Saccadic tracking with random walk (Brownian motion) stimuli
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This study was designed to evaluate the saccadic system's response to continuously presented random walk (Brownian motion) stimuli. Our goals were- 1. to examine how closely timed consecutive saccades interact; and 2. to estimate the response modification time for the new position of the stimulus to give an estimate of integration and decision delays. Horizontal eye movements resulting from rapid continuous random target movements were recorded. Step amplitudes of 1.5 and 3.0 degrees were alternated between single- and rapid double-step movements every 200 to 400 msec. From these random multiple stimulus step sequences, saccadic responses to single 3.0 degree step stimuli were collected for subjects to evaluate interactions of consecutive saccades. The results showed that- 1. subjects are capable of making independent goal directed saccades with intersaccadic intervals as short as 50 msec, and 2. subjects had individual biases in the direction of the successive saccades. The main interaction between saccades was related to the spatial error of the preceding saccade combining with the new stimulus step to yield the new error signal for the next saccade. The magnitude of the new retinal error signal was reflected in the latency of the following saccade. To evaluate the decision period of the saccadic system, the single-step responses were used as templates to assess the modification times for staircase, pulse under-return and pulse over return double-step stimuli. The responses were organized by whether consecutive saccades continued in the same direction or in the opposite direction. The results on the modification times indicate saccadic responses are directed to the new stimulus 85 to 90 msec after the new position of the stimulus. This modification time was independent of stimuli and preferred direction of responses. The 85-90 msec modification delay is used to estimate the time interval needed to program the next saccade.