• Login
    View Item 
    •   Repository Home
    • UH Faculty, Staff, and Student Works
    • UH Faculty, Staff, and Student Works
    • View Item
    •   Repository Home
    • UH Faculty, Staff, and Student Works
    • UH Faculty, Staff, and Student Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Influence of feeding hematocrit and perfusion pressure on hematocrit reduction (Fåhræus effect) in an artificial microvascular network

    Thumbnail
    View/Open
    Shevkoplyas_2018_InfluenceOfFeedingAM.pdf (1.170Mb)
    Date
    11/1/2018
    Author
    Reinhart, Walter H.
    Piety, Nathaniel Z.
    Shevkoplyas, Sergey S.
    Metadata
    Show full item record
    Abstract
    Objective Hct in narrow vessels is reduced due to concentration of fast?flowing RBCs in the center, and of slower flowing plasma along the wall of the vessel, which in combination with plasma skimming at bifurcations leads to the striking heterogeneity of local Hct in branching capillary networks known as the network Fåhræus effect. We analyzed the influence of feeding Hct and perfusion pressure on the Fåhræus effect in an AMVN. Methods RBC suspensions in plasma with Hcts between 20% and 70% were perfused at pressures of 5?60 cm H2O through the AMVN. A microscope and high?speed camera were used to measure RBC velocity and Hct in microchannels of height of 5 ?m and widths of 5?19 ?m. Results Channel Hcts were reduced compared with Hctfeeding in 5 and 7 ?m microchannels, but not in larger microchannels. The magnitude of Hct reduction increased with decreasing Hctfeeding and decreasing ?P (flow velocity), showing an about sevenfold higher effect for 40% Hctfeeding and low pressure/flow velocity than for 60% Hctfeeding and high pressure/flow velocity. Conclusions The magnitude of the network Fåhræus effect in an AMVN is inversely related to Hctfeeding and ?P.
    URI
    https://hdl.handle.net/10657/6188
    Collections
    • UH Faculty, Staff, and Student Works

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsDepartmentsTitlesSubjectsThis CollectionBy Issue DateAuthorsDepartmentsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV