Cooling System Design for a Fully Superconducting Machine Used in Future Aircrafts

dc.contributor.advisorMasson, Philippe J.
dc.contributor.committeeMemberArdebili, Haleh
dc.contributor.committeeMemberNikolaou, Michael
dc.creatorBidad, Pejman
dc.date.accessioned2018-02-15T19:44:38Z
dc.date.available2018-02-15T19:44:38Z
dc.date.createdDecember 2015
dc.date.issued2015-12
dc.date.submittedDecember 2015
dc.date.updated2018-02-15T19:44:38Z
dc.description.abstractConsidering developments in superconducting machines (motors and generators), modern methods and innovations required for optimization in this field like any other energy-based systems. Meanwhile, some improvements in superconducting technologies has been drawn to flying sciences such as future turbo-electric aircrafts. Thus, companies and pioneers in this industry like NASA have been investing many resources on the aim of future aircrafts working based upon Turboelectric distributed propulsion (TeDP), Hybrid and/or electric propulsion systems. Based on the fact that superconducting machines could make gigantic saves in energy waste, they came into spotlight. This promising technology also requires demanding attentions in the area of ahead obstacles such as novel cooling methods; there have been some analyzes in this area, though. Regarding to this issue, this study is aimed to design cooling systems for superconducting machines working with liquid hydrogen (LH2) as coolant. The indirect cooling system, which is based on both convection and conduction, has been employed. Having all sort of designs and ideas, a meander and helical shape design is recommended for rotor and stator, respectively. The results should comprise two important goals: 1) providing cryogenic temperature for system 2) evaluating pressure and outlet phase of LH2 working in a loop. Hence, different conventional materials in cryogenic sciences have been analyzed and compared to the famous metallic mate like aluminum.
dc.description.departmentMechanical Engineering, Department of
dc.format.digitalOriginborn digital
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10657/2160
dc.language.isoeng
dc.rightsThe author of this work is the copyright owner. UH Libraries and the Texas Digital Library have their permission to store and provide access to this work. Further transmission, reproduction, or presentation of this work is prohibited except with permission of the author(s).
dc.subjectCryogenic
dc.subjectCooling system
dc.subjectSuperconducting machine
dc.subjectFuture aircraft
dc.titleCooling System Design for a Fully Superconducting Machine Used in Future Aircrafts
dc.type.dcmiText
dc.type.genreThesis
thesis.degree.collegeCullen College of Engineering
thesis.degree.departmentMechanical Engineering, Department of
thesis.degree.disciplineMechanical Engineering
thesis.degree.grantorUniversity of Houston
thesis.degree.levelMasters
thesis.degree.nameMaster of Science

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BIDAD-THESIS-2015.pdf
Size:
2.78 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.81 KB
Format:
Plain Text
Description: