate the experimental traffic from production traffic.

1 SoftwarebasedDedicatedOpenFlow Switches Softwarebased switches that use
UNIX/Linux systems to implement the entire OpenFlow switch functions. E.g

OpenvSwitch, LINCSwitch, Indigo, SoftSwitch.
In generalOpenFlow Switch consists of three pdid]:

1. Aflow Table, with an action associated with each flow entry, wiiefineshow to process
the flowi.e., whether to forward to a particular output port or to drop or to any of reserved
ports.

2. A secure channethat connects the switch to a remote controller, whidweallcommands
and packets to be exchanged betwiée switch and the controller.

3. OpenFlow protocol, which provides an open and standard way for a controller to

communicate with the switch.

14

Control Plane

l

OpenFlow Switch
Data Plane

Packet Forwarding

Host1 Host2

Figure 2 OpenFlow Switch, flows are inserted by @entroller from remote

4.4.1Dedicated OpenFlow Switches

A dedicated OpenFlow switch is a dumiata patrelement that forwards packet between
ports as dictated by a remote controliershowed in the figure th this environmentlows are
broadly defined and are limited by the capabilities of the particular implementation of the flow
table. For example a flow could be a TCP connection, or all packetsafgmarticular IP address
or MAC addressA dedicated OpaFlow switch does not support normal Lay2rand Laye3

processing.
Each Flow entry has a simple action associated with it; the three basic actions are:

1. Forward this flowds packet to a given port

network atline rate.

15

2. Encapsul ate and forward this flowbs packe
Normally first packet in a new flow will be sent to the controller and controller will decide
whether the flow will be added to the table or not. In some cdkt#® packets could be
sent to controller for processibgsed on the requirement imposed by the application

3. Drop this flowbés packets. This could be dol

4.4.20penFlow-enabled Switches

When the commeral switches, routers and access pointes are enhanced with OpenFlow
protocol, flow tables and secured channel then they are called as OpenFlow enabled switches.
Normally the flow table will reuse the existing TCAMthe secure channel and protocol will be
ported to run on the wi t apdralirggy system. To isolate experimental traffic from production

traffic the OpenFlowenabled switches added the fourth action:
4. Forward this flowdbs packets through the sw

OR, the production traffic and experimental traffic can be isolated by defining separate
VLANSs for them.By defining either the above fourth action or adding VLAN tags, the switch will
allow the regular production traffic to be processed in the usual wagtdahd same time allows
the experimental traffic to be controlled by the way the experimenter wishes tsprhog the

OpenFlow controller in a manner the experimenter wants to control.

16

Chapter 5. LINC -Switch

LINC (Link Is Not Closed) is a completely new opgource switching platform available
through flowforwarding.org, a community promoting free open source Apache 2 license
implementation based on OpenFlow specificatitNC-Switch is a software switchdn ONF 0 s
OpenFlow version 1.2/1.3 compliant capable Switch with support feC@ffig 1.1 Standard
[15]. OpenFlow protocol separates the control plane from data plane and allows much flexibility
to the applications by implementing control logic using safervprogramming. The GEonfig
protocol allows separatingpe management functionalities from the OpenFlow switches to have

efficient control over the networking resources like ptotsetter utilize them [].

LINC architecture is designdd use genailly-available commodity x8Bardware (COT)
and runs on a varusplatforms like Linux, Solaris, Windows, MacOS, and FreeBSD with Erlang
runtime The multiple CPU cores and memory offered by x86 platform alloM< to scale
gracefully to increase and dease compute resources. Thisegsentialwhen many logical
switches are instantiated on a single OpenFlow capable switch. These logical switches can have

resource allocations basedtheneed.

LINC was implemented in the functional programming language Ertingloped by

Ericsson.

17

5.1 Features of Erlang

The following features offered by Erlangakes it suitable fadeveloping LINC:

1 Erlang is a functional programming language designed tdaf@eencurrent applications.
Concurrency in Erlang belongs to the language and not to the Operating Bj}stem

1 Erlang OTP (Open Telecom Platform) is a large collection of libraries for Erlang that
provides solutions for Networking and Telecommunicatioobfams. E.g. Supervision
trees.

1 Bit manipuldion capabilities of Erlang arsuitable for protocol handling and low level
communication.

1 Erlang has buitin support for process creation and management to simplify concurrent
programmingAs Erlang processes are light weight, it needs less computational effort to
create and destroy proces§Ed.

1 Itallows achievingnassive concurrengie thousands of processes cacteated without
degrading the performandeérlang process use sharethingsemanticg5] principle and
they communicate among themselhwdy by passing messagédmetweenthem Erlang
processes work on a copy of the data it needs. As there is no data sharing between
concurrent process efficiency will be more.

1 Any Erlang application is made distributed easily by running different parallel processes

on different machines.

18

1 Erlang makes best use of medtire architecture available on the machine from which it is

runningwhich makes it best suitable for writing concurrent applications.

5.2LINC Architecture
The main software blocks of LINC implementation are: OpenFlow Capable Switch,
OpenFlow protocol module and OEonfigmodule. These are developed as separate applications

and are designed using Erlang OTP principles.

The of protocol librarary implements the OpenFlow protocol to defiternel OpenFlow
protocol strcutures, data types and enumerationaffdtds encodeand decode functions for
OpenFlow protocol messages and validates their correciitesdigure 3 describes the software

componets of LINESwitch.

OpenFlow OpenFlow Controller
Configuration Point
b FJ
\ 4
o\ /3
=) v §
g\ ’? £
2\ / :;
SN)
\ 4

LINC

-
-

Userspace b i _.I API (gen_switch) |

Implementation 4 1
I |
| 1
i

i
I HW | Kernel module
implementation

Figure 3 Software Components of LIN&witch

19

The linclibrary implements the OpenFlow capable switch functionalityacceptsOF
Config commands and executes them in OpenFlow operapersgectivelt handles one or more
OpenFlow Logical Switches that consists of the channel component, replaceabédsekd
common logical switch logic. The channel compataghe communication layer between the
OpenFlow Logical Switic and the OpenFlow Controllers andrbgeans of CP/TLS connections
between themit passes parsed structures received from the OpenEontroller to the backend
and forward encoded messages from OpenFlow Switch to the Controllers.
The actual logic for switching the packetsmplemented in replaceable baghkds They
manage flow tables, group table, ports, etc. and reply to Opergftiacol messages received
from the ControllerL1 NC6s | ogi cal Switch can use any of

API (gen_switch).

Common switch logic handles switch configuration, manages the channel component and

OpenFlow reosurces like ports atidpatches messages received from the Controller.

The of config library applicationmplements the Ofconfig protocolwhich handles
parsing, validation and interprets the -OBnfig messages recetvefrom an OpenFlow
configuration point and sendsascommaan t o t he OpenFl ow capabl e s\

configure OpenFlow Capable Switch.

LINC has a supervision tree for fatittierance purposes in accordance with the OTP
principles. A supervisor is responsible for starting, stopping and monitoricgilidsprocesses.

The supervisor keep its child process alive by restarting them when necessary.

20

5.3Distributed LINC -Switch

According to [B], i Di s t rErldng applidations can be implemented on loosely
connected systems of computers WMINE-BwWitch8P/ | P ¢
implemented on three inter connected multiple notbesnake it behave as a distributed
application to achieve fautblerance by utilizing the distribution properties of ErlaRgure 4
depicts the redundant switch architectitaulttolerance in Erlang applicatis are achieved as
follows: When LING-Switch on one node fails, then it will be rumg from other node (failver)
and when the LINGSwitch on main node comes back agaive LINC-Switch from the backip
node will exitand stops runnin@akeover) Failover is the process restarting an application on

the node other than on the failed n¢2ie].

oller
k

linc@s2

linc@s1

linc@s3

Figure 4 LINC-Switches as Distributed Switch

21

Takeover is the process in which the node having higher precedence (main node) takes

over the control when the application is running from a lower precedence secondary node [19].

We havetaken the replication factor as 3 to reduce the pritibabf failures as given in

[5]. Erlang programming language has inherent distributed system support to enable such functions

and tools to the programmer with mature messaging architecture betwésstah&ated nodes.

22

Chapter 6: How Distribution is achieved inErlang

The Erlang language was designed specifically to develop-ttdeiant systems by

keeping the following points as masniteria [21]:

1 Isolation between processes
1 Pure messageassing between processes
1 Ability to detect errors in remote processes

1 Means to detect the cause for the errors.

In Erlang, one layer of the system performs the application logic while the other layer
performs the error trapping functionality. It monitting applications and restores the application
to safe statd it fails. The application structure is formalized in Erlang OTP system by means of
supervisor trees. The supervisor trees define very accurately what should be done in case a process
fails. OTP application organize the task into tree structured group of processes and the processes
in higher level (supervisor) monitor the processes in lower level (worker) of the tree structure and
correct if any error occurs in the worker procegg[IThe worker processes perform the

computation.

A distributed Erlang system consists of many Erlang run time systems known as nodes,
communicating with each other. Edélang node is identified by an atom in the forre@tme @
hostnam§ where name is supplied by the user at the time of starting Erlang shell and hostname

is full hostname if long name is used or part of the hostname if short name is used.

23

Erlang Port Mapper daem@EPMD) s started when an Erlang system is started, isic
responsible for mapping the hostnames to IP addresses. The security of the networked Erlang
nodes is ensured by setting the atom known as magic cookie. The nodes are allowed to

communicate with each other only if their magic cookies match.

The Open Telecom platform (OTP) framework provides takeover and fail over
mechanisms to make an Erlang distributed application as a fault tolerant system. The failover is a
mechanism of starting the application on a different node than on a node where it iSTfaled.
takeover is a mechanism of running back the application on a dead main node by gracefully
terminating the application on backup/secondary nodes. The modglalesl, global group

net_admnet_kernelkernelare involved in making an Erlang applicat@as distributed.

6.1 Global Module
Global Module serves as a global name registration facility. It servers the following
functionalities through the servercalledy | o b al _ néa,mewhsiecrhv erresi des on
is started automatically when &rlang node is started. The global denotes the set of nodes
connected togethefhe global module takes care of the following functionalities:
1 Registration of global names
1 Global locks,
1 Maintenance of fully connected network
The ability of registering the names globally is the central concept in distributed

programming. A registered name is an alias for a process identifier (PID). The global name server

24

monitors the registered process ids. If a process terminated, the ass&ddtwith the process
will be unregistered. The registered names are stored in tepligiabal name tables in all the
nodes. Any change in a name table will results in same change in all the tabkeglobal name
server continuously monitors theastges in node configuratioVhen a node, on which globally
registered process goes down, the name will be globally unregistered. The global name server

subscribes to node up and node down messages sent from the kernel.

6.2 Global group
This module is rgponsible for grouping nodes to Global Name registration Group. This
makes it possible to group the nodes into partitions, each partition having its own global name

space refer to global. These partitions are called global groups.

6.3Net _kernel

The net_kernelis a system process, registerednas kernel running of which is very
essential for distributed Erlang to work. The purpose hié module is to implement the
distribution builtin functions spawn/4 and spawn_link/4 and to monitor the netwarkThe
connection to a node is automatically established when a node is referenced from another node.
Through the buikin function monitor_node/2the calling process subscribes or unsubscribes to
node status change messag&siode up message is delivar® all subscribing processes when

a new node is connected and node down message is delivered when a node is disconnected.

25

6.4Net_adm

This module defines various Net Administration Routines. One of the built in function
world/1 calls names (Host) for all hosts which are specified in the Erland hodthests.e @ngo ,
collects the replies and then evaluates ping (Node) on all of those nodes and returns the list of all
nodes that were successfully pinged. This functiarsesd, when a node is started, and the names

of other nodes in the network are not initially known.

6.5Kernel
Distributed applications are controlled by both application controller and a distributed

application controller process calldist_ac Both arepart ofkernelapplication[22].

The kernel application is the first application started in any Erlang system. It is mandatory
to haveminimal system based on Erla@j P shouldconsists of kernehnd STDLIB modules
The configuration parametétistributedd s peci f i es isdisirituted aadop Whick at i o n
nodes itmay execute.The parameter
1 distributed = [{Application, [Timeout,] NodeDegc¥pecifieswhere 6n which nodejhe
applicationApplication may executéVhere:
o NodeDese [node| {node. . .Nodég] is a list of node names in priority order.
o Timeout = integer (3pecifies how many milliseconds to wait before restarting the
application on another node.
The nodes on which, a distributed applications runs must contact each atimegatiate

where to start the applicatioifhe following kernel configuration parametespecifies which

26

nodes are must and which nodes are optional for a particular node to start and how long it will wait
for the mandatory and optional nodes to come up
1 Sync_nodes_mandatory = [Nodepecifies which other nodes must be started within the
time sync_nodes_timeaut
1 Sync_node_optional = [node$pecifies which other nodes can be started within the time
sync_node_timeout.
1 sync_node_timeostinteger () | infinity,specifies how many milliseconds to wait for other
nodes to start.

When started, the main node will wait for all the nodes specified by
Sync_nodes_mandatoaynd Sync_node_optionab comeup and when all the nodes have come
up and the time specified lsync_nodes_timeobtas elapsed, all applicationsll be started. If
not all thesyn_mandatory _ nodésive come up, the main node will terminate.

Net_ticktime = TickTimespecifies thenet kenel tick time in seconds. Once every
TickTimé4 secong, all connected nodes are ticked and if nothing has been received from another
node within the last four tick times then that node is considered to be down. This ensures that
nodes which are not resmping for reasons such as hardware errors are considered to be

down. Thus a terminated node is detected immediately.
6.5 Protocol Behind the Distribution (Distributed Protocol)

The communication between EPMD and Erlang nodes happens based on distribution
protocol[23]. The protocol has four parts:

 Low level socket connection

27

1 Handshake, interchange node name and authenticate
1 Authentication (done bgiet kerne)
1 Connected.
The EPMD starts automatically when an Erlang node starts up. It listens on the port
4369. A node fetches the port number of another node to initiate connection via EPMD. When a
distributed node is started, it registers itself with EPMD using the mes¢dg&2 REQ The
response from the EPMDA4.IVE2_RESPThe connection to the EPMD is kept open till the node
is in distributed mode. The connection will be closed when the node unregisters from EPMD.
When a node wants to connects with another node, it sexjtiee distribution port number on
which the node is listening througpORT_PLEASE2 RE@essage to the EPMD of the
destination port. The EPMD of the destination node respond$P@RIT2 RESP
The TCP/IP distribution protocol uses connection based hakelstta establish a
connection. During the handshake, the cookies are sent and verified to ensure that the connection

is between allowed nodes.

6.6 Starting and Stopping Distributed Applications

When all the mandatory nodes have been started, the distributed application can be started
by the application master on all the nodes by calimglication: start (Application)his could be
automatically done by a boot scrifn. our LINC-Switch applicéion, the application master has
called tre application callback functiofinc: start (normal, _$artArgs)on the nodéinc@s1 The

application could be stopped by calling application: stop (Applicatiba)l involved nodes.

28

Failover:

If the node where the application is running goes down, the application is restarted after
the specified time at the next node in MedeListby the application master calling Module: start
(normal, StartArgs) at that node. Thésalled failover. Whenhc@s1 goes dowhe application
master will call thecallback functionlinc: start (normal, _StartArgsat S2, if linc@s2 could not

be started then the application will be started f&3n

If the LINC-Switch application alinc@s2 goes down, then thppication master a3

will start it at linc@s3 by callinginc: start (hormal, _StartArgsat S3.

9
9
9

Running Started Started

Normal Situation

n Running Started

Fail over from S1 to S2

® %
®10
0RO

Down Down Running

Fail over from S2 to S3

9
®
9

Running Down Stopped

Take over from S3 to 51

Figure 5 Failover and Takeover of application in Distributed Erlang

29

Takeover:

If a node which is having higher priority accordingltstributedparameter is started, then
the distributed application currently running from a lower priority node will be stopped and starts
running from the higher priority new node. This is known &edaer. The application is taken
over to new higher priority node by the application master at that node calling Module: start

({takeover, Node], StartArgs) where Node is the old node.

When LINGSwitch application is running from linc@s3, if we restad #pplication on
linc@sl, the application master will chiic: start (takeover, _OtherNode}, [ffjom linc@s1 and
causes LINC application to stop at linc@s3 and made it run from linc@sl1. The failover and

takeover events are portrayed in the followingifg5:

30

Chapter 7. Experimental Setup

The LINC switch is installed on three PCs, communicating nodes h1l and h2 are connected
with all three switches. The kernel parameter is configured in such a way that S1 will be primary
switch and S2, S3 amandatory nodes having priority in descending order. The Switches are
started at once and the primary switch will wait for other mandatory switches to start up, once all
the mandatorynodes started, it will connect with the OpenFlow controller and wgaitinpackets

to be forwaded through it as shown in the figure 6.

pc3.instageni.clemson.edu - PuTTY

P? pc3.instageni.clemson.edu - PUTTY -0 i PO S IUETUEMSOEda - Par Ty

Figure 6 Three switches are started and only S1 will be in running ,siapdeft terminal belongs to controller

31

The hostl starts sending packets to host2 through switch S1. The controller installs flow
entries in the switch and the switch forwards the packets based on the flow table Iénies.
switch S1 fails, thedist_acof S2waits forTime_ouimillisecondgor the nodeS1to restart again,
if S1 didnét start within that 1 nter Wiatlact hen
atS2 Again if S2 fails, thei®3 will start afterTime_outmilliseconds. If S1 restarts again, tH&h
will exit andthe switch functionality will be taken over by S1 as it is having highest priority. The
Erlang distribution ensures that at any instant of time only one switch will function and forward

the packets between connected nodes.

7.1 Topology on GENI

The Global environment for Network Innovations (GENI) is a suit of research
infrastructure available for networking and distributed systems research, funded by National
Science foundatiorj24]. It is a geographically distributed research network/test bed which
contains diverse networking resources and supports simultaneous experiments and allows end
users to use and exploit the experimental protocdle experimental topology implemented

and tested on the Prote@i test bed deployed on the GENI which isdaasn Emulab facility.

The LINC switch application is implemented on three PCspc529.emulab.net,
pc541.emulab.net and pc557.emulab.net as a distributed application. The Open Flow controller
application is running on pc534.emulab.n&€he communicatig hosts are pc515.emulab.net and

pc560.emulab.nefhe topology is illustrated in figure 7.

32

The kernel parameter of trsys.configfile is configured to make an application as a

distributed is generalized as follows:

[{kernel,

[{distributed, [{AppName, TimeOutBeforeRestart, NodeList}]},
{sync_nodes_mandatory, NecessaryNodes},
{sync_nodes_optional, OptionalNodes},
{sync_nodes_timeout, MaxTime}

.

During our experiments, we have set the parameters of fault tolerafodiows on S1:

[{kernel,
[{distributed, [{linc, 5000, ['linc@s1', 'linc@s2', 'linc@s31}]},
{sync_nodes_mandatory, [linc@s2’, 'linc@s31},
{sync_nodes_timeout, 5000}]}].

In the samavayon S2:

[{kernel,
[{distributed, [{linc, 5000,['linc@s1', linc@s2’, 'linc@s31}},
{sync_nodes_mandatory, [linc@sl', linc@s31},
{sync_nodes_timeout, 5000}]}].

And on S3 as:

[{kernel,
[{distributed, [{linc, 5000, ['linc@s1', 'linc@s2', 'linc@s31}]},
{sync_nodes_mandatory, [linc@sl’, linc@s2},
{sync_nodes_timeout, 5000}]}].

Corresponihg to
Timeout
BeforeRestart NodeList Necessary Node: MaxTime
5000 msec S1 (primary), S2 and S3 5000 msec

S2, S3

TablelKernelParameters

33

pc524 enulab.net:22
excl. raw-pc
UBUNTU12-84-STD

pcS80.emulab.net:22
excl. raw-pc 9 || excl raw-pc
UBUNTU10-STD UBUNTU10-STD
=>pch15 => pc5e0

Figure 7 DistributedFault-Tolerantsystem oEINC-Switches on GENI with Ne®penFlow connect to connect
hostl and host2 to the LINSwitches

The LINC switch is started on three nodes linc@sl (pc529.emulab.net), linc@s2
(pc541.emulab.net), linc@s3 (pc557.emulab.net) as a distributed and embedded application at the
same time, but it starts running on linc@sl and connected to the controllergrusmin
pc534.emukab.netThe hostl and host2 are now forwarding their data through linc@ stie
LINC application is stopped by quitting usi@J RL + G and g, then LINC application is stewh
(fail over) from linc@s2, which is a secondary node havimgtrhigher priority and connected
with the controller. Now the hostl and host2 are communicating throulflthe LINC switch at
linc@s2 fails, itwill run fromlinc@s3 by thealist_acat S3(fail over again).If the LINC switch

on the main node linc@s1 comesaljve andrestarted, then the LINC application on the lower

34

priority secondary node linc@sBill exit and stoprunning and startrunning from linc@s1

(takeover).

7.2Measurements
The distribution feature is tested with hostl sending ping (ICMP request) packets to host2
throughthe LINC-Switch implemented as a distributed application on the three nodes but running

from only one node at any time.

Figure 8 illustrates the tick message exchange between the Erlang nodes during normal
operation. S1 is the primary switch handling the data transmissions. S2 ands&8tadbut not
in running stateS1 and S2 are the baok nodes waiting for the other nodedie. In distributed
Erlang thedist_acprocess classifies an application into running state from start Staéglobal

module makes sure that the application will run on only one node at anytime.

Host 1 linc@sl controller linc@s2 linc@s3 Host 2

E_J___EJ @ [

sent from ; sent every 0.25 \ sec

Hostl

\b—\
Flow setup between i
“WHost 1 and Host 2 mzi =
; e

linc@sl

moyj

[PULID N (e1sur 0] 1a[[o1uos
) sB pa/(n[ap

108 Apdax

0] juas stjaped

Ping reply sent

—:——'—’_;4"_’_—-—'_] from Host2
—e—e el : < — 7 o
. — .
—— .
===l X

Figure 8 LINC-Switches otthree nodes started and sending Tick messages to each other; Th&wiG at S1 is
running

35

When S1 fails, thethernodeslinc@s2 and linc@s3 will not receive tick messages from
linc@sl If linc@s2 and linc@s3 did not receive four consecutive ticksagess then they considers
that linc@s1 is dead and application master at S2 will start the LINC on S2 because it is having

next priority toS1 This is illustrated in figure 9.

As soon asecondry nodeS2 startsrunning,it connecs with the controlleand exchange
Hello messages with iDnce the controller sets the flow in S2, ping exchange starts between hostl
and host2. We measured the number of ping messages lost during the failover time frame as shown
in figure12.

Host 1 linc@sl controller linc@s2 linc@s3 Host 2

SHINS

/\

l line@sl I — -
Stopped} “line@is2 takes over

After tick ime + TimeQut
e X

Flow setup betwden Host 1 i
andHost2 inkne@s2 | o -
= 4 —

P_____D-—(i

(]

sioul]
wo 1y

%08 AN

|
|

1aa agaq.ded awg

™
[P N
A
\A
\V

Figure 9 LINC-Switche S1 stopped working and no tick messages seen from it, s&WwildG at S2 will be started
by dist_ac (failover)

36

Host 1 linc@s! controller linc@s2 linc@s3 Host 2

e = o
| <
&
.
a1 |
—<_\H B2
l line@s2 %
Stopged 2
)(linc@s3 takes over
— | e e Aftertick ime + TimeOut
<>—d:\ f

]
Flow setup between Hnﬁé
and Hosti2 in linc@s
E]
__,_’.——“-/_

>

e

1801108 sarpdax

I

Figure 10 LINC-Switche S2 stopped working and no tick messages seen from it, s&WildG at S3vill be
started by dist_ac (failover)

Again if S2 fails, S3 will come to running state, connect with controller and resume

forwarding the packets between hostl and host2 as in figure 10.

Host 1 linc@sl controller linc@s2 linc@s3 Host 2
Iy 1 -
—
I e e
[
[.
-<_1; @ ed =
befause itis o
line@sl Restarted the jmandatory nodes 5
2 l . andtakesover asit fof LINC1 to start e
gg e e L L B B T Kiinc@s3 exited asLINC1
e u% u:: Flow setup between Ho restarted
""‘:;_ and Host 2 inlinc@sl_— = —i—
g — e
s — s B
3 — ~— g
) SSe— - >
| T —te—— T
e
: =0
. —— — D —=
. <m§

Figure 11 While LINC-Switche on S3 iginning, if LINGSwitch at S1 restarts then LIN&witch at S3 will exit and
S1 takesover

When S3 is running, i1 is restarted Bwill stop working and exit as it is havirigwer
priority than S1 Figure11 shows the S1 taking over ti@wardingplane from S3 when back

available.

Erlang system ensures such a primary node to take over from the secondary nodes when

available agairfrom dead state.

We measured the time gap between a failure of a software switch and the time that the
secondary witch taking over the forwarding plane. The main goal is to determine how many
packets of supported flows may be dropped during a failover event. This tirhaggtqe following
delaycomponents.

i. timeto detect failure 081,
i. timeforS2togofromfist art o to Arunningo;
iii. time for the ping requests to get directed to S2;
iv. time for the S2 to connect with the controller;
v. time delay until flows become active in the. S2
7.2.1TOPOLOGY ON GENI: connectivity with non-OpenFlow switches

The delay elementre bundled into one measurement in this study in order to present the
potential impact of data loss during a failover and-aker situation. We have conducted a ping
based measurement between hostl and host2 similar to the stiitjy\WiHen failover o takeover
happens, wéound that on an averagl pings were missing as the hardwénen OpenFlowy
switcheson GENI testbedsed to connect hostl and host2 to the redundant switch architecture take

time to accomplish MAC learning as the path which cotskostl to host2 changes. For example

38

when S1 is running, the path to be traversed by the packets is [&dsthost2 and when failover
happens to S2 now the path is hos82 - host2. The hosts are moved from one physical port to
another: the new ppMAC mapping will be updated only after tegpiration ofMAC-aging time

in the hardware switches.

MAC Age Time refers to the number of seconds a MAC address the switch has learned
remains in the switchos addr e defatltdirbelintervdd ef or e

preferred by the network administrators is 300aseper the HP manuf5].

S1-S2 S2-S3 S3S1

Trial | No. RTT * No. RTT * | No. RTT *
No- Pi?wfgs RTT (Fl:li(r)w.g;):;c Pi?wfgs RTT (Pl\li(r){g;)sf Picr)1fgs RTT (Fl:liﬁ;;

lost lost) lost lost) | lost lost)

1 32 1.424 | 45568 | 41 1551 | 63.55| 49 | 1.5151] 74.235
2 30 | 1.320| 39.6 38 | 1.304 | 50.92 | 47 | 1.403 | 65.941
3 33 1.370 | 45.21 39 1.348 | 52.572| 27 1.432 | 38.664
4 50 1.381 | 69.05 50 1.249 | 62.45| 54 1.339 | 72.306
5 46 1.329 | 61.134| 45 1.382 | 62.19 | 29 1.341 | 38.889
6 44 1.334 | 58.696 | 35 1.205 | 42.175| 38 1.325| 50.35
7 43 1.241 | 53.363| 42 1.185| 49.77 | 49 1.291 | 63.259
8 53 1.256 | 66.568 | 28 1.261 | 35.308| 55 1.438 | 79.09
9 44 1.356 | 59.664 | 46 1.316 | 60.536| 35 1.226 | 42.91
10 49 1.247 | 61.103| 50 1.362 | 68.1 29 1.315 | 38.135
Avg | 42.4 | 1.3258| 55.9956| 41.4 | 1.3163| 57.000| 41.2 | 1.3625| 56.3779

Table2 Resultof sending of 200 Pings form host1 to host2 and making failover happens between S1 to S2, S2 to
S3 and takeover from S3 to S1 when-genFlowconnect is used to connect hosts to féalkkrant system.
TimeOutBeforeRestart= 5000msec

39

The MacAging should be set appropriately. Too long aging interval may cause the MAC
address table to retain outdated entries, exhaust the MAC address talbileessgbe following
table shows the experiments results obtained on GENI test bed with the HP Procurve 5406 Switch

used as a connecting device to connect hostl and host2 to thHel&ralnt architecture.

100
90

80 /\

0 /N AL

60 f ’7"1’* SV S%a +Zon s1-s2
50 “L'/ CAAN Li —a—52-53
40 — \ <3 s3-s1

30
20

No.of pings lost * Avg.RTT (msec)

10

1 2 3 4 5 6 7 8 9 10
Trial No.

Figure 12 Measurements of failover and takeover times in terms of number of lost pings normalized with the average
recorded RTWwhen HW Switches are used to connect hosts toetfaahant system with
TimeOutBeforeRestart=5000 msec

7.2.2TOPOLOGY ON GENI: connectivity with OVS

As MAC-Aging time has serious impact on the number pings getting lost in the previous
experiment, we want to know how muefe could reduce the loss of ping rephesen failover or
take over happens by varying the M&@ing timeof the switch AS we have no access to hardware
switcho6s cidenianaCLO to thangesthe MAGging time on GENI, we repeated the

same topology on GENI with theg®n\Switch running fromprebuilt image VMs to connect hostl

40

and host2 to faultolerant switching architecture system. The ping test is conducted by setting
various MAGaging times on the OVS bridges which connect hosts to the redundant LINC
Switches. We observed that the number of pings lost was minimum (15) and remains constant for
MAC-agingtime from 1 to 15 seconds after that it shows increase in number of pings lost with
increase in MAGaging timeas shown in figure 13t shows that it takes at least 15 seconds to
update the mac table entries. We conducted the tests only till&RG-time equal to30 seconds

as we want to know how much we could reduce the loss by setting loweagingt¢ime. The

default value for the maagingtime is 300 seconds as described in the OpenvSwitch m@ajal

We have implemented the same topolbgyinstalling LINGSwitch on three VMs on a
Xen-cluster from our Laboratory and connected hostl and host2 to theolatdint LING
Switches via the bridges xapil and xapi2 of the default switch OVS on the Xen hypervisor. We
repeated the ping measurengehy setting different MA&gingtime on the bridges xapil and
xapi2as in figurd3and observed that we lost less number of pingsmitimum values oMAC -

agingtimes.

Figure 13 Mac-aging time can bet to values between 1836080seconds using owssctl

The ovsvswitchd daemon controls and manages the OpenvSwitch available on the local

machine. The utility ovappctl is used to configure and run ovs daemons. The comimesd

41

appctl fdb/shovwwith bridge name will lists th®MIAC address/VLAN pair learned by the bridge
along with port number to which the host belonging to the MAC address is attached and the age

of theentry in seconds as in figure 14.

=3

Figure 14 MAC-table learned by the bridge xapilof OVS1

Mac-agein seconds No. of Pings lost (GENI)| No. of Pings lost (Xen)

1 15.46666667 15.625

5 15.46666667 15.46666667

10 15.46666667 154

15 15.4 15.73333333

20 20.53333333 20.66666667

25 25.86666667 25.6

30 28.33333333 30.46666667

Table3 Resultof sending Pings form hostl to host2 and making failover happens betwee8Z&%2do S3 and
takeover from S3 to S1 when OVS is used to connect hosts tmlenant system with learning switch mode on
GENI and on Xeffor various MaeAging times.

42

Mac-age Vs No.of Pings lost

35
30
25

20
15 uGENI
l I I II I I o
0
5 10 15 20 25 30

1

No. of.Pings lost
o

a1

Mac-agingtime in seconds

Figure 15No. of Ping replies are constant at 15 wheacaging time is from 1 to 15 seconds on OVS

7.2.3TOPOLOGY ON GENI: connectivity with LINC

We also used LINESwitchesto connect hostl and host2 to the faalerant architecture
instead of OVS and used an OpenFlow controller which modifies the flow entries when the hosts
are moved from one port anotlar depicted in figure 18 he topology of which is shown in figure
17. When failover happens the controller modifies the flow entries in the 1SW{ches which
connects the hosts to fatdtlerant architecture and causes the ping packets to reach the new
switcho6s i nputThedgotlowing figunerslewsi the intolleryoutput when the flow
entries are being modified when host2 is moved from one port to another when fail over/take over
happensThe RTT values are measured by sending a count of 200 ping requests from host1 to host2

and thenumbers of pings lost dag the failover/takeover amdso recorded.

43

Figure 16 Flow entries are modified by the controller when it sees the MAC address coming from different input port

than beforeby using the messagrodify strict

It is observedhat with HW switclesto connect hosts to fattiblerant systenthe average

number ofping replies lost were 41% 4@l with LINGSwitchesto connect hosts to the fault

tolerant system, it was abobibd vBhenTimeOutBefore Restart5600 msec.

Controller for fault-toleran
switches

= IC2 =
l tag “-2084 Fault-tolerant switching
5\ system
_LINC3
= == 02 inst geni clemson edy:22085
sh = W

UBUNTU12-84-

= pc2

-0 | |
/ bnﬁ E

du:33087

on.edu:22

UBUNTU12-84.STD

=> pch => pod

Figure 17Hardware switches used on GENI to connect communicating hosts are replaced by OpenFlow
OVS//LINC.

44

switches

In Erlang OTP with distributed application, when we madé&timeeOutBeforeRestavalue
of kernel parameter equal to zero, thessno packet loss or very minimum loasd the average
was 0 The foliowir@) tabls 4and 5shows the results of the experiment with LH$@itch to
connect hostl and host@ faulttolerant switches wh TimeOuBeforérRestart5000 msec and 0
msec respectivelylhe figures 8 and ® showthe graph of normalized values of pings lost with

Avg. RTT at differentest runs.

S1-S2 S2-S3 S3S1

Trial | No. RTT* | No. RTT* | No. RTT *
No- Pi?]fgs RTT (Fl?:?]gsl‘ Pi?lfgs RTT (mﬁgg Pi?lfgs RTT (Il;liﬁ;sf

lost lost) lost lost) lost lost)

1 5 |6.199| 30.995| 6 6.232 | 37.392| 7 6.038 | 42.266
2 6 |6.634| 39.804| 5 6.264 | 31.32 7 6.424 | 44.968
3 5 |6.231| 31.155| 5 6.098 | 30.49 6 6.462 | 38.772
4 5 |6.592| 32.96 5 6.139 | 30.695| 6 6.008 | 36.048
5 5 |6.153| 30.765| 5 6.128 | 30.64 6 6.463 | 38.778
6 5 6.162| 30.81 5 6.222 | 31.11 7 6.494 | 45.458
7 5 |6.213| 31.065| 6 4651 | 27906 | 7 6.527 | 45.689
8 5 |6.031| 30.155| 6 5.64 | 33.84 7 6.016 | 42.112
9 5 |6.445| 32.225| 5 5.921 | 29.605| 6 6.323 | 37.938
10 5 |6.207| 31.035| 5 6.017 | 30.085| 6 6.402 | 38.412
Avg | 5.1 |6.286|32.0969| 5.3 |5.9312| 31.3083| 6.5 | 6.3157| 41.0441

Table4 Resultsof sending of 200 Pings form hostl to host2 and making failover happens betwee322tto S3
and takeover from S3 to S1 when LHS@itch with OF Controller is used to connect hosts to falétrant system.
TimeOutBeforeRestart= 5000msec

45

50

40

s1-s2
30 s2-53
s3-s1

No.of Pings lost* avg.RTT (msec)

20
1 2 3 4 5 6 7 8 9 10

Trial No

Figure 18 Measurements of failover and takeover times in terms of number of lost pings normalized with the
average recorded RTT when LIMNSWitches are used to connect hosts to fenldirant system with
TimeOutBeforeRestart=5000 msec

S1-S2 S2-S3 S3S1
Trial | No. RTT * | No. RTT * | No. RTT *
of No.of | of No.of | of No.of
No- Pings RTT (Pings Pings RTT (Pings Pings RTT (Pings
lost lost) lost lost) lost lost)
1 0 5.963 0 0 6.053 0 0 6.346 0
2 0 6.016 0 0 6.314 0 1 6.383 | 6.383
3 0 6.317 0 0 6.081 0 1 6.049 | 6.049
4 1 6.443 | 6.443| O 6.229 0 1 595 | 5.95
5 1 6.425| 6.425| O 6.166 0 1 6.223 | 6.223
6 1 6.606 | 6.606| O 6.158 0 1 6.426 | 6.426
7 0 6.309 0 0 6.447 0 1 6.213 | 6.213
8 0 6.349 0 0 6.092 0 1 6.705 | 6.705
9 0 6.079 0 0 6.315 0 1 6.443 | 6.443
10 0 6.221 0 1 6.519 | 6.519 1 6.451 | 6.451
Avg | 0.3 | 6.2728| 1.9474| 0.1 | 6.2374| 0.6519| 0.9 | 6.3189| 5.6843

Table5 Resultof sending of 200 Pings form host1 to host2 and making failover happens betwee32S2tto S3
and takeover from S3 to S1 when LHS@itch with OF Controller is used to connect hosts to falérant system.
TimeOutBeforeRestart= Omsec

46

[EnY
o

g 9
(%]
E 8
'_
= 7
o
2 6 =—t—51-32
©
* 5
7 = S2-S3
L 4
28 3 e 53-51
g
&2
s)
o 1
=z
0

1 2 3 4 5 6 7 8 9 10
Trial No

Figure 19 Measurements of failover and takeover times in terms of number of lost pings normalized with the
average recorded RTT when LIMNSvitches are used to connect hosts to fenldrant system with
TimeOutBeforeRestart= 0 msec

47

Chapter 8 Conclusion

Fault tolerance is achieved by creating a redundancy based distributed system of LINC
switches and using the buitt features of distributed Erlang. Furthermore, the buifeatures of
Erlang has helped to achieve failer and tak@ver functions to esure a faultolerant system
implementation. We have presented a sample experiment and measurements of time duration for

a failover and takeverof LINC switcheswith different experimental set ups.

Although a faultolerance scheme can be realized amangdundant set of other software
switches as well as hardware counterparts, Erlang shows some ease of programmability and fast
deployment opportunity. Our goal is to continue the investigation of distributed system of software
switches and the performambenefits realized thugh support of fault tolerance for examples
fault-tolerant switching architecture could be tested in Hadoop MapReduce frame work to connect

nodes in the clusteo add more resiliency to tlaoplications usingdadoop framework

48

(1]

(2]

(3]
[4]

5]

(6]

[7]

(8]

9]

References:

Narayan, Sandhya, Stuart Bailey, and Anand Daga. "Hadoop Acceleration in an OpenFlow-based
cluster.” In High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC

Companion:, pp. 535-538. IEEE, 2012.

GitHub, Inc. A L | -8 @i t Fowlorwarding.org. https://github.com/FlowForwarding/LINC-Switch

(accessed June, 26, 2013).
Armstrong, Joe. "The development of Erlang.” ACM SIGPLAN Notices 32, no. 8 (1997): 196-203.

Gray, Jim. "Why do computers stop and what can be done about it?." InSymposium on reliability in

distributed software and database systems, pp. 3-12. 1986.
Armstrong, Joe. "Erlang.” Communications of the ACM 53.9 (2010): 68-75.

Chéreque, Marc, David Powell, Philippe Reynier, J-L. Richier, and Jacques Voiron. "Active
replication in Delta-4." In Fault-Tolerant Computing, 1992. FTCS-22. Digest of Papers., Twenty-

Second International Symposium on, pp. 28-37. IEEE, 1992.

LeMahieu, Paul, Vasken Bohossian, and Jehoshua Bruck. "Fault-tolerant switched local area
networks." In Parallel Processing Symposium, 1998. IPPS/SPDP 1998. Proceedings of the First
Merged International... and Symposium on Parallel and Distributed Processing 1998, pp. 747-751.
IEEE, 1998.

Fick, David, Andrew DeOrio, Jin Hu, Valeria Bertacco, David Blaauw, and Dennis Sylvester. "Vicis:
a reliable network for unreliable silicon.” InProceedings of the 46th Annual Design Automation
Conference, pp. 812-817. ACM, 2009.

Ujcich, Benjamin, Kuang-Ching Wang, Brian Parker, and Daniel Schmiedt. "Thoughts on the
Internet architecture from a modern enterprise network outage." In Network Operations and

Management Symposium (NOMS), 2012 IEEE, pp. 494-497. IEEE, 2012.

49

[10] Lopez, Macias, Laura M. Castro, and David Cabrero. "Failover and takeover contingency
mechanisms for network partition and node failure." In Proceedings of the eleventh ACM SIGPLAN
workshop on Erlang workshop, pp. 51-60. ACM, 2012.

[11] Fonseca, Paulo, Ricardo Benneshy, Edjard Mota, and Alexandre Passito. "A replication component
for resilient OpenFlow-based networking." In Network Operations and Management Sympaosium
(NOMS), 2012 IEEE, pp. 933-939. IEEE, 2012.

[12] Kurose, Jim, Keith Ross. Computer Networking, A Top-Down approach. 6" ed. New Jersey:

Addison-Wesley, 2012.

[13]Op en Net wor ki ng Foundati on. ASoftware Def

Opennetworking.org. https://www.opennetworking.org/sdn-resources/sdn-definition (accessed
March 21, 2013).

[14] McKeown, Nick, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer
Rexford, Scott Shenker, and Jonathan Turner. "OpenFlow: enabling innovation in campus
networks." ACM SIGCOMM Computer Communication Review 38, no. 2 (2008): 69-74.

[15] Rutka, Krzysztof, Konrad Kaplita, Sandhya Narayan, Stuart Bailey, Resources flowforwarding.org
http://www.opennetsummit.org/pdf/2013/research_track/poster_papers/ons2013-final36.pdf
(accessed August 23, 2013).

[16] Narisetty, RajaRevanth, Levent Dane, Anatoliy Malishevskiy, Deniz Gurkan, Stuart Bailey,
Sandhya Narayan, and Shivaram Mysore. "OpenFlow Configuration Protocol: Implementation for
the of Management Plane." In Research and Educational Experiment Workshop (GREE), 2013
Second GENI, pp. 66-67. IEEE, 2013.

[17] Armstrong, Joe. "Concurrency oriented programming in erlang." Invited talk, FFG (2003).

[18] Wikstrém, Claes. "Distributed programming in Erlang.” In PASCQ'94-First International Symposium

on Parallel Symbolic Computation. 1994.

50

ned

[19] Guerraoui, Rachid, and André Schiper. "Fault-tolerance by replication in distributed systems."
In Reliable Software Technologiesd Ada-Europe'96, pp. 38-57. Springer Berlin Heidelberg, 1996.

[20] Hebert Fred ,i Di st ri buted OTP Application. 0 |l earnyousomee
http://learnyousomeerlang.com/distributed-otp-application (accessed August 23, 2013).

[21] Armstrong, Joe. "Making reliable distributed systems in the presence of software errors." Ph.D

Thesis, Royal Institute of Technology, Stockholm 2003.

[22] Ericsson AB.fi Ke r. me IEr | ftp:/gvww.arlgng.org/doc/man/kernel_app.html (accessed
August 23, 2013).
[23] Ericsson AB.Ai Di st r i b udEsdadg.ofgr | ang

http://www.erlang.org/doc/apps/erts/erl_dist_protocol.html (accessed August 23, 2013).

[24] Berman, Mark, Jeffrey S. Chase, Lawrence Landweber, Akihiro Nakao, Max Ott, Dipankar
Raychaudhuri, Robert Ricci, and Ivan Seskar. "GENI: A federated testbed for innovative network
experiments.” Computer Networks (2014).

[25] Hewlett-Packard Development Company, L.P. iHP Switch Software Basic Operation Guide
K/KA.15.146hp.com
http://h20565.www2.hp.com/portal/site/hpsc/template. BINARYPORTLET/public/kb/docDisplay/res
ource.process/?spf_p.tpst=kbDocDisplay_ws_Bl&spf_p.rid_kbDocDisplay=docDisplayResURL&;j
avax.portlet.begCacheTok=com.vignette.cachetoken&spf_p.rst_kbDocDisplay=wsrp-
resourceState%3Ddocld%253Demr_na-c03990949-
1%257CdocLocale%253Den_US&javax.portlet.endCacheTok=com.vignette.cachetoken
(accessed February 3, 2014).

[26)Openv Switch. AOpenvSwitch Ma htip:Hopeniswitch.argfoesn v s wi t ¢ h

vswitchd.conf.db.5.pdf (accessed February 3, 2014).

51

