Mo, Yi-LungNakshatrala, Kalyana Babu2020-01-07December 22018-12December 2Portions of this document appear in: Witarto, Witarto, S. J. Wang, C. Y. Yang, Xin Nie, Y. L. Mo, K. C. Chang, Yu Tang, and Robert Kassawara. "Seismic isolation of small modular reactors using metamaterials." AIP Advances 8, no. 4 (2018): 045307.https://hdl.handle.net/10657/5842Important structures such as nuclear power plants should experience very little vibrations in order to maintain the safety of the nuclear facilities during seismic events. Protection of these structures by seismic isolators requires the isolators to provide seismic isolation irrespective of the direction of excitations and to develop a stable response without rocking. Conventional seismic isolation systems, however, can only fulfill partial requirements for the seismic protection. This study adopts the principle of periodic materials for seismic isolation. These materials exhibit unique properties of frequency band gaps, where incoming waves with frequencies falling inside the frequency band gaps are forbidden. The new isolation systems, known as periodic foundations, function both as a structural foundation to support the gravitational weight of the superstructure and also as a seismic isolator. The isolation mechanism, hypothetically, can easily fulfill all the requirements for seismic protection of the critical facilities. This study focuses on the design of one-dimensional (1D) and three-dimensional (3D) periodic foundations for seismic isolation of small modular reactor (SMR) buildings. The theoretical study was first conducted to reveal the fundamental behavior of periodic foundations. Then global sensitivity analysis was utilized to study the effect of design parameters on the frequency band gaps. In addition, simple straight-forward design equations based on the sensitivity analysis are proposed for the design of periodic foundations. Utilizing the proposed equations, prototypes of 1D and 3D periodic foundations were designed to isolate an SMR building. Scaled models were fabricated and experimentally tested to validate the hypothesis and design. The periodic foundation structural systems were tested under various input waves, including seismic waves, in the horizontal and vertical directions and the torsional mode. The shake table test results show that the periodic foundations can reduce the acceleration response of the SMR building up to 90% in the horizontal direction and the torsional mode. As much as a 40% response reduction in the vertical direction is also observed. Moreover, the periodic foundation-isolated structure exhibited stable response with negligible rocking on the structure. This study proved the capability of periodic foundations to enhance the seismic safety of critical structures.application/pdfengThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. UH Libraries has secured permission to reproduce any and all previously published materials contained in the work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).Periodic foundationsPeriodic materialsPhononic crystalsSeismic isolationShake table testsSobol' sensitivity analysisPeriodic Materials for Seismic Base Isolation: Theory and Applications to Small Modular Reactors2020-01-07Thesisborn digital