• Login
    View Item 
    •   Repository Home
    • UH Faculty, Staff, and Student Works
    • UH Faculty, Staff, and Student Works
    • View Item
    •   Repository Home
    • UH Faculty, Staff, and Student Works
    • UH Faculty, Staff, and Student Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Game Theoretic Approaches to Massive Data Processing in Wireless Networks

    Thumbnail
    View/Open
    Han_2017_GameTheorectivApproachestoMassiveDataPRE.pdf (549.1Kb)
    Date
    2/28/2018
    Author
    Zheng, Zijie
    Song, Lingyang
    Han, Zhu
    Li, Geoffrey Ye
    Poor, H. Vincent
    Metadata
    Show full item record
    Abstract
    Wireless communication networks are becoming highly virtualized with two-layer hierarchies, in which controllers at the upper layer with tasks to achieve can ask a large number of agents at the lower layer to help realize computation, storage, and transmission functions. Through offloading data processing to the agents, the controllers can accomplish otherwise prohibitive big data processing. Incentive mechanisms are needed for the agents to perform the controllers' tasks in order to satisfy the corresponding objectives of controllers and agents. In this article, a hierarchical game framework with fast convergence and scalability is proposed to meet the demand for real-time processing for such situations. Possible future research directions in this emerging area are also discussed.
    URI
    https://hdl.handle.net/10657/6432
    Collections
    • UH Faculty, Staff, and Student Works

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsDepartmentsTitlesSubjectsThis CollectionBy Issue DateAuthorsDepartmentsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV