• Login
    View Item 
    •   Repository Home
    • UH Faculty, Staff, and Student Works
    • UH Faculty, Staff, and Student Works
    • View Item
    •   Repository Home
    • UH Faculty, Staff, and Student Works
    • UH Faculty, Staff, and Student Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Joint Cache Allocation With Incentive and User Association in Cloud Radio Access Networks Using Hierarchical Game

    Thumbnail
    View/Open
    Han_2019_JointCacheAllocationWithIncentive.pdf (4.607Mb)
    Date
    2/15/2019
    Author
    Le, Tra Huong Thi
    Tran, Nguyen H.
    Vo, Phuong Luu
    Han, Zhu
    Bennis, Mehdi
    Hong, Choong Seon
    Metadata
    Show full item record
    Abstract
    In this paper, we consider a cloud radio access network-based system consisting of one network operator (NO) and several content providers (CPs). The NO owns a cloud cache and provides caching as a service for CPs, who provide contents to users. While the NO wishes to motivate CPs to rent its cache and maximize its profit, CPs want to optimize the service performance for users and their renting utilities. Due to the time separation between cache allocation and user association problems, we model the interactions between the NO and CPs as a hierarchical game, i.e., a cache renting scheme between the NO and CPs in the cache allocation problem and the willingness of CPs in the user association problem. In the cache allocation problem, we propose a contract theory-based incentive mechanism in which the NO designs and offers an optimal contract to various types of CPs. We then formulate the user association problem as a many-to-many matching game with externalities. To solve this matching game, we propose a matching algorithm that converges to a two-sided exchange stable matching with low complexity. The simulation results demonstrate that this proposed approach is beneficial to the NO's profit and incentivize the CP to rent the cache with truthful private information. In addition, the system performance of the proposed approach in terms of the total data rate-delay tradeoff outperforms than the benchmarks.
    URI
    https://hdl.handle.net/10657/6407
    Collections
    • UH Faculty, Staff, and Student Works

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsDepartmentsTitlesSubjectsThis CollectionBy Issue DateAuthorsDepartmentsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV