Abolhassani, Mehdi T.2018-12-062018-12-06December 22016-12December 2http://hdl.handle.net/10657/3689This thesis presents the analysis of voltage control in distribution systems, with the presence of distributed generation (DG). In microgrids, many smaller renewable generators (e.g, wind turbines, photovoltaic, fuel cells, etc.) and energy storage units are interfaced through power electronic inverters. Dynamic response of voltage & frequency under events such as fault or load and/or transmission line switching, may lead to instability in the interconnected micro-grids. These inverters are programmable to work as a source or sink of reactive power. Hence, the dynamic stability can be achieved with the help of localized, fast responding VAR-capable inverters for either providing or absorbing necessary reactive power. The main prospect of injecting reactive power from distributed and localized power sources are to better manage resources, minimize losses, lower costs and offer a better service to the costumers. An active, low voltage, meshed microgrid which has a complex distribution pattern as well as varying loads and sources will be considered. The thesis will include a local control algorithm for cooperative operation of decentralized and interfaced inverters to achieve voltage regulation and also loss minimization. The test system will be simulated on a Hardware-in-Loop (HIL) OP5600 Real time digital OPAL-RT simulator for a real time experimental set-up.application/pdfengThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).Distributed GenerationDistributed Energy ResourceReactive Power CompensationDecentralized-Inverter Based Reactive Power Compensation of Active Meshed Distribution Network2018-12-06Thesisborn digital