• Login
    View Item 
    •   Repository Home
    • UH Faculty, Staff, and Student Works
    • UH Faculty, Staff, and Student Works
    • View Item
    •   Repository Home
    • UH Faculty, Staff, and Student Works
    • UH Faculty, Staff, and Student Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Learning to Entangle Radio Resources in Vehicular Communications: An Oblivious Game-Theoretic Perspective

    Thumbnail
    View/Open
    Han_2018_LearningtoEntangleRadioResourcesPRE.pdf (815.7Kb)
    Date
    3/26/2019
    Author
    Chen, Xianfu
    Wu, Celimuge
    Bennis, Mehdi
    Zhao, Zhifeng
    Han, Zhu
    Metadata
    Show full item record
    Abstract
    In this paper, we investigate non-cooperative radio resource management in a vehicle-to-vehicle communication network. The technical challenges lie in high-vehicle mobility and data traffic variations. Over the discrete scheduling slots, each vehicle user equipment (VUE)-pair competes with other VUE-pairs in the coverage of a road side unit (RSU) for the limited frequency to transmit queued data packets, aiming to optimize the expected long-term performance. The frequency allocation at the beginning of each slot at the RSU is regulated by a sealed second-price auction. Such interactions among VUE-pairs are modeled as a stochastic game with a semi-continuous global network state space. By defining a partitioned control policy, we transform the original game into an equivalent stochastic game with a global queue state space of finite size. We adopt an oblivious equilibrium (OE) to approximate the Markov perfect equilibrium, which characterizes the optimal solution to the equivalent game. The OE solution is theoretically proven to be with an asymptotic Markov equilibrium property. Due to the lack of a priori knowledge of network dynamics, we derive an online algorithm to learn the OE solution. Numerical simulations validate the theoretical analysis and show the effectiveness of the proposed online learning algorithm.
    URI
    https://hdl.handle.net/10657/6451
    Collections
    • UH Faculty, Staff, and Student Works

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsDepartmentsTitlesSubjectsThis CollectionBy Issue DateAuthorsDepartmentsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV