Effect of vapor bubbles on velocity fluctuations and dissipation rates in bubbly Rayleigh-B ?enard convection

Abstract

Numerical results for kinetic and thermal energy dissipation rates in bubbly Rayleigh-Bénard convection are reported. Bubbles have a twofold effect on the flow: on the one hand, they absorb or release heat to the surrounding liquid phase, thus tending to decrease the temperature differences responsible for the convective motion; but on the other hand, the absorbed heat causes the bubbles to grow, thus increasing their buoyancy and enhancing turbulence (or, more properly, pseudoturbulence) by generating velocity fluctuations. This enhancement depends on the ratio of the sensible heat to the latent heat of the phase change, given by the Jakob number, which determines the dynamics of the bubble growth.

Description

Keywords

N/A

Citation

Copyright 2011 Physical Review E. Recommended citation: Lakkaraju, Rajaram, Laura E. Schmidt, Paolo Oresta, Federico Toschi, Roberto Verzicco, Detlef Lohse, and Andrea Prosperetti. "Effect of vapor bubbles on velocity fluctuations and dissipation rates in bubbly Rayleigh-Bénard convection." Physical Review E 84, no. 3 (2011): 036312. DOI: 10.1103/PhysRevE.84.036312 URL: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.84.036312 Reproduced in accordance with the original publisher’s licensing terms and with permission from the author(s).