• Login
    View Item 
    •   Repository Home
    • UH Faculty, Staff, and Student Works
    • UH Faculty, Staff, and Student Works
    • View Item
    •   Repository Home
    • UH Faculty, Staff, and Student Works
    • UH Faculty, Staff, and Student Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Collaborative Spectrum Sensing from Sparse Observations in Cognitive Radio Networks

    Thumbnail
    View/Open
    Han_2010_CollaborativeSpectrumSensingfromSparsePRE.pdf (427.9Kb)
    Date
    2/24/2011
    Author
    Meng, Jia Jasmine
    Yin, Wotao
    Li, Husheng
    Hossain, Ekram
    Han, Zhu
    Metadata
    Show full item record
    Abstract
    Spectrum sensing, which aims at detecting spectrum holes, is the precondition for the implementation of cognitive radio (CR). Collaborative spectrum sensing among the cognitive radio nodes is expected to improve the ability of checking complete spectrum usage. Due to hardware limitations, each cognitive radio node can only sense a relatively narrow band of radio spectrum. Consequently, the available channel sensing information is far from being sufficient for precisely recognizing the wide range of unoccupied channels. Aiming at breaking this bottleneck, we propose to apply matrix completion and joint sparsity recovery to reduce sensing and transmission requirements and improve sensing results. Specifically, equipped with a frequency selective filter, each cognitive radio node senses linear combinations of multiple channel information and reports them to the fusion center, where occupied channels are then decoded from the reports by using novel matrix completion and joint sparsity recovery algorithms. As a result, the number of reports sent from the CRs to the fusion center is significantly reduced. We propose two decoding approaches, one based on matrix completion and the other based on joint sparsity recovery, both of which allow exact recovery from incomplete reports. The numerical results validate the effectiveness and robustness of our approaches. In particular, in small-scale networks, the matrix completion approach achieves exact channel detection with a number of samples no more than 50% of the number of channels in the network, while joint sparsity recovery achieves similar performance in large-scale networks.
    URI
    https://hdl.handle.net/10657/6496
    Collections
    • UH Faculty, Staff, and Student Works

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsDepartmentsTitlesSubjectsThis CollectionBy Issue DateAuthorsDepartmentsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV