Solution-Gated Nanoporus Graphene Field-Effect Transistors

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Atomically thin nanoporous membranes of graphene have attracted considerable investigation as solid-state sensors and molecular sieve devices. We have hypothesized that the electrostatic interactions between pi bonds in nanoporous graphene and the molecular orbital of an interacting compound will modulate carrier mobility in graphene thus producing a direct current signal detection of simple and complex molecular structures. Using voltammetry and analog signal processing we have studied the relationship between carrier mobility in nanoporous graphene and concentration, molecular weight and hybridized molecular orbital structure. We provide evidence for the potential for graphene to be further implemented as the first molecular orbital gated field-effect transistors for use in single biomolecule sensing devices.

Description

Keywords

Citation