Browsing by Author "Ulyanova, Natalia P."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Structure–activity relationship study of acridine analogs as haspin and DYRK2 kinase inhibitors(Bioorganic and Medicinal Chemistry Letters, 6/15/2011) Cuny, Gregory D.; Robin, Maxime; Ulyanova, Natalia P.; Patnaik, Debasis; Pique, Valerie; Casano, Gilles; Liu, Ji-Feng; Lin, Xiangjie; Xian, Jun; Glicksman, Marcie A.; Stein, Ross L.; Higgins, Jonathan M.G.Haspin is a serine/threonine kinase required for completion of normal mitosis that is highly expressed during cell proliferation, including in a number of neoplasms. Consequently, it has emerged as a potential therapeutic target in oncology. A high throughput screen of approximately 140,000 compounds identified an acridine analog as a potent haspin kinase inhibitor. Profiling against a panel of 270 kinases revealed that the compound also exhibited potent inhibitory activity for DYRK2, another serine/threonine kinase. An optimization study of the acridine series revealed that the structure–activity relationship (SAR) of the acridine series for haspin and DYRK2 inhibition had many similarities. However, several structural differences were noted that allowed generation of a potent haspin kinase inhibitor (33, IC50 <60 nM) with 180-fold selectivity over DYRK2. In addition, a moderately potent DYRK2 inhibitor (41, IC50 <400 nM) with a 5.4-fold selectivity over haspin was also identified.Item Structure–activity relationship study of beta-carboline derivatives as haspin kinase inhibitors(Bioorganic and Medicinal Chemistry Letters, 2013-03) Cuny, Gregory D.; Ulyanova, Natalia P.; Patnaik, Debasis; Liu, Ji-Feng; Lin, Xiangjie; Auerbach, Ken; Ray, Soumya S.; Xian, Jun; Glicksman, Marcie A.; Stein, Ross L.; Higgins, Jonathan M.G.Haspin is a serine/threonine kinase that phosphorylates Thr-3 of histone H3 in mitosis that has emerged as a possible cancer therapeutic target. High throughput screening of approximately 140,000 compounds identified the beta-carbolines harmine and harmol as moderately potent haspin kinase inhibitors. Based on information obtained from a structure–activity relationship study previously conducted for an acridine series of haspin inhibitors in conjunction with in silico docking using a recently disclosed crystal structure of the kinase, harmine analogs were designed that resulted in significantly increased haspin kinase inhibitory potency. The harmine derivatives also demonstrated less activity towards DYRK2 compared to the acridine series. In vitro mouse liver microsome stability and kinase profiling of a representative member of the harmine series (42, LDN-211898) are also presented.