• Login
    View Item 
    •   Repository Home
    • UH Faculty, Staff, and Student Works
    • UH Faculty, Staff, and Student Works
    • View Item
    •   Repository Home
    • UH Faculty, Staff, and Student Works
    • UH Faculty, Staff, and Student Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Coalitional Games in Partition Form for Joint Spectrum Sensing and Access in Cognitive Radio Networks

    Thumbnail
    View/Open
    Han_2012_CoalitionalGamesinPartitionFormforJointSpectrumPRE.pdf (431.1Kb)
    Date
    10/10/2011
    Author
    Saad, Walid
    Han, Zhu
    Zheng, Rong
    Hjorungnes, Are
    Ba?ar, Tamer
    Poor, H. Vincent
    Metadata
    Show full item record
    Abstract
    Unlicensed secondary users (SUs) in cognitive radio networks are subject to an inherent tradeoff between spectrum sensing and spectrum access. Although each SU has an incentive to sense the primary user (PU) channels for locating spectrum holes, this exploration of the spectrum can come at the expense of a shorter transmission time, and, hence, a possibly smaller capacity for data transmission. This paper investigates the impact of this tradeoff on the cooperative strategies of a network of SUs that seek to cooperate in order to improve their view of the spectrum (sensing), reduce the possibility of interference among each other, and improve their transmission capacity (access). The problem is modeled as a coalitional game in partition form and an algorithm for coalition formation is proposed. Using the proposed algorithm, the SUs can make individual distributed decisions to join or leave a coalition while maximizing their utilities which capture the average time spent for sensing as well as the capacity achieved while accessing the spectrum. It is shown that, by using the proposed algorithm, the SUs can self-organize into a network partition composed of disjoint coalitions, with the members of each coalition cooperating to jointly optimize their sensing and access performance. Simulation results show the performance improvement that the proposed algorithm yields with respect to the noncooperative case. The results also show how the algorithm allows the SUs to self-adapt to changes in the environment such as changes in the traffic of the PUs, or slow mobility.
    URI
    https://hdl.handle.net/10657/6488
    Collections
    • UH Faculty, Staff, and Student Works

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsDepartmentsTitlesSubjectsThis CollectionBy Issue DateAuthorsDepartmentsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV