A Novel Transmission Mechanism for MRI-Compatible Surgery Robot



Journal Title

Journal ISSN

Volume Title



Minimally invasive surgery (MIS) techniques provide reduced patient discomfort, faster healing time, decreased risk of complications, and better overall patient outcomes. Medical imaging guidance is particularly crucial for MIS in which the procedure is performed through small openings in the body which resulting in limited sensory information available to surgeon compared with the open approach. Magnetic Resonance Imaging (MRI) is an intrinsically three-dimensional (3D) modality which offers high contrast and spatial resolution and a plethora of soft-tissue contrast mechanisms for assessment of anatomical morphology and function. These benefit , in addition to the fact that it does not require ionizing radiation, makes it a desirable methodology for image-guided interventions (IGI). An impediment to those advancements, however, is the limited access to patients, especially to the high-fi eld cylindrical magnetic resonance (MR) scanners. To address the limited accessibility and facilitate real-time guidance of interventions, remotely actuated and controlled MRI-compatible manipulators have been introduced. The MRI compatible interventional systems require appropriate forms of actuation. The commonly used electromagnetic actuators by many robotic system, like surgical robots, are, in general, not compatible with the MRI environment owing to their magnetically susceptible materials and electromagnetic components which are MR unsafe. In this work, we propose a novel transmission mechanism, herein referred to as Solid-Media Transmission (SMT), to transmit force from MR unsafe components located outside of the MR environment to the end effectors which are MR safe or MR conditional. We focus on the design, fabrication and control of a SMT-based actuator and an integrated robotic system that are aimed to perform the task of a surgical tool or needle placement. Experimental studies have demonstrated the feasibility and characteristics of the SMT and SMT-enabled devices for MRI guided intervention.



Actuators, Mechanical power transmission, Solid media transmission, Remote actuation, Magnetic resonance imaging