• Login
    View Item 
    •   Repository Home
    • UH Faculty, Staff, and Student Works
    • UH Faculty, Staff, and Student Works
    • View Item
    •   Repository Home
    • UH Faculty, Staff, and Student Works
    • UH Faculty, Staff, and Student Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Engineering of protease variants exhibiting high catalytic activity and exquisite substrate selectivity

    Thumbnail
    View/Open
    Varadarajan_2005_EngineeringofProteaseVariants.pdf (615.7Kb)
    Date
    2005
    Author
    Varadarajan, Navin
    Gam, Jongsik
    Olsen, Mark J.
    Georgiou, George
    Iverson, Brent L.
    Metadata
    Show full item record
    Abstract
    The exquisite selectivity and catalytic activity of enzymes have been shaped by the effects of positive and negative selection pressure during the course of evolution. In contrast, enzyme variants engineered by using in vitro screening techniques to accept novel substrates typically display a higher degree of catalytic promiscuity and lower total turnover in comparison with their natural counterparts. Using bacterial display and multiparameter flow cytometry, we have developed a novel methodology for emulating positive and negative selective pressure in vitro for the isolation of enzyme variants with reactivity for desired novel substrates, while simultaneously excluding those with reactivity toward undesired substrates. Screening of a large library of random mutants of the Escherichia coli endopeptidase OmpT led to the isolation of an enzyme variant, 1.3.19, that cleaved an Ala–Arg peptide bond instead of the Arg–Arg bond preferred by the WT enzyme. Variant 1.3.19 exhibited greater than three million-fold selectivity (-Ala–Arg-/-Arg–Arg-) and a catalytic efficiency for Ala–Arg cleavage that is the same as that displayed by the parent for the preferred substrate, Arg–Arg. A single amino acid Ser223Arg substitution was shown to recapitulate completely the unique catalytic properties of the 1.3.19 variant. These results can be explained by proposing that this mutation acts to “swap” the P1 Arg side chain normally found in WT substrate peptides with the 223Arg side chain in the S1 subsite of OmpT.
    URI
    https://hdl.handle.net/10657/6203
    Collections
    • UH Faculty, Staff, and Student Works

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsDepartmentsTitlesSubjectsThis CollectionBy Issue DateAuthorsDepartmentsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV