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This dissertation consists of two essays on crude oil futures and options markets. The

first essay investigates whether aggregate risk aversion and risk premiums in the crude

oil market co-vary with the level of speculation. Using crude oil futures and option data,

I estimate aggregate risk aversion in the crude oil market and find that it is significantly

lower after 2002, when speculative activity started to increase. Using speculation index

as a state variable, risk premiums implied by the state-dependent risk aversion estimates

confirm the negative correlation between speculative activity and risk premiums, and

indicate that risk premiums in the crude oil market are on average lower and more volatile

after 2002. These findings suggest that index-fund investors who demand commodity

futures for the purpose of portfolio diversification are willing to accept lower compensation

for their positions. Estimated state-dependent risk premiums have substantial predictive

power for subsequent futures returns and outperform commonly used predictors.

The second essay exams the economic importance of jumps, jump risk premiums,

and dynamic jump intensities in crude oil futures and options markets. Existing pricing

models for crude oil options are computationally intensive due to the presence of latent

state variables. Using a panel data of crude oil futures and options, I implement a class

of computationally efficient discrete-time jump models. I find that jumps account for

about half of the total variance in crude oil futures and options prices, and a substantial

part of the risk premiums is due to jumps. Jumps are large and rare events in crude oil

futures and options markets. The main role of jumps and jump risk premiums in crude

oil futures and options markets is to capture excess kurtosis in the data. These findings

suggest that it is critical to include jumps in pricing models for crude oil futures and

options, and there is strong evidence in favor of time-varying jump intensities.
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Chapter 1

Speculation, Risk Aversion, and Risk Premiums in the

Crude Oil Market

1.1 Introduction

The commodity market has grown rapidly over the past decade and has become an increas-

ingly important part of the �nancial market. For exchange-traded commodity derivatives,

the Bank for International Settlements (BIS) estimates that the number of outstanding con-

tracts increased from 13.3 millions in December 2003 to 137.4 millions in June 2013.1 Crude

oil futures and options are the most liquid commodity derivatives. In December 2011, WTI

and Brent crude oil futures accounted for 51.4% of dollar value of the S&P GSCI commodity

index. Understanding the risk preferences and trading activities of investors in the crude

oil market is therefore of great interest. It allows us to infer relevant information about

investors�expectations, and it is crucial for the purpose of pricing and risk management.

The commodity market has also witnessed structural changes over the last decade. Be-

fore the early 2000s, commodity markets were partly segmented from �nancial markets and

from each other (Tang and Xiong, 2012). After 2002, �nancial institutions started consider-

ing commodities as a new asset class to strategically diversify their portfolios. Researchers

ascribe this change to the crash in equity market, the negative correlation between com-

modity returns and stock returns documented in the literature (Greer, 2000; Gorton and

Rouwenhorst, 2006; Erb and Harvey, 2006), and the emergence of new �nancial instruments,

1As a comparison, the number of outstanding contracts for exchange-traded equity index increased from

59.0 millions in December 2003 to 96.8 millions in June 2013.
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such as long-only commodity index funds (LOCF) (Irwin and Sanders, 2011). According to

Tang and Xiong (2012), the total value of various commodity-related instruments purchased

by institutional investors increased from an estimated $15 billion in 2003 to at least $200

billion in mid-2008.

Following these structural changes, the literature has been debating if the increase in

commodity index investment impacts the level of futures prices or risk premiums. Irwin

and Sanders (2010) argue that there is no direct empirical link between index fund trading

and commodity futures prices, and that fundamental supply and demand have determined

crude oil prices; Hong and Yogo (2012) and Singleton (2011) �nd that speculative trading

activity causes price drifts and predicts futures returns; Hamilton and Wu (2011) document

signi�cant changes in risk premiums after 2005, when speculative activity dramatically

increased in the crude oil market. To the best of our knowledge, the relationship of the risk

aversion of the market participants and the speculation level in the crude oil market has

not been studied.

This paper investigates the relationship between the level of speculative activity and

the aggregate risk aversion (or risk premiums) in the crude oil market. To motivate my

main hypothesis I analyze a stylized model with one commercial hedger and one �nancial

speculator in the crude oil futures market. From the optimal futures positions of the hedger

and speculator, I �nd that the more risk averse a hedger is, the more short futures positions

she would hold; while the more risk averse a speculator is, the less long futures positions

she would hold. At equilibrium, the model suggests a negative relationship between the

speculation level and aggregate risk aversion. As speculation increases, the aggregate level

of risk aversion of market participants decreases, and risk premiums decrease accordingly.

The empirical investigation is motivated by this stylized model and focuses on testing

the dependence of market risk aversion and risk premiums on speculative activity. Using

WTI crude oil futures and option data from the Chicago Mercantile Exchange and traders�

position data from the CFTC, I estimate the market risk aversion using a probability density

function forecast ability test. Following Bliss and Panigirtzoglou (2004), I �rst assume the
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risk aversion parameter is stationary over time and estimate the value of risk aversion

by maximizing the forecast ability of subjective density functions which are implied from

risk neutral densities and the assumed utility function. The risk premium is inferred from

the normalized di¤erence between risk neutral density functions and optimal risk-adjusted

physical density functions. I then run subsample estimation and estimate the market risk

aversions for high and low speculation periods respectively. I �nd that the aggregate relative

risk aversion estimated for the high speculation period is lower than that estimated for low

speculation periods. Risk premiums for the high speculation periods are on average lower

than those for low speculation periods as well.

To further test the relationship of market risk aversion and risk premium with traders�

speculative activities, I subsequently use the speculation index as a state variable and

estimate state-dependent market risk aversion. I �nd evidence of a negative correlation

between the state-dependent market risk aversion and the speculation level. The state-

dependent market risk aversion is positive on average; however, after 2002, as speculation

increases, risk aversion is more volatile and decreases over time. Occasionally, the state-

dependent market risk aversions are negative. With state-dependent risk aversion, implied

risk premiums are more volatile and on average lower after 2002. When the market risk

aversion is negative, we have negative risk premiums.

The �ndings on risk premiums are similar to those of Hamilton and Wu (2011), who

use a very di¤erent modeling approach. My results are consistent with their interpretation

that index-fund buyers who demand commodity futures for portfolio diversi�cation are

willing to accept much lower risk compensation, or would even pay a premium. Usually,

commercial hedgers who hold futures positions need to hedge their price risks and would

like to pay a premium to their counterparty. The �nancial traders who take the other side

of the contract will receive this premium. However, as more and more �nancial institutions

regard commodities as a new asset class and invest in the commodity market to diversify

their portfolios, it is possible that they would want to pay a premium for their speculative

positions.

3



To the best of my knowledge, this is the �rst paper to estimate the risk aversion coe¢ -

cient in the crude oil market. Pan (2011) investigate investor be�iefs and state price densities

in the crude oil market and �nd that investors assign higher state prices to negative returns

when there are higher dispersion of beliefs and the increase in speculation reinforces this

e¤ect. Other related literature that estimates the representative agent�s degree of risk aver-

sion is mainly focused on the equity index market (Ait-Sahalia and Lo 2000; Jackwerth

2000; Ait-Sahalia, Wang, and Yared 2001; Rosenberg and Engle 2002). This paper �lls the

gap by estimating the risk aversion coe¢ cient in the crude oil market and documents the

evolution of aggregate risk aversion level as the market structure changes.

This paper also contributes to the existing literature by inferring risk premiums in the

crude oil market and studying their properties. Estimated state-dependent risk premiums

are negatively correlated with the speculation level. I further test the ability of state-

dependent risk premiums and other predictive variables, such as lagged futures returns,

lagged volatility, and the speculation index to forecast subsequent futures returns. Risk

premiums implied by state-dependent market risk aversion have signi�cant explanatory

power in predicting next period�s futures returns, and their predictive power is higher than

that of other commonly used predictors.

The rest of the paper proceeds as follows. In Section 2 I present a model with a hedger

and a speculator in the crude oil futures market and develop our main hypothesis. Section

3 introduces the methodology used to estimate risk aversion and risk premiums. Section 4

discusses the data. Section 5 reports the main results and discusses the properties of the

estimated state-dependent risk premiums. Section 6 concludes.

1.2 The Model

Assuming the existence of one commercial hedger and one �nancial speculator in the crude

oil futures market, I study an equilibrium model and investigate its implications. This

model builds on Du¢ e and Jackson (1990) who consider only one agent, the hedger, in the

futures market.
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1.2.1 The Hedger

The model includes a hedger (or commercial trader), who is directly exposed to the under-

lying crude oil commodity and uses futures to hedge the price risks.

Let B = (B1; : : : ; BN ) denote a Standard Brownian Motion in RN which is a martingale

with respect to the agent�s �ltered probability space. The spot price of crude oil is given by

dSt
St

= �tdt+ �tdBt (1.1)

where �t and �t are the mean and variance process of crude oil spot returns at time t, with

�t is 1-dimentional and �t is (1�N)-dimensional.

Assume there are K futures contracts available for trade. The futures prices are given

by a K-dimensional Ito process Ft

dFt
Ft

= mtdt + vtdBt (1.2)

where mt and vt are the mean and volatility process for the futures contracts at time t,

with mt is K-dimentional and vt is (K �N)-dimensional.

The hedger�s total wealth is the sum of the terminal value of a �xed portfolio of spot

market assets and the terminal value of a margin account on a futures trading position. It

is given by

dW �h
t = �h;tdSt + dX

�h
t (1.3)

where �h;t is the hedger�s physical position in crude oil at time t and X
�h
t is the margin

account with

X�h
t =

Z t

0
er(t�u)�h;udFu (1.4)

where �h;t = (�1h;t; : : : ; �
K
h;t) is the futures position strategy of the hedger at time t. A

positive number for the hedger�s physical position (�h;t > 0) means that crude oil is in net

supply, while a negative number (�h;t < 0) means crude oil is in net demand. Similarly,
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a positive number for the hedger�s futures position (�h;t > 0) represents long positions in

futures and a negative one (�h;t < 0) represents short positions.

The hedger�s problem is

max
�h

E[U(W �h
T )] (1.5)

Assume the hedger�s utility function takes the exponential form and her relative risk

aversion at time t is 
ht , we can solve for hedger�s optimal futures position

�h;t = �
(vtv

0
t)
�1

Ft
[vt�

0
t�h;tSt �mt=


h
t ] (1.6)

The proof is provided in the Appendix. The hedger�s optimal futures position is the

same as that of the single agent model in Du¢ e and Jackson (1990).

1.2.2 The Speculator

Now consider a speculator in this market who trades with the hedger for �nancial pro�ts. A

speculator (or �nancial trader) is the one who is not directly engaged in trading the crude

oil spot commodity and instead uses crude oil futures for the purpose of marking �nancial

pro�t. The speculator does not hold the spot commodity. Her margin account is

X�s
t =

Z t

0
er(t�u)�s;udFu (1.7)

where �s;t = (�1s;t; : : : ; �
K
s;t) is the speculator�s futures position strategy at time t.

The speculator�s total wealth is dW �s
t = dX�s

t , so her maximization problem is

max
�s
E[U(W �s

T )] (1.8)

Similar to solving the hedger�s problem, I assume exponential utilities for the speculator

and denote her relative risk aversion as 
st . Her optimal futures position is given by

�s;t = �
(vtv

0
t)
�1mt

Ft
st
(1.9)
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1.2.3 Equilibrium

Market clearing requires �h;t + �s;t = 0: This implies

mt =
vt�

0
t�h;tSt

1

ht
+ 1


st

(1.10)

De�ne the degree of aggregate absolute risk aversion of the representative agent, or the

market risk aversion, as an average of the population degree of risk aversion. For simplicity,

I assume they have equal weights2

�t � 
ht + 
st (1.11)

Substituting (1.10) and (1.11) back into (1.6) and (1.9), we get

�s;t =
St(vtv

0
t)
�1vt�0t�h;t
Ft


ht

ht + 


s
t

(1.12)

=
St(vtv

0
t)
�1vt�0t�h;t
Ft


ht
�t

�h;t = �
St(vtv

0
t)
�1vt�0t�h;t
Ft


ht
�t

(1.13)

Equations (1.12) and (1.13) solve equilibrium optimal positions in futures for the spec-

ulator and hedger respectively.3 From them I obtain the following implications:

1. In equilibrium, traders�absolute positions in futures contracts are proportional to the

covariance between the futures prices and spot prices, vt�0t. A high covariance term indicates

that futures contracts provide a good hedge, suggesting a high demand for hedging. When

2This can be easily generalized to a weighted average of the risk aversion of the hedger and the speculator.

This generalization does not change our main conclusions.

3Pareto optimal allocations are always possible in competitive economies with complete securities mar-

kets. When a market is incomplete, it typically fails to make the optimal asset allocation. A competitive

equilibrium in an incomplete market is generally constrained suboptimal.
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the prices of futures contracts and the spot commodity are perfectly correlated, a risk averse

(
ht > 0) producer (�h;t > 0) would like to short futures contracts (�h;t < 0) to hedge her

price risk and a risk averse speculator (
st > 0) would take the other side of the contract

(�s;t > 0).

2. The absolute values of traders�positions in futures contracts (j�h;tj and j�s;tj) are

proportional to the hedger�s net spot position �h;t. The more physical crude oil is in net

supply (�h;t > 0 and �h;t increases), the more short futures positions the hedger would take

for hedging purposes (�h;t < 0 and j�h;tj increases), and the more long futures positions

the speculator would take to o¤set the hedger�s position (�s;t > 0 and �s;t increases). On

the other hand, the more physical crude oil in net demand (�h;t < 0 and j�h;tj increase),

the more long futures positions are required by hedgers for hedging purposes (�h;t > 0 and

�h;t increases), and the more short futures positions the speculator would take to o¤set the

hedger�s position (�s;t < 0 and j�s;tj increases).

3. Traders�futures positions are negatively related to their level of risk aversion. The

more risk averse a hedger is (
ht increases), the more short futures positions she would

like to hold (�h;t < 0 and j�h;tj increases); while the more risk averse a speculator is (
st

increases), the less long futures positions she would hold (�s;t > 0 and �s;t decreases).

Assume everything else equals, as the risk aversion of the speculator (
st ) decreases, the

market risk aversion (�t) would decreases accordingly, and the speculative activities (�s;t)

would increase.

In the model, the level of market risk version is directly related to the market partici-

pants�trading positions. The equilibrium optimal position suggests a negative relationship

between market risk aversion and speculative activity. As we observe more speculative

activity in the crude oil market in recent years, we expect a lower aggregate market risk

aversion.

Motivated by this model, I hypothesize that market risk aversion is state-dependent.

When there is more speculation, market risk aversion is low. I will test this hypothesis in

the empirical analysis below.
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1.3 Estimating Market Risk Aversion

It would be interesting to estimate the risk aversion coe¢ cients of the hedger and speculator

separately, but this necessitates strong assumptions. Instead, I estimate the risk aversion

coe¢ cient of the representative agent, or the aggregate market risk aversion. I explain

the methodology used to perform this estimation in 3.1. Two utility functions used in the

empirical analysis are discussed in 3.2. In 3.3, I extend this methodology to allow estimation

of state-dependent market risk aversion.

1.3.1 Estimating Constant Market Risk Aversion

According to asset pricing theory, the risk neutral density function is related to the objective

density function by the representative investor�s utility function. The representative agent�s

risk aversion is embedded in the utility function, given certain conditions such as complete

and frictionless markets and a single asset (Ait-Sahalia and Lo, 2000; Jackwerth, 2000; Bliss

and Panigirtzoglou, 2004; Christo¤ersen, Heston, and Jacobs, 2013). I estimate aggregate

risk aversion by considering a representative agent in the crude oil market, and assuming

that her wealth can be represented by the overall price level of the crude oil market.4

Assume that the representative agent�s utility function is U(:). At time t, the price of a

crude oil futures contract maturing at time T , Ft;T , is given by

Ft;T = E

�
�
U 0(FT )

U 0(Ft;T )
FT

�
(1.14)

where FT = FT;T � ST is the spot price at expiration, and � is the impatience factor.

4One may wonder if the assumption of a representative agent in the crude oil market is valid since

this market is generally regarded as incomplete. Du¢ e (2001) shows that if the gradient of an agent�s

utility function at an optimal-consumption process exists and is smooth-additive, the calculations for the

representative agent can be repeated for each agent, and the market level of risk aversion can be calculated

using equation (2.11). A model can have a representative agent when agents di¤er but act in such a way

that the sum of their choices is mathematically equivalent to the decision of one individual or many identical

individuals.
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Under the risk neutral measure,

Ft;T = E
Q [exp(�r(T � t))FT ] (1.15)

De�ning the pricing kernel, �(FT ) � fQ(FT )
f(FT )

, where f(:) and fQ(:) are the physical and

risk neutral density functions, we obtain

�(FT ) �
fQ(FT )

f(FT )
=
�U 0(FT )

U 0(Ft;T )
(1.16)

where U 0(:) is the marginal utility function and � is a constant.

From equation (1.16), given any two of the following three: the risk neutral density

function, the physical density function, and the pricing kernel (or utility function), we can

infer the third. For example, if we know the risk neutral probability density function, one

can either assume pricing kernel or utility function to imply a physical density, or make an

assumption on the physical density to infer the pricing kernel.

Estimating the representative agent�s degree of risk aversion has a long history in the

equity index market. The methodology in most studies is to separately estimate the risk

neutral density from options prices and the objective (or statistical) density function from

historical prices of the underlying asset. Use these two separately derived functions to infer

the pricing kernel, and then draw conclusions for the implied utility function or risk aversion

coe¢ cient (Ait-Sahalia and Lo 2000; Jackwerth 2000; Ait-Sahalia, Wang, and Yared 2001;

Rosenberg and Engle 2002).

Cross-sections of option prices have been widely used to estimate implied risk neutral

probability density functions. These risk neutral probability density functions represent

forward-looking forecasts of the distributions of prices of the underlying asset at a single

point of time. The physical density function is more challenging to estimate. One cannot

independently estimate a time varying statistical density from a time series of prices without

imposing an a priori structure. For example, Jackwerth (2000) uses one month of daily

return data and calculates 31-day, non-overlapping returns from sample. Ait-Sahalia and Lo

(2000) use a relatively long series of overlapping returns to estimate the actual distribution.

10



Christo¤ersen, Heston, and Jacobs (2013) obtain a conditional density by standardizing the

monthly return series by the sample mean and the conditional one-month variance on that

day.

Bliss and Panigirtzoglou (2004) point out that these studies impose assumptions of

stationarity on the statistical density function or the parameters of the underlying stochastic

prices, which are not implied or required by the theory. They propose a di¤erent approach

that assumes the risk aversion parameter is stationary over the sample period and estimates

the value of risk aversion by maximizing the forecast ability of subjective PDFs, which are

implied from risk neutral PDFs and the assumed utility function (or pricing kernel).

In this paper, I estimate the market risk aversion parameter by adopting Bliss and Pani-

girtzoglou�s (2004) PDF forecast ability method. If investors are rational, their subjective

density forecasts should correspond, on average, to the distribution of realizations. The risk

aversion coe¢ cient in the utility function provides a measure of the degree of risk aversion

of the representative investor in the crude oil market.

I now describe the estimation procedure for market risk aversion in more detail. Option

prices embed risk neutral PDFs. Breeden and Litzenberger (1978) show that the risk neutral

PDF for the value of the underlying asset at option expiry, f(ST ), is related to the European

call price by

fQ(ST ) = e
r(T�t)@

2C(St;K; t; T )

@K2
jK=ST (1.17)

where St is the current value of the underlying asset, K is the option strike price, and T � t

is the time to expiry.

In the case of the crude oil derivatives data, I use the semi-parametric approach �rst

introduced in Ait-Sahalia and Lo (1998) and follow the implementation of Christo¤ersen,

Heston, Jacobs (2013) and Pan (2011). The risk neutral density for the spot price at the

maturity date T is given by

bfQ(FT jFt) = er(T�t)@2 bC(Ft;T ;K; t; T; �(K;T ))
@K2

jK=FT (1.18)
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where �(K;T ) is the Black (1976) implied volatility.

Given an estimated risk neutral density function and a utility function, the implied

subjective density function is

bf(FT ) = bfQ(FT )
�(FT )R bfQ(x)
�(x) dx

=

U 0(Ft)
�U 0(FT )

bfQ(FT )R U 0(Ft)
�U 0(x)

bfQ(x)dx =
bfQ(FT )
U 0(FT )R bfQ(x)
U 0(x) dx

(1.19)

I then use the Berkowitz (2001) probability density function forecast ability test to

estimate the market risk aversion coe¢ cient and infer physical probability density functions,

as in Bliss and Panigirtzoglou (2004). Berkowitz (2001) proposes a parametric methodology

for jointly testing uniformity and independence of the density functions. He de�nes a

transformation, zt, of the inverse probability transformation, yt, using the inverse of the

standard normal cumulative density function, �(:):

zt = �
�1(yt) = �

�1
Z Xt

�1
bft(s)ds (1.20)

Under the null hypothesis, bft(:) = ft(:), zt � i:i:d N(0; 1). Berkowitz (2001) tests the

independence and standard normality of the zt by estimating the following equation using

maximum likelihood:

zt � � = �(zt�1 � �) + "t (1.21)

I test restrictions on the estimated parameters using a likelihood ratio test. Under the

null, the parameters of this model should be: � = 0; � = 0, and V ar("t) = 1. Denoting the

log-likelihood function as L(�; �2; �), the likelihood ratio statistic is

LR = �2[L(0; 1; 0)� L(b�; b�2;b�) (1.22)

which will be distributed �2(3) under the null hypothesis.

1.3.2 Two Utility Functions

First, I consider the power utility function

12



U(FT ) =
F 1��T � 1
1� � (1.23)

where � is the measure of market relative risk aversion (MRRA), � =MRRA = �FTU
00(FT )

U 0(FT )
.

The corresponding pricing kernel is

�(FT ) =
�U 0(FT )

U 0(Ft;T )
= �

�
FT
Ft;T

���
(1.24)

Substituting equation (1.24) into (1.19), I get

bf(FT ) =
bfQ(FT )
F��TR bfQ(x)
x��

dx
(1.25)

I �rst choose an initial value of �, and then maximize the forecast ability of the resulting

subjective probability density functions by maximizing the p-value of the Berkowitz LR

statistic with respect to �. The forecast ability test of physical density functions gives out

an estimate of the market relative risk aversion, �, and the corresponding risk-adjusted

physical probability density functions.

Second, I use the exponential utility function throughout this paper for comparison.

The exponential utility function is given by

U(FT ) = �
e��FT

�
(1.26)

where � is the market absolute risk aversion (MARA) with � = MARA == �U 00(FT )
U 0(FT )

:The

market relative risk aversion is �FT . The pricing kernel under the exponential utility is

�(FT ) =
�U 0(FT )

U 0(Ft;T )
= �e��(FT�Ft;T ) (1.27)

Substituting equation (1.27) into (1.19), I get the physical density function as

bf(FT ) = bfQ(FT )
e��FTR bfQ(x)
e��X

dx
(1.28)
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1.3.3 Estimating State-Dependent Market Risk Aversion

The market risk aversion estimation approach introduced in Section 3.1 assumes the risk

aversion parameter is stationary over the sample period and does not allow for state depen-

dence of market risk aversion. However, Bliss and Panigirtzoglou (2004) document that the

implied relative risk aversion in the equity market is volatility-dependent. Christo¤ersen,

Heston, and Jacobs (2013) also develop a model with a variance-dependent price kernel and

�nd a negative variance premium. As for the crude oil market, according to the analysis in

Section 2, I am interested in investigating the possibility that �nancialization has changed

the structure of the crude oil market. Therefore I make further assumptions and allow the

market risk aversion coe¢ cient to change over time.

To estimate the state-dependent market risk aversion, I assume that the market risk

aversion is a linear function of a state variable xt, which measures the level of speculative

activity. For the case of the power utility function, I assume

�t = a+ b(xt � xt) (1.29)

where �t is the state-dependent market relative risk aversion at time t. a is the average

level of the overall market relative risk aversion. The slope coe¢ cient, b, determines the

variation of market relative risk aversion with the state variable xt.

Similarly in the case of exponential utility, I assume

� = a+ b(xt � xt) (1.30)

where � is the state-dependent market absolute risk aversion at time t.

I estimate the values of coe¢ cients a and b by running the Berkowitz (2001) density

forecast ability test by maximizing LR p-values for the adjusted physical density functions

in the case of power and exponential utilities respectively.
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1.4 Data

1.4.1 Crude Oil Futures and Options Data

The Chicago Mercantile Exchange (CME group, formerly NYMEX) crude oil derivatives

market is the world�s largest and most liquid commodity derivatives market. The range

of maturities covered by futures and options and the range of option strike prices are also

greater than for other commodities (Trolle and Schwartz, 2009). I use a data set of WTI

crude oil futures and options contracts traded on the CME from January 2nd, 1990 to

December 3rd, 2008.

Futures contracts were screened based on patterns in trading activity. Open interest

for futures contracts tends to peak approximately two weeks before expiration. Among

futures and options with more than two weeks to expiration, the �rst six monthly contracts

tend to be very liquid. For contracts with maturities over six months, trading activity is

concentrated in the contracts expiring in March, June, September, and December. Due to

these liquidity patterns, I �lter the futures and options data as follows: I retain all futures

contracts within six weeks or fewer days to expiration; among the remaining, I retain the

�rst �ve monthly contracts (M2-M6); beyond that, I choose the �rst two contracts with

expiration either in March, June, September or December (Q1-Q2).

Figure 1-1 plots the prices of the �ltered futures contracts with maturity from one month

up to one year (M1-M6 and Q1-Q2). All prices in this paper are settlement prices.5 To avoid

cluttering of the �gure, only the futures term structure on Wednesdays is displayed. From

Figure 1-1, we can observe that futures prices have increased dramatically since 2003 and

subsequently declined after July 2008. The prices of long maturity futures contracts, e.g.,

Q2 futures contracts, are lower on average than that of short maturity futures contracts,

e.g., M1 futures contracts. Generally speaking, the crude oil market is in backwardation,

consistent with existing studies (Trolle and Schwartz, 2009; Litzenberger and Rabinowitz,

5The CME light, sweet crude oil futures contract trades in units of 1000 barrels. Prices are quoted in US

dollars per barrel.
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Figure 1-1: Futures Prices

Notes to Figure: I plot the prices of futures contracts maturing in 1, 2, 3, 4, 5, 6, 9, and

12 months (M1-M2 and Q1-Q2 futures contracts). The data spans 4,753 trading days from

January 2, 1990 to December 3, 2008. To avoid cluttering the �gure, I only display the

futures term structures for Wednesdays.

1995). It is worth noticing that in recent years, especially after 2005, the frequency of the

crude oil market being in backwardation decreases gradually. Using one month (M1) futures

contracts as a proxy for the spot prices, the one year futures contracts (Q2) are strongly

backwardated 70.7% of the time before January 2005 and strongly backwardated 50.3% of

the time after 2005. According to the normal backwardation theory in Keynes (1930), when

the market is backwardated, we expect the risk premium to be positive; while when the

market is in Contango, we expect a negative risk premium.
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To screen the options data, I �rst retain options on �ltered futures contracts above.

Because trading in options markets is asymmetrically concentrated in at-the-money and

out-of-the-money strikes, and the spline algorithm will not accommodate duplicate strikes

in the data, I discard in the money options. Options which are impossible to compute an

implied volatility (usually far-away-from-the-money options quoted at their intrinsic value),

or options with implied volatilities of greater than 100 percent, are also discarded. If there

are fewer than �ve remaining usable strikes in a given cross-section, the entire cross-section

is discarded. Only those options that have open interest in excess of 100 contracts and

options with prices larger than 0.10 dollars are considered. In addition, I exclude those

observations with Black (1976) implied volatility less than 1% or greater than 100%.

Crude oil futures contracts expire on the third business day prior to the 25th calendar

day (or the business day right before it if the 25th is not a business day) of the month that

precedes the delivery month. Options written on futures expire three business days prior

to the expiration date of futures. A target observation date is then determined for horizons

of 1, 2, 3, 4, 5, and 6 weeks; 2, 3, 4, 5, 6, and 9 months; and 1 year by subtracting the

appropriate number of days (weekly horizons) or months (monthly and 1-year horizon) from

the expiration date, according to Bliss and Panigirtzoglou (2004). If there are no options

traded on the target observation date, the nearest options trading date is determined. If

this nearest trading date di¤ers from the target observation date by no more than 3 days

for weekly horizons or 4 days for monthly and 1-year horizons, that date is substituted for

the original target date. If no su¢ ciently close trading date exists, that expiry is excluded

from the sample for that horizon. Table 1.1 reports the summary statistics of the �ltered

options contracts for each forecast horizon.
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This data consists of American options on crude oil futures contracts. CME has also

introduced European-style crude oil options, however, the trading history is much shorter

and liquidity is much lower than the American options. Since the option pricing formula is

designed for European options, we have to convert the American option prices to European

option prices. I convert the American option prices to European option prices using the

method in Trolle and Schwartz (2009). It consists of inverting the Barone-Adesi and Whaley

(1987) formula for American option prices which yields a log-normal implied volatility, from

which we can subsequently obtain the European option price using the Black (1976) formula.

Figure 1-2 plots the implied ATM volatility of options on futures contracts maturing

in four weeks. The large spikes in the option implied volatilities appear around the end of

1990 and beginning of 1991 (which is the time of the �rst Gulf War), the September 2001

terrorist attack, the second Gulf War in March 2003, and during the �nancial crisis in 2008.

1.4.2 Trading Position Data

The Commodity Futures Trading Commission (CFTC) publishes trading positions of com-

mercial hedgers and �nancial speculators twice every month before September 30, 1992 and

once every week since then. Futures positions can be found in the futures only Commit-

ments of Traders (COT) report. As de�ned in the report, hedgers are those investors who

have direct exposure to the underlying crude oil commodities and use crude oil futures for

hedging purposes, and speculators are those investors who are not directly engaged in the

underlying crude oil commodities but use derivatives markets for the purpose of �nancial

pro�ts. This de�nition is in accordance with that proposed in the model of Section 2 and

thus can be used as a measure of the trading position of crude oil market participants.

Starting in 2006, the CFTC began to report positions of traders in a �ner category: com-

mercials, managed money, commodity dealers, and others. The fundamental distinction

among traders as to whether they have physical attachment in the crude oil market or not

still holds (Pan, 2011).

Figure 1-3 shows long and short positions taken by hedgers and speculators in the
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Figure 1-2: Implied Volatility of ATM Futures Options with Maturity of One Month

Notes to Figure: I plot the implied volatility of �ltered ATM options on futures contracts

maturing in 1 month. The data spans 4,753 trading days from January 2, 1990 to December

3, 2008.
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Figure 1-3: Traders�Futures Positions

Notes to Figure: I plot futures positions taken by commercial hedgers and �nancial specu-

lators from January 1990 to December 2008. Positions of hedgers and speculators are from

the U. S. Commodity Futures Trading Commission�s (CFTC) futures only Commitments

of Traders (COT) report.

futures market, which are obtained from the CFTC futures-only Commitments of Traders

(COT) report. Although participation in the futures market by hedgers and speculators

has experienced steady growth from 190 onwards, the increase of positions has been faster

since 2004. While both positions of hedgers and speculators increase over time, speculators

take relatively more long positions than short positions. Since late 2007, positions taken by

hedgers have gradually decreased while the speculators�positions kept increasing.

To measure the level of speculative activities, I use the speculation index (SI) which is

designed to gauge the intensity of speculation relative to hedging (Working, 1960; Buyuk-

sahin and Robe, 2010; Buyuksahin and Harris, 2011; Pan, 2011). If we denote SS (SL) as
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Figure 1-4: Speculation Index

Notes to Figure: I plot the speculation index de�ned in equation (2.14).

the speculator�s short (long) positions, and HS (HL) as the hedger�s short (long) position,

the speculation index is de�ned as

SIt =

� 1 + SSt
HLt+HSt

; if HSt � HLt;

1 + SLt
HLt+HSt

; if HSt < HLt

(1.31)

The speculation index measures the extent by which speculative positions exceed the

necessary level to o¤set hedging position. For instance, a 1.1 speculation index means that

there are 10% more speculative positions than what is needed to o¤set the hedging demand.

Figure 1-4 plots the speculation index de�ned in equation (1.31) from 1990 to 2008. This

time series reveals that there has been a high level of speculation in recent years. Before

2002, the speculation index was around 1.05; however it has risen steadily over time to 1.16

in 2008. It suggests that speculative activities in excess of hedging needs in the crude oil

market have increased since 2002.
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1.5 Estimation Results

I �rst estimate the market risk aversion using the probability density forecast methodology

for the whole sample and report the results in 5.1. Using estimated market risk aversion,

I infer the risk premiums from the risk adjusted densities and the risk neutral densities in

5.2. In 5.3, I estimate the state-dependent market risk aversion and infer state-dependent

market risk premiums. I interpret the empirical �ndings by relating it with the model

implication in Section 2 and explain the impact of the increased �nancialization on the risk

aversion and risk premiums in 5.4. A comparison of the predictability of state-dependent

risk premiums and other commonly used predictors is discussed in 5.5.

1.5.1 Estimation of Market Risk Aversion

I �rst �t Black (1976) implied volatilities of the cross-sectional option data at a given day

as a second order polynomial function of strike price and maturity following Pan (2011).

Then I construct a grid of strike prices and obtain at-the-money (ATM) Black (1976)

implied volatilities from the �tted polynomial function for each maturity. With these implied

volatilities, I back out call prices bC(Ft;T ;K; t; T; �(K;T )) on the desired grid of strike prices,
and then calculate the risk neutral density in equation (1.18) for the futures price at the

maturity date T .

De�ning futures return as Rt;T = log
�
FT
Ft;T

�
, where Ft;T is the time t price of a futures

contract maturing at time T; and FT = FT;T � ST .

The density function of futures returns over the period of T � t is

bfQ(Rt;T jFt) = bfQ(St exp(u)jFt)� St exp(u) (1.32)

Figure 1-5 plots the risk neutral density functions of futures returns maturing in four

weeks, which are calculated from options prices according to equations (1.18) and (1.32).

Risk neutral density functions in Figure 1-5 show a strong pattern of stochastic volatility.

The variances in the risk neutral density function path are larger for the crisis periods such
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Figure 1-5: Risk Neutral Probability Density Functions of Futures Returns with Maturity

of Four Weeks

Notes to Figure: I plot the risk neutral density functions of futures returns maturing in four

weeks, which are calculated from options prices according to equations (1.18) and (1.32).

as late 1990 to early 1991, September 2001, March 2003, and second half of 2008. These

are consistent with the implied volatility patterns plotted in Figure 1-2.

Using the risk neutral probability densities, I test the corresponding forecast ability by

running the Berkowitz (2001) likelihood ratio (LR) test , as in equation (1.22). The p-

values of the Berkowitz (2001) LR statistic and coe¢ cient estimates in (1.21) for di¤erent

horizons are reported in Table 1.2, Panel A. The p-values reported in Table 1.2, Panel A for

the two weeks and six weeks horizons are smaller than 5%. It suggests that for two weeks

and six weeks horizons, I reject the hypothesis that the risk neutral PDFs provide accurate

forecasts of the futures distribution.
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Table 1.2: Estimates of Market Risk Aversion

Forecast Horizon 1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks

n 181 213 221 227 226 227

p­value 0.2497 0.0407 0.4214 0.3093 0.0610 1.17E­06
μ 0.0932 0.0948 0.1407 0.1283 0.1127 0.1104
ρ 0.1018 0.1403 0.0223 0.0548 0.1113 0.2964
σ 1.0222 0.9922 1.0215 0.9747 0.9952 0.9933

p­value 0.4967 0.0712 0.9679 0.8239 0.1337 4.55E­06
μ 0.0058 0.0014 0.0011 0.0028 0.0066 0.0013
ρ 0.1054 0.1796 0.0188 0.0606 0.1545 0.3339
σ 1.0262 1.0041 1.0200 1.0111 1.0086 0.9951
MRRA (Г) 2.0262 1.1807 1.3856 1.1877 0.8759 1.0009

p­value 0.4005 0.0615 0.9363 0.7215 0.1107 2.81E­06
μ 0.0266 0.0149 0.0077 0.0168 0.0220 0.0238
ρ 0.1124 0.1823 0.0241 0.0699 0.1579 0.3372
σ 1.0303 1.0054 1.0249 1.0161 1.0103 0.9962
MARA (Г') 0.0409 0.0255 0.0367 0.0291 0.0196 0.0195
MRRA 1.5360 0.8839 1.2604 0.9879 0.6670 0.6620

Panel A. Risk Neutral Density

Panel B. Physical Density Calculated Using Power Utility

Panel C. Physical Density Calculated Using Exponential Utility

Notes to Table: I present the results of the modi�ed Berkowitz test of the risk neutral and

subjective probability density functions to forecast the futures distribution of the prices of

the underlying asset. Probability density functions are constructed by adjusting the risk

neutral probability density functions using the appropriate utility function. Risk aversion

parameters in the utility function were selected to maximize the Berkowitz likelihood ratio

(LR) statistic. I report the p-value of the LR test for i.i.d normality of the inverse-normal

transformed inverse-probability transforms of the realizations.
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Assuming an initial value of � (for power utility function) or � (for exponential utility

function), I then maximize the forecast ability of the resulting subjective probability density

functions in equation (1.25) or (1.28) by maximizing the p-values of the Berkowitz LR

statistic with respect to � (or �). This procedure gives the estimate of the � (or �).

Panel B and Panel C in Table 1.2 report Berkowitz LR statistic p-values and the es-

timates of the market risk aversion coe¢ cients from power-utility and exponential-utility

adjusted density functions. The p-values of the Berkowitz LR test of physical densities are

all much higher than that of the risk neutral density functions. It means the risk adjusted

physical density functions have better forecast ability than risk neutral probability density

functions.

For forecast horizons of one to �ve weeks, all the physical probability density functions

have signi�cant forecast ability. For the six week forecast horizon, both p-values of the

Berkowitz LR test implied by the power utility function and the exponential utility function

are lower than 5%, suggesting that both of them reject the null hypothesis. Rejection of the

Berkowitz LR test does not necessarily suggest that they cannot provide an accurate density

forecast. It may attribute to the overlapping forecast period and violating the independent

hypothesis. This could be veri�ed by the large correlation coe¢ cient, �. For example, the

estimated correlation coe¢ cient of the physical probability density function implied by the

power utility function is 0.33, which is far apart from the null hypothesis � = 0. Similar

properties hold for risk neutral density functions and physical density functions implied by

the exponential utility.

For forecast horizons one to �ve weeks, the estimated market relative risk aversions

implied by the power utility function are 2.03, 1.18, 1.39, 1.19, and 0.88, respectively. The

estimates in the case of exponential utility are absolute risk aversions. For this case, the

means of market relative risk aversions are also calculated and reported at the bottom of

the Table 1.2. They are 1.54, 0.88, 1.26, 0.99, and 0.67, respectively for the one to �ve

weeks forecast horizons. These numbers, on average, are lower than most of the relative
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risk aversion coe¢ cients documented in the equity index market.6 There are several possible

explanations for this �nding: one is that commercial hedgers have crude oil commodity as

a natural hedge, thus they are relatively less risk averse than the investors in the equity

market; another possible explanation is that �nancial investors who long crude oil futures

for the purpose of portfolio diversi�cation may require less premium to compensate their

risk exposure in the crude oil market.

The process of maximizing the Berkowitz statistic with respect to the market risk aver-

sion does not provide a measure of whether the resulting risk aversion coe¢ cient is sig-

ni�cantly di¤erent from zero. The process of searching for the optimal level of � (or �)

alters the distribution of the test statistic, biasing the likelihood ratio toward unity and

thus overstating the p-value. To investigate the properties of the estimation procedure and

the signi�cance of the resulting estimates, I run the bootstrap test to check the distribution

of the estimates, following Bliss and Panigirtzoglou (2004).

The bootstrap test captures the impact of the actual data and potential model misspec-

i�cation on the reliability of parameter estimates. I apply the bootstrap test for each option

horizon with M=1,000 replications. Each replication consists of drawing with replacement a

random sample of pairs of densities and associated outcomes from the original sample. Each

bootstrap sample was then used to estimate the risk aversion coe¢ cient and the p-value of

the Berkowitz LR statistic.

Since bootstrapping invalidates the independence assumption underlying computation

of p-values, the distribution of bootstrap p-values is uninformative. However, the distrib-

ution of risk aversion coe¢ cients provides an indication of the sampling variation of these

estimates.

Figure 1-6 gives the box plot of distributions of market risk aversion coe¢ cients from

6For example, Bliss and Panigirtzoglou (2004) �nd that the relative risk aversion implied by power utility

function using S&P 500 data are between 3.37 to 9.52; Guo and Whitelaw (2001) estimate a coe¢ cient of

relative risk aversion of 3.52; Ait-Sahalia and Lo (2000) report a value of 12.7.
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bootstrap tests.7 Figure 1-6.A plots the market relative risk aversion coe¢ cients implied

by the power utility function and Figure 1-6.B plots the market absolute risk aversion

coe¢ cients implied by the exponential utility function. From these �gures, I conclude

that market risk aversion estimates are signi�cantly di¤erent from zero across all forecast

horizons and for both power and exponential utilities.

Table 1.3 reports bootstrap estimation statistics. Consistent with the results in Figure

1-6, the estimated market risk aversion coe¢ cients are signi�cantly di¤erent from zero for

all forecast horizons.

1.5.2 Implied Risk Premiums

The di¤erence between the normalized means of the risk neutral probability density func-

tion and the subjective probability density function is an approximate measure of the risk

premium (Bliss and Panigirtzoglou, 2004)

Risk Premium (RP )t �
Et[ bfQ(FT )]� Et[ bf(FT )])

Et[ bfQ(FT )] (1.33)

With the estimated risk aversion parameters we can obtain the implied physical or

risk-adjusted probability density functions and infer the risk premium. I calculate the risk

premiums implied by power utility function and exponential utility function respectively.

Figure 1-7 plots the risk premiums calculated using function (1.33) for both powr uetility

function and exponential utility function for futures options expiring in four weeks. We ob-

serve large spikes in the risk premium paths in late 1990 and 2008 for both utility functions.

For the risk premium implied by power utility function, we also observe spikes around late

1998, 2001, and 2003. For example, the risk premium implied by the power utility function

7The line dividing the box is the median, the bottom and top of the box are the 25th and 75th percentile.

Points outside of the whiskers are outliers which are larger than q3+!�(q3�q1) or smaller than q1�!�(q3�

q1), where q1 and q3 are the 25th and 75th percentiles of the sample, respectively, and ! is the maximum

whisker length with a default value of 1.5. (The default of 1.5 corresponds to approximately +=� 2:7� and

99.3 coverage if the data are normally distributed).
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Figure 1-6: Distribution of Market Risk Aversion Using the Bootstrap Tests
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Notes to Figure: I plot of distributions of market risk aversion coe¢ cients from bootstrap

tests. Panel 6.A plots the market relative risk aversion coe¢ cients implied by the power

utility function and Panel 6.B plots the market absolute risk aversion coe¢ cients implied

by the exponential utility function.
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Table 1.3: Bootstrap Estimation Results

1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks

2.0262*** 1.1807*** 1.3856*** 1.1877*** 0.8759*** 1.0009***

Minimum ­2.93 ­2.12 ­2.38 ­1.18 ­1.49 ­1.06
Mean 1.58 1.23 1.09 1.20 0.84 0.86
Median 1.66 1.24 1.13 1.21 0.84 0.86
Maximum 7.19 4.46 3.94 3.75 3.39 3.08
Standard deviation 1.58 1.10 0.91 0.77 0.70 0.66

1.5360*** 0.8839*** 1.2604*** 0.9879*** 0.6670*** 0.6620***

Minimum ­3.66 ­1.88 ­1.65 ­1.39 ­1.40 ­1.06
Mean 1.65 1.17 1.03 1.14 0.80 0.82
Median 1.63 1.18 1.05 1.16 0.82 0.83
Maximum 5.99 3.96 3.36 3.35 3.11 2.82
Standard deviation 1.53 1.01 0.81 0.71 0.65 0.58

MRRA

Bootstrap

Forecast Horizon

Panel A. Physical Density Calculated Using Power Utility

MRRA

Bootstrap

Panel B. Physical Density Calculated Using Exponential Utility

Notes to Table: I report the statistics of market risk aversion coe¢ cients (MRRA) from

bootstrap tests using futures options maturing in four weeks. ***, **, * represent signi�-

cance levels of 1%, 5%, and 10%, respectively.
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Figure 1-7: Implied Risk Premiums with Constant Market Risk Aversion

Notes to Figure: I plot the risk premiums in the crude oil market calculated using equation

(2.23).

for forecast horizon of four weeks at August 1990 is approximately 45% per year, while the

risk premium implied by the exponential utility function for forecast horizon of four weeks

at December 2008 is more than 90% per year. These high risk premium periods coincide

with the periods of high volatility in the crude oil market, if we compare Figure 1-7 with

Figure 1-3 and Figure 1-5. The risk premiums inferred using constant risk aversion are

positively correlated with market volatility.

1.5.3 State-Dependent Market Risk Aversion and Risk Premiums

To estimate state-dependent market risk aversion, it is necessary to identify states in the

crude oil market. Hamilton and Wu (2011) and Kang and Pan (2011) investigate the

role of risk premium in the crude oil market and suggest the increased participation by

speculators in the crude oil futures market may have been a factor in changing the nature
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Table 1.4: Subsample Estimation Results

Low Speculation Period 0.3048 1.0261 1.6045*** 0.1356 0.3297
High Speculation Period 0.3579 1.082 1.0506*** 0.6438 0.8733

Jan. 1990 – Dec. 2002 0.3251 1.0355 1.2940*** 0.3149 0.7377
Jan. 2003 – Dec. 2008 0.3495 1.1048 0.8503*** 0.6771 0.7705

Jan. 1990 – Dec. 2004 0.3287 1.0391 1.4884*** 0.2555 0.8568
Jan. 2005 – Dec. 2008 0.3419 1.1085 ­0.0644** 0.6355 0.6359

Subsamples
Mean

Volatility
Mean

Speculation
RN LR
p­value

Physical LR
p­value

MRRA

Notes to Table: I report subsample estimation results of market relative risk aversion

(MRRA) coe¢ cients for forecast horizon of four weeks. physical probability density func-

tions are implied using power utility function. The mean volatility level and mean specula-

tion index level for each subsample period are also reported. ***, **, * represent signi�cance

levels of 1%, 5%, and 10%, respectively. Speculation has been rising since 2002 (Figure 1-4).

I therefore perform the empirical analysis using two subsamples: January 1990 to December

2002, and January 2003 to December 2008. To compare our results with those of Hamilton

and Wu (2011), I also analyze another two subsamples by dividing the sample into the

January 1990 to December 2004 and January 2005 to December 2008.

of risk premium. Since the speculation index introduced in equation (1.31) measures the

extent the speculative positions exceeding the necessary level to o¤set hedging positions, I

choose this index as our state variable to investigate the state dependency of the market

risk aversion and risk premiums.

First I use the speculation index as a criterion to distinguish two subsamples: one is

the low speculation period and the other is the high speculation period. Each period has

the same number of observations. For each subsample period, I run the Berkowitz (2001)

density function forecast ability test of the underlying asset prices. The market risk aversion

coe¢ cients and the Berkowitz LR p-values are reported in the �rst two rows in Table 1.4.
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Table 1.4 presents the subsample estimation results for market risk aversion coe¢ cients

for the four-week forecast horizon. Physical probability density functions are implied us-

ing power utility function. I also report the mean volatility level and mean speculation

index level for each subsample period. The high speculation period corresponds to the high

volatility period. For all three tests reported in Table 1.4, the market relative risk aversion

coe¢ cients estimated for the high speculation period are all lower compared to those es-

timated for low speculation periods. This con�rms our hypothesis that as the speculative

level increases, the market risk aversion level decreases.

Using the estimation results in Table 1.4, I plot the subsample risk premium for the

period of January 1990 to December 2004 and January 2005 to December 2008 in Figure 1-

8. Compare to Figure 1-7, this �gure shows sharp decreases in the level of risk premium after

2005. The risk premiums after 2005 are much less volatile and negative since the market

risk aversion coe¢ cient for the period of January 2005 to December 2008 is negative.

The subsample estimation in Table 1.4 divides the whole sample into two periods and

estimates the market risk aversion coe¢ cient for two sub-periods. This approach may not

provide su¢ cient evidences to capture the state dependence of market risk aversion and

risk premiums. I therefore estimate the state-dependent risk aversion coe¢ cients de�ned in

equations (1.29) and (1.30) for the power utility function and exponential utility function

respectively. I run the Berkowitz (2001) forecast ability test by maximizing LR p-values for

the risk adjusted physical density functions with respect to the values of coe¢ cients a and

b.

Refer to the level of speculation index as the state variable, xt: Table 1.5 reports the

estimation results of the coe¢ cients a and b that determine state-dependent market risk

aversion, and the corresponding p-values. Using the intuition provided by the model in

Section 2, we expect the slope coe¢ cient to be negative. The result from both power utility

function and the exponential utility function shows that bs are signi�cantly negative and

con�rms the negative relationship of market risk aversion and the level of the speculation

index.
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Figure 1-8: Risk Premiums Using Subsample Estimates

Notes to Figure: I plot risk premiums obtained using separate estimation for the periods

1990-2004 and 2005-2008. The parameter estimates are from Table 1.4.
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Table 1.5: Estimation of State-Dependent Market Risk Aversion

a b p­value μ ρ σ

0.3093 0.1050 0.0564 1.0095

1.2603*** ­24.4638* 0.8728 0.0022 0.0545 1.0066

0.0610*** ­1.0543*** 0.9683 ­0.0016 0.0330 0.9955

Panel C. Physical Density Calculated by Exponential Utility Function

Panel A. Risk Neutral Density

Panel B. Physical Density Calculated by Power Utility Function

Notes to Table: I report the estimation results for the coe¢ cients in the state-dependent

market risk aversion speci�cation and the corresponding p-values. Results are for a fore-

cast horizon of four weeks. ***, **, * represent signi�cance levels of 1%, 5%, and 10%,

respectively.
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Figure 1-9: State-dependent Market Risk Aversion Coe¢ cients

Notes to Figure: I plot the state-dependent market risk aversion coe¢ cients calculated using

equation (2.24). The parameter estimates are from Table 1.5.

The state-dependent market relative risk aversion coe¢ cients are plotted in Figure 1-9.

From this �gure, we observe that there are dramatic changes since 2002. The market risk

aversion coe¢ cient is relatively stable before 2002. After 2002, the market risk aversion

coe¢ cients are much more volatile, especially in the case of exponential utility. Since 2005,

relative risk aversion coe¢ cients are more volatile, though their averages are signi�cantly

smaller. For the period after 2007, the implied market risk aversion coe¢ cients are negative

most of the time using either power or exponential utility.

The state-dependent risk premiums calculated using the state-dependent market risk

aversion are plotted in Figure 1-10. Comparing with Figure 1-7 and Figure 1-8, we see

more dramatic variability in risk premiums over time when allowing for state dependence,

especially in the case of exponential utility. The pattern of state-dependent risk premiums
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Figure 1-10: State-dependent Risk Premiums

Notes to Figure: I plot the state-dependent risk premiums calculated using the state-

dependent market risk aversion in Figure 1-9.

before 2002 is fairly similar to that calculated using a constant market risk aversion co-

e¢ cient, except that the former risk premiums are larger in magnitude. After 2002, the

state-dependent risk premiums on average are lower than in the �rst half of the sample. For

some extreme periods, such as late 2005 and late 2008, risk premiums are negative. This

result is consistent with the empirical �ndings in Hamilton and Wu (2011).

1.5.4 Interpretation of State-Dependent Market Risk Aversion and Risk

Premiums

It is worth noting that the market relative risk aversion for the period of 2005-2008 in

Table 1.4 is negative. And the estimated state-dependent market relative risk aversion after

2007 is negative most of the time. The negative risk aversion might be counter-intuitive
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at �rst glance. However in a commodity market with increased �nancialization, negative

risk aversion may not be unreasonable. I interpret these �ndings by relating them to the

stylized model in Section 2.

The implications in Section 2.3 are based on the premise that traders in the crude oil

market are risk averse and crude oil futures contracts are initiated by commercial traders

for hedging purposes. These properties are in line with the assumptions underlying Keynes�

theory of normal backwardation. Producers of the physical commodity want to hedge their

price risk by selling futures contracts. They want to o¤er a risk premium for this privilege,

and speculators will be compensated for insuring the commercial hedgers.

However, the commodity market has been experiencing dramatic structural changes

over the last decade. Many researchers ascribe them to the increased �nancialization of the

commodity market. The �nancial industry has developed new instruments that allow insti-

tutions and individuals to invest in commodities, for example, long-only commodity index

funds (LOCF), over the counter (OTC) swap agreements, exchange traded funds (ETF)

and other products (Irwin and Sanders, 2011). These instruments provide investors with

buy-side exposure from a particular index of commodities. Several studies have concluded

that investors can reduce portfolio risks through investments in long-only commodity index

funds (LOCF) (Gorton and Rouwenhorst, 2006; Erb and Harvey, 2006).

If a speculator invests in crude oil futures for the purpose of portfolio diversi�cation,

she may choose long positions regardless of anything happening to fundamentals and no

matter what the crude oil spot position is. The more long positions a speculator holds,

the less risk averse she is, and the lower the aggregate market risk aversion. To insure her

long position, the speculator would like to o¤er, instead of receiving, a risk premium to her

counterparty. Therefore she requires less premium to compensate her risk exposure in the

crude oil market.

As in equation (1.12), before �nancialization, speculators take positions to o¤set the

hedger�s position. �h;t and �s;t should have the same signs and the risk aversion coe¢ cient

of the speculator (
st ) should be positive. When the �nancial speculator starts to take
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excess speculative positions for the purpose of portfolio diversi�cation, she would long more

futures contracts than the necessary level to o¤set the hedger�s position, (�s;t > 0 and �s;t

increases). The speculator�s risk aversion coe¢ cient (
st ) decreases, and it reduces market

risk aversion (�t) accordingly. As the �nancial speculator�s long positions keep increasing,

the risk aversion coe¢ cient of the speculator (
st ) could be negative. In some extreme cases,

if a speculator longs futures contracts (�s;t > 0) when the aggregate spot position is in net

demand (�h;t < 0), the aggregate risk aversion coe¢ cient would be negative too (
st < 0

and �t < 0).8

A negative risk aversion coe¢ cient does not necessarily means the speculator is risk

loving. A speculator who seeks portfolio diversi�cation cares the overall pro�t of her port-

folio and therefore possibly has a higher risk tolerance in the crude oil futures market. I

interpret the negative risk aversion coe¢ cient as a signal of excess buying pressure from

investors seeking portfolio diversi�cation, even if the physical commodity is in net demand.

This excess buying pressure in the futures market could shift the bene�ciary of the risk

premiums from the long side of the futures contract to the short side. Hamilton and Wu

(2011) document signi�cant changes in oil futures risk premiums since 2005. Compensation

to the long position is smaller on average but much more volatile, and often signi�cantly

negative when the futures curve slopes upward. This observation is consistent with the

claim that index-fund investing has become more important relative to commercial hedging

in determining the structure of crude oil futures risk premium over time.

To summarize, the negative coe¢ cients of market risk aversion may imply that specu-

lators took more excess long positions and applied large buying pressure to the crude oil

futures market. Speculators who care about their portfolio diversi�cation would want to

long the crude oil futures and pay, instead of receiving, a risk premium for their position in

some extreme cases.

8The simple stylized model in Section 2 which considers only the crude oil futures market cannot com-

pletely explain the risk preference of a speculator who has a diversi�ed portfolio. However, the relaitonship

between risk aversion and speculative futures positions should still hold.
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1.5.5 Predictive Power of the State-Dependent Risk Premiums

Since the risk premiums are obtained by maximizing the forecast ability of the probability

density function of the crude oil futures prices, I would expect that they have explanatory

power for predicting crude oil futures returns. In the case of state-dependent case, I would

expect the risk premiums to have high predictive power because of the increased �exibility.

To test the predictive power of the state-dependent market risk premiums, I regress fu-

tures returns on the state-dependent market risk premiums. For the purpose of comparison,

I also run regression of the futures returns on risk premiums calculated using constant risk

aversion coe¢ cients, as well as several other predictors used in the existing literature, such

as the lagged futures returns, and the lagged ATM volatilities.

I run the regression

log

�
FT
Ft+1;T

�
= ci + diyi;t + "i;t+1 (1.34)

where yi;t is the predictor i at time t, and ci and di are parameters to be estimated.

Table 1.6 reports the regression coe¢ cients in equation (1.34) and the R-squares of

the regressions. Most of the independent variables, except for the state-dependent risk

premiums, have very low R-squares and insigni�cant coe¢ cient estimates. The lagged

futures returns has an R-squares of 1.52%, and the speculation index has a R-square of

1.63%. R-squares of the lagged ATM volatility and risk premiums calculated by single

constant market risk aversion are even lower. In allowing for state dependence in risk

premiums, I improve the predictability of futures returns greatly. The R-square is 2.08%

in the case of the state-dependent risk premium implied by power utility function, and

is 6.8% using the state-dependent risk premium implied by exponential utility. The di

coe¢ cients estimated using the state-dependent risk premiums implied by the power utility

function and exponential utility function are both signi�cant. One may argue that these

R-squares are small. Neely, Rapach, Tu, and Zhou (2010) discuss the magnitude of R-

squares in predictive regressions and conclude that because monthly returns inherently
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Table 1.6: Predictive Regressions

Predictor c d R2

Lagged Futures Return 0.0798 0.1257 0.0152
(0.0755) (0.0678)*

RP Using Power Utility 0.132 ­11.5722 0.0005
(0.1406) (35.6123)

RP Using Exp. Utility 0.1316 ­0.0149 0.0002
(0.1949) (0.0701)

State­dependent RP Using Power Utility ­0.0522 1.0845 0.0208
(0.1004) (0.4978)**

State­dependent RP Using Exp. Utility ­0.0884 1.3376 0.068
(0.0859) (0.3316)***

Speculation Index 4.4183 ­4.1079 0.0163
(2.2506)** (2.1365)*

Lagged ATM Volatility 0.1246 ­0.0944 0.0001
(0.2381) (0.6845)

Notes to Table: I report the coe¢ cients in predictive regression equation (2.24) and the R-

square of the regression. Results are for forecast horizon of four weeks. ***, **, * represent

signi�cance levels of 1%, 5%, 10%.
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contain a substantial unpredictable component, a monthly R-square of 0.5% can represent

economically signi�cant predictive power. So the state-dependent risk premiums obtained

in this research have signi�cant explanatory power in predicting crude oil futures returns.

1.6 Conclusion

I investigate if speculative activity in the crude oil market a¤ects market risk aversion and

risk premiums. Using WTI crude oil futures and option data, I estimate time varying

market risk aversion by specifying the speculation level as a state variable. I �nd that as

the speculation level increases, market risk aversion and risk premiums decrease.

When allowing for state dependence in the risk aversion coe¢ cient, the implied risk

premiums change signi�cantly over time: they are higher during the �rst half of the sample

period, while after 2002, when speculation increases, they are on average smaller in mag-

nitude and more volatile. This �nding is consistent with that in Hamilton and Wu (2011)

and suggests that speculators who invest in the crude oil market for the purpose of portfolio

diversi�cation are willing to accept lower risk premiums for their speculative positions.

Risk premiums implied by state-dependent market risk aversion have signi�cantly higher

explanatory power in predicting subsequent futures returns, compared with several com-

monly used predictive variables, especially when we assume exponential utility.

Overall my �ndings indicate that speculative activity in the crude oil market has had a

signi�cant e¤ect on aggregate risk aversion and the evolution of risk premiums.

42



Appendix

Market Participants�Optimal Positions

I �rst solve for the hedger�s optimal position. For the hedger�s margin account at time t,

X
�h;t
t , I de�ne

dX
�h;t
t = �tds+ �tdBt (A.1.1)

From equation (1.4), we have �t = rX
�h;t
t +mt�

T
h;uFt and �t = �

T
h;uFtvt:

Let the dynamics of the hedger�s wealth process, W
�h;t
t , be

dW
�h;t
t = atds+ btdBt (A.1.2)

where �h;t is the futures strategy of the hedger at time t. From equations (1.1) �(1.3) and

(A.1.1), we have at = rX
�h;t
t + �h;t�tSt +mt�

T
h;uFt and bt = �h;t�tSt + �

T
h;uFtvt.

Assume exponential utility function

U(W
�h;t
t ) = � exp(�
htW

�h;t
t ) (A.1.3)

where 
ht is the hedger�s absolute risk aversion coe¢ cient.

Let Y
�h;t
t = exp(�
htW

�h;t
t ). Apply Ito�s Lemma

Y
�h;t
T�t = Y

�h;t
0 +

Z T�t

0
Y
�h;s
s

"

h

2

s

2
tr(bTs bs)� 
hsas

#
ds (A.1.4)

+

Z T�t

0
Y
�h;s
s

h
�s
hs bs

i
dBs

Thus,

E
h
Y
�h;t
T�t

i
= Y

�h;t
0 + E

"Z T�t

0
Y
�h;s
s

"

h

2

s

2
tr(bTs bs)� 
hsas

#
ds

#
(A.1.5)

��h;t minimizes

h

2

t
2 tr(b

T
t bt)� 
ht at at each time t. Taking derivative, we get
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��h;t = �
(vtv

0
t)
�1

Ft
[vt�

0
t�h;tSt �mt=


h
t ] (A.1.6)

A similar derivation can be obtained for the speculator and we can have equation (1.9).
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Chapter 2

Dynamic Jump Intensities and Risk Premiums in Crude Oil

Futures and Options Markets

2.1 Introduction

Crude oil is the most important commodity in international trade, and the crude oil deriva-

tives market constitutes the most liquid commodity derivatives market. In December 2011,

WTI and Brent crude oil futures accounted for 51.4% of dollar weight in the S&P GSCI

commodity index.

In order to price and hedge this increasingly important commodity, it is crucial to model

crude oil futures and options and to better understand their dynamics. Surprisingly though,

there are relatively few studies on pricing crude oil derivatives, especially when compared

with the existing literature on equity derivatives.

The extensive literature on modeling equity derivatives, which mainly focuses on index

returns and options, concludes that jumps are needed to capture the higher moments of

index returns. This literature includes models with stochastic volatility and jumps, as well as

GARCH-style jump models.1 The implementation of continuous-time stochastic volatility

models with Poisson jumps is complex, because the likelihood function is typically not

available in closed form, and therefore option pricing in the presence of jumps typically

1For models with stochastic volatility and jumps see Bakshi, Cao, and Chen (1997), Bates (1996, 2000,

2006), Pan (2002), Eraker (2004), Carr and Wu (2004), and Santa-Clara and Yan (2010). For GARCH-style

jump models see Maheu and McCurdy (2004), Duan, Ritchken, and Sun (2006), Christo¤ersen, Jacobs, and

Ornthanalai (2012), and Ornthanalai (2012).
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relies on complex econometric methods to �lter the unobserved state variables.2 This type

of estimation is computationally intensive, especially when dealing with large data sets.

The presence of jumps in crude oil futures and options seems intuitively plausible, but

the computational complexity of jump models, together with the size of the data, make

implementing such models for crude oil data very challenging. To overcome these compu-

tational challenges, we use discrete-time models in which the conditional variance of the

normal innovation and the conditional jump intensity of a compound Poisson process are

governed by GARCH-type dynamics. We empirically investigate the importance of jumps

and time-varying jump intensities using an extensive panel data set of crude oil futures and

option prices.

For the discrete-time models in this paper, both the conditional jump intensity and the

conditional variance can be directly computed from the observed shocks using an analytical

�lter (Christo¤ersen, Jacobs, and Ornthanalai, 2012). With the analytical �lter, �ltering

the normal component and the jump component is relatively simple and extremely fast, even

when the jump intensity is time-varying. It takes less than a second to �lter 38,024 futures

contracts using Matlab on a standard PC. Because the variance and the jump intensity

dynamics can be updated analytically, we can conveniently estimate the model using MLE

estimation. Calculating the Implied Volatility Root Mean Squared Error (IVRMSE) of

283,653 option contracts takes approximately seven seconds.

We investigate the economic importance of jumps and dynamic jump intensities in the

crude oil market and compare the �t of the jump models with that of a benchmark GARCH

model without jumps. We study jump models with di¤erent speci�cations of jump intensity

and conditional variance. The simplest jump model is assumed to have constant jump inten-

sities, which is consistent with most of the existing continuous-time Stochastic-Volatility-

2For example, Chernov, Gallant, Ghysels, and Tauchen (2003) use an E¢ cient Method of Moments

(EMM) based method, Pan (2002) uses the implied-state Generalized Method of Moments (GMM) technique,

Eraker, Johannes, and Polson (2003), Eraker (2004), and Li, Wells, and Yu (2007) employ Markov Chain

Monte Carlo (MCMC) techniques, and Trolle and Schwartz (2009) use the Extended Kalman Filter (EKF).
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Jump (SVJ) literature. Our preferred model contains time-varying jump intensities and

a time-varying conditional variance, but the jump intensity and conditional variance are

driven by the same dynamics. This model is related to the most complex SVJ dynamics

studied in the literature (see Eraker, 2004; and Santa-Clara and Yan, 2010).

We �nd strong evidence of the presence of jumps and dynamic jump intensities in

the crude oil market. During crisis periods, when market risk is high, jumps occur more

frequently. Jump models with time-varying jump intensities signi�cantly outperform the

benchmark model, and in models with time-varying jump intensities, the jump component

explains a large part of the variance of the underlying futures data, regardless of the data

used in estimation.

Estimates based on both futures and options data indicate the presence of relatively

infrequent but large jumps, with the futures data pointing to larger and more infrequent

jumps than the option data. Contrary to equity index markets, the main role of jumps and

jump risk in crude oil futures markets is to capture the excess kurtosis in the data, while

skewness is of second-order importance.

A number of papers in the literature on commodity derivatives contain related results.

Trolle and Schwartz (2009) estimate a continuous-time stochastic volatility model using

NYMEX crude oil futures and options and �nd evidence for two, predominantly unspanned,

volatility factors. They do not consider jump processes, which have been used in other

security markets to model large movements. Larsson and Nossman (2010) examine the

performance of a¢ ne jump di¤usion models with stochastic volatility for modeling the time

series of crude oil spot prices. Their results show that stochastic volatility alone is not

su¢ cient and jumps are an essential factor to correctly capture the time series properties

of oil prices. However, they do not use panel data on futures contracts nor option prices.

Hamilton and Wu (2011) model crude oil futures with an a¢ ne term structure model and

document signi�cant changes in oil futures risk premia since 2005. Pan (2011) uses op-

tions on crude oil futures to study the impact of speculation on returns. Chiarella, Kang,

Sklibosios, and To (2012) document a hump-shaped volatility structure in the commodity
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derivatives market. To the best of our knowledge, no existing studies have implemented

jump models using extensive cross-sections of crude oil futures and options.

The rest of the paper proceeds as follows. Section 2 discusses discrete-time jump pricing

models for commodity futures, as well as a benchmark GARCH model. Section 3 discusses

the crude oil futures and options data. In Section 4 we explain MLE estimation on futures

contracts and report the estimation results. Section 5 derives the risk-neutral dynamics

and the closed form option valuation formula. Section 6 presents results using options and

futures jointly in estimation. Section 7 concludes.

2.2 Models for Commodity Futures Markets

In commodity futures markets, we observe futures prices for di¤erent maturities. Spot

prices are much more di¢ cult to measure for some commodities. Even if spot prices are

observed, the cost of carry needs to be modeled to obtain futures prices, and the cost of

carry is by de�nition unobservable.

Consequently, the modeling of commodity derivatives is harder than the modeling of

equity options, where the underlying spot price is observable. This challenge can be ad-

dressed in several ways. A popular approach is to specify the cost of carry as a separate

stochastic process, and combine it with the stochastic process for the spot price to arrive

at the futures price. The parameters characterizing the spot price and the cost of carry

are identi�ed using futures and futures options data; see for instance Trolle and Schwartz

(2009).3

However, Trolle and Schwartz (2009) correctly note that the speci�cation of the cost of

carry is of no great signi�cance for the modeling of options on commodity futures, as the

actual futures prices are used in option valuation. Because of this observation, and because

the cost of carry is unobservable, we directly specify the futures return. If the speci�cation

3See Casassus and Collin-Dufresne (2005) for an analysis of the most general speci�cation for convenience

yields allowed within an a¢ ne structure.
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of the futures return is adequate, it implies that the implied spot return and cost of carry

are adequately captured, and for our purpose there is no need to model them separately.

2.2.1 The Benchmark Model

We formulate a class of jump models for commodities markets. To provide a benchmark

for these models that can capture several important stylized facts of commodity markets,

we �rst consider a benchmark GARCH model for futures returns

log
Ft+1;T
Ft;T

= (�� 1
2
)ht+1 + zt+1 = (��

1

2
)ht+1 +

p
ht+1"t+1 (2.1)

where Ft;T is the time t price of the futures contract maturing at time T , zt+1 is an innovation

which is distributed N (0; ht+1), "t+1 is distributed N (0; 1), ht+1 is the conditional variance

known at time t, and � is the market price of risk associated with the normal innovation.

The conditional variance of the normal innovation ht+1 is governed by a GARCH(1; 1)

process, which is speci�ed according to Heston and Nandi (2000).

ht+1 = ! + bht + a("t � c
p
ht)

2 (2.2)

GARCH models provide a convenient framework to capture stylized facts in �nancial

markets such as conditional heteroskedasticity, volatility clustering, and mean reversion in

volatility. These stylized facts are also very prominent in commodity futures markets. The

GARCH dynamic in (2.2) is di¤erent from the more conventional GARCH speci�cations of

Engle (1982) and Bollerslev (1986), and is explicitly designed to facilitate option valuation.

We discuss the bene�ts of the speci�cation in (2.2) in more detail below.

Consistent with other GARCH speci�cations, the conditional variance ht+1 in (2.2) is

predictable conditional on information available at time t. The unconditional variance is

given by

E[ht+1] = (! + a)=(1� b� ac2) (2.3)

where b + ac2 is the variance persistence. Furthermore, given a positive estimate for a,

the sign of c determines the correlation between the futures returns and the conditional
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variance. Equivalently, c can be thought of as controlling the skewness or asymmetry of

the distribution of log returns, with a positive c resulting in a negatively skewed multi-day

distribution.

2.2.2 The Cross-Section of Futures Contracts

Heston and Nandi (2000) estimate their model using S&P 500 index returns and options.

For that application, it is straightforward to directly �lter the conditional variance ht+1

from the return innovations with the GARCH model. Our empirical application is more

complex, because at each time t we have multiple cross-sections of crude oil futures prices

with di¤erent maturities, eight in our case. We thus have

log
Ft+1;Ti
Ft;Ti

= (�� 1
2
)hi;t+1 +

p
hi;t+1"i;t+1 (2.4)

where i = 1; 2; ::; 8 and Ti represents the maturity date of the futures contracts maturing

in the ith month. If the parameters for the return and variance dynamics are maturity-

speci�c, the number of parameters in this model is very large, and it increases with the

number of futures contracts. To keep the model as parsimonious as possible and limit

the number of parameters, we impose the restriction that these parameters are the same

for all eight maturities and assume that covariance matrix of the return innovations is a

diagonal matrix, "t+1 = ["1;t+1; "2;t+1; : : : ; "8;t+1] � i:i:d: N(0; I8), where I8 is the identity

matrix. This approach is consistent with the assumptions made by Trolle and Schwartz

(2009), whose implementation uses the Kalman �lter. Furthermore, we make the additional

assumption that we �lter the conditional variance using the futures contract maturing in

one month. We therefore e¤ectively have

ht+1 = ! + bht + a("1;t � c
p
ht)

2 (2.5)

2.2.3 Commodity Futures Returns with Dynamic Jump Intensities

The futures return process in (2.1)-(2.2) provides a benchmark model that can capture sev-

eral important stylized facts using a simple setup with a single normal innovation. Building
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on the models for index returns in Ornthanalai (2012) and Christo¤ersen, Jacobs, and

Ornthanalai (CJO, 2012), we now formulate a much richer class of models with jumps in

returns and volatilities, and with potentially time-varying jump intensities. Futures returns

are given by

log
Ft+1;T
Ft;T

= (�z �
1

2
)hz;t+1 + (�y � �)hy;t+1 + zt+1 + yt+1 (2.6)

where the z subscript in �z and hz;t+1 refers to the normal component, speci�ed as in Sec-

tion 2.1. The jump component yt+1 is speci�ed as a Compound Poisson process denoted

as J(hy;t+1; �; �2): The Compound Poisson structure assumes that the jump size is inde-

pendently drawn from a normal distribution with mean � and variance �2. The number of

jumps nt+1 arriving between times t and t+ 1 is a Poisson counting process with intensity

hy;t+1. The jump component in period t+ 1 is therefore given by

yt+1 =

nt+1X
j=0

xjt+1 (2.7)

where xjt+1, j = 0; 1; 2; : : : is an i:i:d: sequence of normally distributed random variables,

xjt+1 � N(�; �2). The conditional expectation of the number of jumps arriving over time

interval (t; t + 1) equals the jump intensity, Et[nt+1] = hy;t+1. The conditional mean and

variance of the jump component yt+1 are given by �hz;t+1 and (�2 + �2)hy;t+1 respectively.

The conditional risk premium is given by 
t+1 = �zhz;t+1 + �yhy;t+1, with �z and �y

denoting the market prices of risks for the normal and jump components. The convexity

adjustment terms 12hz;t+1 and �hy;t+1 � (exp(�+
�2

2 )�1)hy;t+1 in (2.6) act as compensators

to the normal and jump components respectively.

2.2.4 Jump Models

The most general model we investigated assumes that both the conditional variance of the

normal component and the jump intensity are governed by the following extended GARCH

(1, 1) dynamics.

hz;t+1 = !z + bzhz;t +
az
hz;t

(zt � czhz;t)2 + dzyt (2.8)
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hy;t+1 = !y + byhy;t +
ay
hy;t

(zt � cyhz;t)2 + dyyt (2.9)

where !z; bz; az; cz; dz; !y; by; ay; cy; dy are parameters to be estimated.

The model in (2.8)-(2.9) is very rich and �exible. It allows for jumps in volatility as

well as jumps in returns. It has been shown in the index option literature that jumps in

volatility are useful to explain option volatility smiles and smirks (see for example Eraker,

Johannes and Polson, 2003; and Eraker, 2004). Note however that following Ornthanalai

(2012), the model is designed to yield a closed-form solution for option prices, and in order

to do so we have adopted a rather simple speci�cation for jumps in volatility.

Another advantage of the model in (2.8)-(2.9) is that the normal and jump innovations,

zt and yt, enter separately into the GARCH updating dynamics. The model therefore allows

each type of innovation to impact the variance and jump intensity separately.

The speci�cation of hz;t+1 and hy;t+1 in (2.8)-(2.9) therefore has substantial advantages.

However, a potential problem is that the model is richly parameterized. Our empirical

investigation indeed indicated that several of the model�s parameters were poorly identi�ed.

We therefore investigated two nested speci�cations, which impose restrictions on hz;t+1 and

hy;t+1, and greatly reduce the dimension of the parameter space.

The �rst nested model imposes the following restrictions on (2.8)-(2.9)

by = 0; ay = 0; cy = 0; dy = 0 (2.10)

This model maintains the normal component�s GARCH dynamic, but jumps arrive at a

constant rate !y, regardless of the level of volatility in the market.

hy;t+1 = !y (2.11)

We refer to this model as CI to re�ect that the arrival rate of the jumps, or the jump

intensity, is constant. In the second nested model, we assume that hz;t+1 and hy;t+1 are

time-varying but driven by the same dynamic. The conditional jump intensity is a¢ ne in

the conditional variance of the normal component

hy;t+1 = khz;t+1 (2.12)
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where k is a parameter to be estimated. This speci�cation is a special case of (2.8)-(2.9),

subject to the following restrictions on the parameters of hy;t+1

!y = !zk; by = bz; ay = azk; cy = cz; dy = dzk (2.13)

We refer to this model as DI to re�ect the dynamic nature of the jump intensity.

2.3 Crude Oil Futures and Options Data

We now discuss the crude oil futures and options data used in the empirical analysis, and

present summary statistics.

We use a data set of Chicago Mercantile Exchange (CME group, formerly NYMEX)

crude oil futures and options data. We use a sample of daily data from January 2nd, 1990

to December 3rd, 2008. The CME crude oil derivatives market is the world�s largest and

most liquid commodity derivatives market. The range of maturities covered by futures and

options and the range of option strike prices are also greater than for other commodities

(for a discussion see Trolle and Schwartz, 2009, henceforth TS).

We screen futures contracts based on patterns in trading activity. Open interest for fu-

tures contract tends to peak approximately two weeks before expiration. Among futures and

options with more than two weeks to expiration, the �rst six monthly contracts tend to be

very liquid. For contracts with maturities over six months, trading activity is concentrated

in the contracts expiring in March, June, September, and December.

Following TS (2009), we therefore screen the available futures and options data according

to the following procedure: discard all futures contracts with 14 or less days to expiration.

Among the remaining, retain the �rst six monthly contracts. Furthermore, choose the

�rst two contracts with expiration either in March, June, September or December. This

procedure leaves us with eight futures contract series which we label M1, M2, M3, M4, M5,

M6, Q1, and Q2.

We include the following options on these eight futures contracts. For each option

maturity, we consider eleven moneyness intervals: 0.78-0.82, 0.82-0.86, 0.86-0.90, 0.90-0.94,
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0.94-0.98, 0.98-1.02, 1.02-1.06, 1.06-1.10, 1.10-1.14, 1.14-1.18, and 1.18-1.22. Moneyness is

de�ned as option strike divided by the price of the underlying futures contract. Among the

options within a given moneyness interval, we select the one that is closest to the mean of

the interval.

Our data consist of American options on crude oil futures contracts.4 CME has also

introduced European-style crude oil options, which are easier to analyze. However, the

trading history is much shorter and liquidity is much lower than for the American options.

Since the pricing formulae are designed for European options, we have to convert the Amer-

ican option prices to European option prices. Assuming that the price of the underlying

futures contract follows a geometric Brownian motion, we can accurately price American

options using the Barone-Adesi and Whaley (1987) formula. Inverting this formula yields

an implied volatility, from which we can subsequently obtain the European option price

using the Black (1976) formula. To minimize the e¤ect of errors in the early exercise ap-

proximation, we use only OTM and ATM options, i.e., puts with moneyness less than one

and calls with moneyness greater than one. In addition, we only consider options that have

open interest in excess of 100 contracts and options with prices larger than ten cents.

This data �ltering procedure yields 38,024 futures contracts and 283,653 option contracts

observed over 4,753 business days. The number of futures contracts is eight on every day

of the sample, while the number of option contracts is between 23 and 87.

Figure 2-1 displays the prices of the futures contracts. All prices in this paper are set-

tlement prices.5 To avoid cluttering the �gure, we only display the futures term structure

on Wednesdays. Futures prices increase dramatically between 2003 and 2007, and subse-

quently decline. Consistent with existing studies (Trolle and Schwartz (2009), Litzenberger

4Futures contracts expire on the third business day prior to the 25th calendar day (or the business day

right before it if the 25th is not a business day) of the month that precedes the delivery month. Options

written on futures expire three business days prior to the expiration date of the futures.

5The CME light, sweet crude oil futures contract trades in units of 1000 barrels. Prices are quoted in US

dollars per barrel.
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and Rabinowitz (1995)), we �nd that the price of long maturity futures contracts such as

Q2 is lower than that of short maturity futures contracts and the crude oil market is on

average in backwardation. Figure 2-2 plots the daily returns, log(Ft+1;T =Ft;T ), for the eight

(M1, M2, M3, M4, M5, M6, Q1, Q2) futures contracts, and Panel A of Table 2.1 provides

summary statistics. Table 2.1 indicates that futures returns on longer maturities futures

contracts, e.g., Q2 futures contracts, are less volatile than futures returns for shorter matu-

rity contracts. However, Figure 2-2 indicates that returns of futures contracts with longer

maturities seem to contain bigger spikes.

Table 1 also reports summary statistics for higher moments of the daily futures returns.

On average across maturities, skewness is -0.91 and kurtosis is 14.77. The daily crude

oil futures return series is thus skewed towards the left, indicating that there are more

negative than positive outlying returns in the crude oil market. The skewness is smaller (in

absolute value) for longer maturities, and overall the negative skewness is rather modest.

In contrast, Panel A of Table 2.1 indicates that kurtosis is economically large. The return

series are characterized by a distribution with tails that are signi�cantly thicker than a

normal distribution.
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Figure 2-1: Prices of Futures Contracts

We plot the prices of the M1, M2, M3, M4, M5, M6, Q1, and Q2 futures contracts. The data

spans 4,753 trading dates from January 2, 1990 to December 3, 2008. To avoid cluttering

the �gure, we only display the futures term structure on Wednesdays.
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Figure 2-2: Daily Futures Returns

Prices of Futures Contracts

We plot daily futures returns, logFt+1;T =Ft;T , on the M1, M2, M3, M5, M6, Q1, and Q2

futures contracts. The data spans 4753 trading days from January 2, 1990 to December 3,

2008.
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Table 2.1: Summary Statistics

M1 M2 M3 M4 M5 M6 Q1 Q2 Average
0.0494 0.042 0.0434 0.0467 0.0476 0.0508 0.0545 0.058 0.0491

32.6081 26.6954 23.1401 20.8757 19.2547 18.0024 16.6613 14.7116 21.4937
­1.254 ­1.1551 ­1.0107 ­0.9396 ­0.8739 ­0.7967 ­0.7117 ­0.5091 ­0.9064

23.3766 19.5005 15.9139 14.4642 13.2149 12.0101 10.9843 8.662 14.7658

Moneyness
M1 M2 M3 M4 M5 M6 Q1 Q2 All

0.78­0.82 443 2122 2765 2867 2790 2559 2504 1738 17788
0.82­0.86 1087 2907 3340 3424 3293 2974 2883 2007 21915

Puts 0.86­0.90 1985 3647 3960 4065 3897 3474 3217 2335 26580
0.90­0.94 3080 4309 4470 4262 4056 3592 3345 2434 29548
0.94­0.98 4000 4607 4472 4190 4070 3635 3416 2559 30949
0.98­1.02 4410 4527 4400 4116 3958 3505 3355 2482 30753
1.02­1.06 4001 4605 4470 4259 3973 3464 3249 2337 30358
1.06­1.10 3136 4362 4405 4155 3925 3473 3161 2153 28770

Calls 1.10­1.14 2209 3714 4196 4042 3683 3151 3116 1994 26105
1.14­1.18 1404 3135 3482 3574 3368 2877 2877 1845 22562
1.18­1.22 815 2547 3010 2819 2674 2367 2366 1727 18325

All 26570 40482 42970 41773 39687 35071 33489 23611 283653

Maturity

Maturity

Panel A. Historical Moments of Futures Returns

Mean
Variance

Skewness
Kurtosis

Panel B. Number of Option Contracts

Table 2.1 (Continued)
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M1 M2 M3 M4 M5 M6 Q1 Q2 All
0.78­0.82 0.27 0.31 0.45 0.58 0.72 0.89 1.11 1.58 0.74
0.82­0.86 0.26 0.4 0.59 0.75 0.92 1.11 1.36 1.86 0.91

Puts 0.86­0.90 0.31 0.55 0.78 0.95 1.12 1.33 1.67 2.15 1.11
0.90­0.94 0.42 0.76 1.04 1.29 1.5 1.78 2.1 2.64 1.44
0.94­0.98 0.66 1.14 1.51 1.82 2.02 2.31 2.67 3.13 1.91
0.98­1.02 1.08 1.69 2.09 2.43 2.64 2.96 3.36 3.9 2.52
1.02­1.06 0.69 1.2 1.59 1.89 2.14 2.43 2.86 3.52 2.04
1.06­1.10 0.48 0.86 1.18 1.45 1.66 1.91 2.3 2.96 1.6

Calls 1.10­1.14 0.37 0.68 0.91 1.13 1.3 1.53 1.83 2.51 1.28
1.14­1.18 0.33 0.54 0.78 0.94 1.06 1.23 1.53 2.14 1.07
1.18­1.22 0.32 0.44 0.65 0.86 0.96 1.11 1.33 1.71 0.92

All 0.47 0.78 1.05 1.28 1.46 1.69 2.01 2.56 1.41

M1 M2 M3 M4 M5 M6 Q1 Q2 All
0.78­0.82 0.57 0.44 0.4 0.37 0.36 0.34 0.32 0.3 0.39
0.82­0.86 0.47 0.41 0.38 0.35 0.33 0.3 2 0.3 0.29 0.36

Puts 0.86­0.90 0.43 0.38 0.35 0.33 0.31 0.3 0.29 0.27 0.33
0.90­0.94 0.39 0.35 0.33 0.31 0.3 0.3 0.28 0.27 0.32
0.94­0.98 0.35 0.33 0.32 0.31 0.3 0.29 0.28 0.26 0.3
0.98­1.02 0.33 0.33 0.32 0.31 0.29 0.29 0.27 0.26 0.3
1.02­1.06 0.35 0.33 0.32 0.31 0.29 0.29 0.27 0.26 0.3
1.06­1.10 0.38 0.34 0.32 0.31 0.29 0.29 0.27 0.26 0.31

Calls 1.10­1.14 0.41 0.36 0.33 0.31 0.3 0.29 0.27 0.26 0.32
1.14­1.18 0.45 0.39 0.36 0.33 0.3 0.29 0.27 0.26 0.33
1.18­1.22 0.5 0.4 0.37 0.35 0.32 0.31 0.28 0.26 0.35

Panel C. Average Option Prices

Moneyness
Maturity

Panel D. Average Implied Log­Normal Volatilities

Moneyness
Maturity

We report summary statistics for crude oil futures returns and options. M1 (M2, M3,

M4, M5, M6) refers to futures contracts with expiration in 1 (2, 3, 4, 5, 6) months; Q1

and Q2 refer to the next two futures contracts with expiration in either March, June,

September or December. Moneyness is de�ned as the option strike divided by the price of

the underlying futures contract. The data spans 4,753 trading days from January 2, 1990

to December 3, 2008.
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Panel B of Table 2.1 lists the average number of option contracts across maturity and

moneyness. The number of option contracts decreases with maturity. Among the 11 mon-

eyness intervals, the number of option contracts is highest in the ATM interval. Panel C

reports the average option prices. As expected, the average price of the option contracts

increases as the maturity of underlying futures contracts increases.

Figure 2-3 displays the ATM implied volatilities, and Panel D of Table 2.1 reports

their averages by moneyness and maturity. Options with short maturities have higher im-

plied volatilities than options with long maturities, consistent with the patterns in physical

volatility documented in Panel A of Table 2.1. Large spikes in the option implied volatil-

ities appear around the end of 1990 and beginning of 1991, at the time of the �rst Gulf

War, around the September 2001 terrorist attack, the second Gulf War in March 2003, and

during the �nancial crisis in 2008.

Among the eleven moneyness intervals, the average implied volatilities are lowest for

ATM options. The data exhibit a smirk for some maturities, but for others it is not clear

if the smirk pattern is economically signi�cant, or if the data are instead characterized by

a smile. These patterns are important with respect to the relative role of return skewness

and kurtosis for characterizing the option data. Panel D of Table 1 suggests that modeling

kurtosis may be more critical than capturing skewness for crude oil data. Note that the

stylized facts in Panel D are informative about risk-neutral skewness and kurtosis, but that

the evidence is consistent with the descriptive statistics for historical skewness and kurtosis

computed from futures returns in Panel A of Table 2.1.

2.4 Evidence from Futures Prices

We �rst discuss how to use maximum likelihood to estimate the models using futures returns.

We then present parameter estimates for the two jump models as well as for the benchmark

GARCH model. Subsequently we use the parameter estimates to investigate the models�

most important implications for option valuation.
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Figure 2-3: ATM Implied Volatility of Futures Options

We plot ATM implied volatilities of options on the M1, M2, M3, M5, M6, Q1, and Q2

futures contracts. Implied volatilities are computed from option prices by inverting the

Barone-Adesi and Whaley (1987) formula. The data spans 4,753 trading days from January

2, 1990 to December 3, 2008.
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2.4.1 Maximum Likelihood Estimation using Futures Data

We estimate the model parameters using Maximum Likelihood (MLE). The likelihood func-

tion for returns depends on the normal and Compound Poisson distributions. The condi-

tional density of the returns process in equation (2.6) with time-to-maturity Ti, given that

there are nt+1 = j jumps occurring between period t and t+ 1, is given by

ft (Rt+1;ijnt+1 = j) =
1q

2�(hz;t+1 + j�
2)
exp

 
�
�
Rt+1;i � �t+1 � j�

�2
2(hz;t+1 + j�

2)

!
(2.14)

where Rt+1;i = log
Ft+1;Ti
Ft;Ti

, and �t+1 = (�z � 1
2)hz;t+1 + (�y � �)hy;t+1.

The conditional probability density of returns can be derived by summing over the

number of jumps

ft (Rt+1;i) =

1X
j=1

ft (Rt+1;ijnt+1 = j) Pr(nt+1 = j) (2.15)

where Pr(nt+1 = j) = (hy;t+1)j exp(�hy;t+1)=j! is the probability of having j jumps which

is distributed as a Poisson counting process.

In estimation we assume that the conditional variance and the jump intensity are equal

across maturities. This is clearly a simplifying assumption that will worsen the �t, but it is

useful for the purpose of comparison with option-implied estimates. Given this assumption,

we can write the log likelihood function as the summation of the log likelihoods for all eight

futures contracts

LFut =
1

8

8X
i=1

T�1X
t=1

log(ft (Rt+1;i)) (2.16)

When implementing maximum likelihood estimation, the summation in (2.15) must be

truncated. We truncate the summation at 50 jumps per day. We have experimented with

increasing the truncation limit beyond 50 and found that our results are robust.

Equations (2.8) and (2.9) indicate that we need to separately identify the two unobserved

shocks zt+1 and yt+1 and �lter the conditional variance hz;t+1 and the conditional jump

intensity hy;t+1 which enter the likelihood function. The structure of the model allows us

to do this using an analytical �lter, which is discussed in Appendix A. Using this �lter,
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calculating zt+1 and yt+1 is straightforward and very fast. It takes less than a second to

�lter 38,024 futures contracts and about seven seconds to �lter 283,653 option contracts

using Matlab on a standard PC.

2.4.2 Estimation Results

Table 2.2 presents the maximum likelihood parameter estimates for the GARCH benchmark

model and the two proposed jump models. The results are obtained using all eight futures

contracts jointly in estimation for the time period 1990-2008. For each jump model, we

separate the parameters into two columns. The parameters with subscript y are reported in

the column labeled �Jump�. The parameters with subscript z are reported in the column

labeled �Normal�. Under each parameter estimate, we report its standard error calculated

using the Hessian matrix. Under �Properties�, we report the implied long-run risk premiums

for the normal and jump components, the percent of total variance captured by the normal

and the jump component, the average annual volatility, the expected number of jumps per

year implied by the parameter estimates, and the log-likelihood. Some of these properties

are discussed in more detail in Section 4.3 below.

The log-likelihood values of the CI and DI jump models are much higher than that of

the GARCH model. To examine whether the jump models signi�cantly improve over the

GARCH model, we test the null hypothesis of no jumps. To implement this test, we use the

standardized likelihood ratio test proposed by Hansen (1992, 1994). A likelihood ratio test

of the null hypothesis of no jumps does not have the usual limiting chi-squared distribution

because the jump parameters are unidenti�ed under the null. Hansen�s test is able to provide

an upper bound to the asymptotic distribution of standardized likelihood ratio statistics,

even when conventional regularity conditions (for example, due to unidenti�ed parameters)

are violated. We calculate Hansen�s test for each of the CI and DI models compared

with GARCH and report the standardized likelihood ratio and the corresponding simulated

critical values in Table 2.3. Using Hansen�s standardized LR test, we �nd that both jump

models signi�cantly improve over the GARCH model, suggesting that the null hypothesis
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Table 2.2: MLE Estimates Using Crude Oil Futures Returns, 1990 - 2008

Parameters GARCH
Normal Normal Jump Normal Jump

λ 7.20E­01 1.28E+00 1.74E­03 1.19E+00 1.08E­02
­4.03E­03 ­4.45E­03 ­2.57E­05 ­5.31E­04 ­1.61E­05

w 2.62E­02
­2.74E­05

a 1.56E­05 5.85E­06 5.03E­06
­7.96E­07 ­2.13E­07 ­3.86E­10

b 9.60E­01 9.78E­01 9.71E­01
­2.01E­03 ­6.71E­04 ­5.56E­07

c 2.75E+01 7.09E+00 5.50E+00
­2.20E­02 ­1.02E­02 ­2.95E­04

d ­3.99E­04 ­1.79E­03
­2.40E­05 ­5.90E­09

θ ­2.94E­02 ­1.79E­01
­4.66E­05 ­1.04E­07

δ 1.01E­01 8.94E­02
­7.69E­05 ­5.45E­06

k 3.23E+01
­3.72E­04

Properties
Number of jumps / Yr
Risk Premium(%) 7.53 7.5 1.15 7.63 2.24
% of Annual Variance 100 44.55 55.45 43.58 56.42
Ave. Annual Volatility 0.32
Log­Likelihood 12711.72 12981.62 12988.62

CI DI

6.6 2.07

0.36 0.38

We report estimation results from MLE estimation on daily crude oil futures returns from

January 2, 1990 to December 3, 2008. Columns labeled �Normal�contain estimates of the

parameters governing the normal component; columns labeled �Jump�contain parameters

governing the jump component. Reported in parentheses are standard errors computed

using the Hessian matrix.
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Table 2.3: Hansen�s Standardized Likelihood Ratio test

Models CI DI
Hansen's standardized LR test 7.1579**** 7.2829****
Simulated 20% critical value 1.3551 1.495
Simulated 10% critical value 1.7815 1.8521
Simulated 5% critical value 2.2186 2.1809
Simulated 1% critical value 2.6489 2.8726

We report Hansen�s Standardized Likelihood Ratio test and the corresponding simulated

critical values for the discrete-time CI and DI jump models. Under the null hypothesis

there are no jumps. The log likelihoods are calculated using daily crude oil futures returns

from January 2, 1990 to December 3, 2008. *, **, *** and ****represents signi�cance at

the 20%, 10%, 5% and 1% level or better.

of no jumps is rejected. These statistical tests strongly suggest that incorporating jumps in

addition to dynamic volatility helps to improve model performance.

The CI model improves model �t signi�cantly by adding a simple constant intensity

jump component. For this speci�cation, the average expected number of jumps per year is

between six and seven. This number is slightly higher than what is usually found in the

equity index market, see the summary table in Broadie, Chernov, and Johannes (2007).

Most existing estimates in equity index markets �nd between one and three jumps per year.

The estimate of the average jump size � in the CI model in Table 2.2 is -0.029, which is

larger than the average jump size in index returns documented in CJO (2012) for a model

with constant jump intensity.

The results for the CI model indicate that allowing for state-dependent jump intensities

can further improve model performance, even without increasing the number of parame-

ters. The estimate of k is statistically signi�cant, con�rming that the arrival rate of jumps

depends on the level of volatility. The mean jump size in the DI model is larger (in absolute

value) than in the CI model and jumps arrive less frequently, with approximately two jumps

per year. Other important model features, such as the jump variance, are similar to the CI
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model. Overall, the results for the DI model indicate that allowing for time-varying jump

intensities can greatly improve model performance.

2.4.3 Model Implications

We now further discuss the model properties listed at the bottom of Table 2.2. We report

the decomposition of the total unconditional return variance into the normal and jump

components. The total unconditional return variance, �2, is given by

�2 � �2z + (�2 + �2)�2y (2.17)

where �2z and �
2
y are computed as the time series averages of hz;t+1 and hy;t+1. We report

the normal contribution and jump contribution to the total return variance in percentages.

The contribution of jumps to the total return variance is large and very similar in the CI

and DI models, approximately 55%.

The average variance reported in Table 2.2 is similar in magnitude across models. The

left panels in Figure 2-4 depict the time path of the conditional variance and clearly indicate

that the conditional variance of the CI model is less volatile than that of the DI model.

For the DI model, there is a sharp increase in the conditional variance and jump intensity

during the crisis periods of 1991 and 2008.

The variations in jump intensities a¤ect the risk premiums, which are depicted in Figure

2-5. For the CI model in the �rst row, the jump risk premium in the middle panel is constant,

and all the time variation in the total risk premium in the right panel is due to variation

in the normal risk premium. In the case of the DI model, a large amount of the increase in

the total risk premium in 1991 and 2008 is due to the increase in the jump risk premium.

Overall, Figure 2-5 indicates that jump risk premiums are economically important, and that

they represent a signi�cant component of the total risk premium. Under �Properties� in

Table 2.2 we also report the averages of the risk premiums over the sample. On average

the jump risk premium contributes a signi�cant portion of the total risk premium for both

the CI and DI models, but it is larger in the case of the DI model. Allowing for time-

varying jump intensities increases the importance of jumps in explaining the risk premium.
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Figure 2-4: Conditional Variance and Jump Intensity Estimated Using Futures Contracts

We plot the annualized conditional variance, hz;t+1, in the left column, and the annualized

conditional jump intensity, hy;t+1, in the right column for two jump models.
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Figure 2-5: Risk Premiums Estimated Using Futures Contracts

We plot the normal risk premium, 
z;t � �zhz;t in the left column, the jump risk premium,


y;t � �yhy;t, in the middle column, and the total risk premium, 
t � �zhz + �yhy, in the

right column, for two jump models.

Figure 2-6 applies the analytical �lter to decompose futures returns into jump and normal

components to infer their relative importance. The left columns depict the �ltered number

of jumps nt occurring each day. The middle column contains the �ltered jump component

and the right column contains the �ltered normal component. The heteroskedasticity in the

normal component is apparent. Most of the time, the normal component dominates return

innovations. However, in crises periods, such as the �rst Gulf War in late 1991, the jump

component explains more of the movement in returns than the normal component. For

the purpose of option valuation, the time path of the conditional variance is of paramount
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Figure 2-6: Decomposition of Daily Futures Returns Estimated Using Futures Contracts

We plot the �ltered number of jumps, nt, in the left column, the �ltered jump component,

yt, in the middle column, and the �ltered standardized normal component, zt, in the right

column, for two jump models. Results are obtained using the analytical �lter and the MLE

estimates from Table 2.2.
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importance. However, di¤erent models often yield variance paths that are nearly similar,

as evidenced by Figure 2-4. It is therefore of great interest to inspect di¤erences in the

conditional third and fourth moments. We now turn to this evidence. The �rst four

conditional moments are given by

Et(Rt+1) � �t+1 = (�z �
1

2
)hz;t+1 + (�y � �)hy;t+1 (2.18)

V art(Rt+1) = hz;t+1 + (�
2 + �2)hy;t+1 (2.19)

Skewt(Rt+1) =
�(�2 + 3�2)hy;t+1

(hz;t+1 + (�
2 + �2)hy;t+1)

3
2

(2.20)

Kurtt(Rt+1) = 3 +
(�4 + 6�2�2 + 3�4)hy;t+1

(hz;t+1 + (�
2 + �2)hy;t+1)2

(2.21)

where Skewt(Rt+1) and Kurtt(Rt+1) are the conditional skewness and the conditional kur-

tosis of futures returns respectively. From equation (2.20), it is clear that in presence of

jumps, when hy;t+1 is positive, the sign of the conditional skewness depends on the sign of

the mean jump size �. Both skewness and kurtosis are critically a¤ected by the parameters

� and �.

Figure 2-7 plots the conditional one day ahead skewness in (2.20) and kurtosis in (2.21)

for the two jump models. The estimated average jump size � is negative for both models,

and therefore the conditional one day ahead skewness is negative. Conditional skewness

is relatively high compared to the unconditional values reported in Panel A of Table 2.1,

especially for the DI model. Conditional excess kurtosis is also higher than the unconditional

values reported in Panel A of Table 2.1, and contains more sharp peaks for the DI model.

Clearly, for a given model outliers in model skewness and kurtosis are related, which is

driven by the parameterization.

2.5 Option Valuation Theory for Crude Oil Futures

We �rst characterize the risk-neutral dynamics. Subsequently we derive the closed-form

option valuation formula.
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Figure 2-7: Conditional Skewness and Conditional Excess Kurtosis from Futures Contracts

We plot daily conditional skewness, in the left column, and conditional excess kurtosis, in

the right column, for two jump models.
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2.5.1 The Equivalent Martingale Measure and the Risk-Neutral Dynam-

ics

The estimates obtained from futures prices in Section 4 are physical parameters. To value

crude oil options, we need return dynamics under the equivalent martingale or risk-neutral

measure. In a framework with compound Poisson processes, the futures price can jump to

an in�nite set of values in a single period, and the equivalent martingale measure is therefore

not unique. We proceed by specifying the conditional Radon-Nikodym derivative:
dQt+1
dPt+1
dQt
dPt

=
exp(�zzt+1 + �yyt+1)

Et[exp(�zzt+1 + �yyt+1)]
(2.22)

where �z and �y are the equivalent martingale measure (EMM) coe¢ cients that capture

the wedge between the physical and the risk-neutral measure. As in Ornthanalai (2012),

this Radon-Nikodym derivative speci�es a risk-neutral probability measure if and only if �z

and �y are determined by

�z + �z = 0 (2.23)

�y � (exp(� +
�2

2
)� 1)� exp(�y� +

�2y�
2

2
)(1� exp((�y + 0:5)�2 + �)) = 0 (2.24)

The solution for �y is not analytical but it is well behaved and can reliably and e¢ ciently

be computed using a numerical approach. The futures return process under the risk-neutral

dynamic then takes the form

log
Ft+1;T
Ft;T

= �1
2
hz;t+1 � �y(1)�h�y;t+1 + zt+1 + y�t+1 (2.25)

with the following variance and jump intensity dynamics

hz;t+1 = !z + bzhz;t +
az
hz;t

(zt � c�zhz;t)2 + dzy�t (2.26)

h�y;t+1 = !
�
y + byh

�
y;t +

a�y
hy;t

(zt � c�yhz;t)2 + d�yy�t (2.27)

where h�y;t+1 = hy;t+1�, � = exp(�y� +
�2y�

2

2 ), �� = � + �y�
2, �(1)� = exp(�� + �2

2 ) � 1,

�z = ��z, !�y = !y�, a�y = ay�, c�z = cz � �z, c�y = cy � �z, d�y = dy�, and y�t+1 �

J(h�y;t+1; �
�; �2).

The risk neutral dynamic for the GARCH benchmark model in Section 2.1 is a special

case of (2.25)-(2.27) with h�y;t+1 = y
�
t+1 = 0.
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2.5.2 Closed-Form Option Valuation

Under the risk-neutral measure, the generating function for the asset process in (2.25)-(2.27)

takes the following form

f�('; t; T ) � EQt [F
'
T ] = F

'
t;T exp(A1('; t; T ) +B1('; t; T )hz;t+1+C1('; t; T )h

�
y;t+1) (2.28)

Here we present the analytical solutions to the a¢ ne coe¢ cients A1('; t; T ), B1('; t; T ),

and C1('; t; T ). Details on the derivation are provided in Appendix B.

A1('; t; T ) = A1('; t+ 1; T ) +B1('; t+ 1; T )!z + C1('; t+ 1; T )!
�
y (2.29)

�1
2
log(1� 2B1('; t+ 1; T )az � 2C1('; t+ 1; T )a�y)

B1('; t; T ) = '�1z +B1('; t+ 1; T )(bz + azc
�2
z ) + C1('; t+ 1; T )a

�
yc
�2
y (2.30)

+
('� 2B1('; t+ 1; T )azc�z � 2C1('; t+ 1; T )a�yc�y)2

2(1� 2B1('; t+ 1; T )az � 2C1('; t+ 1; T )a�y)

C1('; t; T ) = byC1('; t+ 1; T ) + '�1y + �y(�)
� (2.31)

where �z = �1
2 , �y = ��(1)

�, �y(�)
� = exp(���� + ��2�2

2 )� 1, with

�� = '+B1('; t+ 1; T )dz + C1('; t+ 1; T )d
�
z (2.32)

By imposing the restrictions h�y;t+1 = !
�
y = a

�
y = 0, (2.28)-(2.32) reduces to the generating

function for the GARCH benchmark model in Section 2.1.

With the risk neutral generating function (2.28), we can value European options using

the Fourier inversion method as in Heston (1993), Heston and Nandi (2000), and Du¢ e,

Pan and Singleton (2000). The price of a European call option on a futures contract is

given by

CO(t; Tco; T;K) = EQt [exp(�
TcoZ
t

r(s)ds)(F (Tco; T )�K)+] (2.33)

= F (t; T )(
1

2
+
1

�

1Z
0

Re[
K�i'f�(i'+ 1)

i'f�(1)
]d')

� exp(�
TcoZ
t

r(s)ds)K(
1

2
+
1

�

1Z
0

Re[
K�i'f�(i')

i'
]d')
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where CO(t; Tco; T;K) is the time t price of a European call option expiring at time Tco

with strike K on a futures contract expiring at time T , and K is the strike price.

2.6 Joint Estimation Using Futures and Options Data

It is possible to use the parameter estimates in Table 2.2, obtained through MLE estimation

on futures data, to compute option prices using the option valuation formulae. However,

this procedure exclusively uses historical information and ignores the expectations about

the future evolution of the futures prices that are embedded in option prices. It is therefore

also interesting to study the models� option valuation performance by specifying a loss

function based on option contracts, and matching model option values as closely as possible

to observed market prices.

While such an exercise imposes considerable discipline upon the models, it has never-

theless two important drawbacks. First, if a model is richly parameterized, only �tting the

option data may result in over�tting. Second, the price of risk parameters, which are some

of the most economically important model parameters, cannot be reliably identi�ed using

option data only.

We therefore follow Bates (1996), who suggests that the most stringent test of an option

pricing model lies in its ability to jointly �t the option data and the underlying returns.

In our case, this means that we have to construct a loss function that contains a crude oil

option component as well as a futures return component. We �rst discuss the likelihood

function used to estimate the model parameters from option data. We then explain how to

combine the option data with the underlying futures data and construct a joint likelihood.

Subsequently we discuss the parameter estimates, and compare the most important model

properties with the properties implied by the physical parameters from Table 2.2.

2.6.1 The Likelihood Function from Option Data

To obtain the �tted option prices, we �rst need to �lter the latent state variables. For the

GARCH model, it is the conditional variance; for the jump models, they are the condi-

78



tional variance and conditional jump intensity. The latent state variables can be �ltered

using di¤erent types of information. They can be obtained from futures returns using the

analytical �lter, as in Section 4. Instead, we adapt Kanniainen�s (2013) methodology and

extract conditional variances for the GARCH, CI, and DI models from 30-day ATM implied

volatilities. The methods used to extract the state variables from implied volatility for the

di¤erent models are discussed in more detail in Appendix C.

We use a loss function based on implied volatilities, inverting option prices into implied

volatilities. This approach uses market data that is of similar magnitude along the money-

ness, maturity, and time-series dimensions, which is attractive from a statistical perspective.

Option prices di¤er signi�cantly along these dimensions. De�ne the model error

uk;t = �k;t � b�k;t(Ok;t(ht(��))) (2.34)

where �k;t is the Black (1976) implied volatility of the kth observed option price at time t,

and b�k;t(Ok;t(ht(��))) is the implied volatility converted from each computed option price,

Ok;t(ht(�
�)), using the Black (1976) formula.

Assuming normality of the implied volatility errors, uk;t � N(0; �2u), the log-likelihood

function based on options is

LOpt = �
N

2
ln(2��2u)�

1

2

NX
t;k

u2k;t
�2u

(2.35)

where N = 283; 653 is the total number of option contracts. Parameters can be estimated

from options data only by maximizing LOpt, but we do not proceed in this way.

2.6.2 The Joint Log Likelihood Function

The log-likelihood functions for futures and options are de�ned in equations (2.16) and

(2.35) respectively. We maximize the weighted average of the log-likelihoods of futures and

options to obtain parameter estimates for the jump models that are re�ecting both the

option data and the underlying futures data.

The number of option contracts in the data set is much larger than the number of

futures contracts. To ensure that joint parameter estimates are not dominated by options,
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we assign equal weight to each log-likelihood. The resulting weighted joint log-likelihood is

LJoint =
M +N

2

LFut
M

+
M +N

2

LOpt
N

(2.36)

where M = 38; 024 is the total number of futures contracts and N = 283; 653 is the total

number of option contracts.

We report the optimized joint likelihoods as well as the corresponding implied volatility

root mean squared error (IVRMSE)

IV RMSE =
1

T

vuut 1

N

NX
t;k

u2k;t (2.37)

where T = 4; 753 is the number of days used in our analysis.

Ideally one would �t the model directly to implied Black volatilities. However, since

the optimization routine requires computing implied volatility from model prices at every

function evaluation, this approach is extremely slow. We follow Trolle and Schwartz (2009)

and �t the model to option prices scaled by their Black (1976) vega, that is, the sensitivities

of the option prices to variations in log-normal volatilities. This approach is motivated by

the approximation �k;t � Ok;t=�k;t, where �k;t is the Black (1976) vega associated with

the kth observed option price at time t. This approximation has been shown to work well

in existing work. Thanks to the use of the analytical �lter, the quasi-closed form option

valuation formula, and the use of the vega-scaled prices, the optimization problem is feasible

with our large data sets.

Furthermore, to ensure reasonable model properties and to facilitate the search for opti-

mal parameter values, we impose variance targeting. For example, for the GARCH model,

instead of estimating !, we infer it from the unconditional variance and other parameter

estimates, according to equation (2.3). Variance targeting for the jump models proceeds

along the same lines.

2.6.3 Empirical Estimates and Model Implications

Table 2.4 reports the parameter estimates obtained by maximizing the joint log-likelihood

function in (6.3) for the GARCH model and the two jump models. At the bottom of the
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table, we also report the log-likelihood, the IVRMSE, and several other model properties

implied by the parameters such as the long-run risk premium, the percent of total annual

variance explained by the normal and the jump component, the average annual volatility,

and the expected number of jumps per year. Note that unlike the parameters in Table 2.2,

the parameters in Table 2.4 are risk-neutral parameters. Similar to the estimation results

based on crude oil futures data in Table 2.2, the jump models outperform the benchmark

GARCH model. The jump model with constant jump intensity CI has an IVRMSE of

4.11 and outperforms the GARCH model by approximately 12%. The jump model with

time-varying intensities DI has an IVRMSEs of 3.70 and outperforms the GARCH model

by approximately 19%. These �ndings con�rm that incorporating jumps in addition to

dynamic volatilities helps to improve model �t, and that it is important to allow for time-

varying jump intensities.

Figure 2-8 reports the implied variance paths and conditional jump intensity paths based

on the estimates from futures and futures options in Table 2.4. In the crisis period around

the �rst Gulf war, the conditional variance paths in Figure 2-8 contain more pronounced

spikes compared to the variance paths in Figure 2-4, which are based on estimates from

returns only. This may be due to the fact that for the estimates in Table 2.4, we extract

the conditional variance from implied volatility, which is more volatile than the conditional

volatility �ltered from futures returns.

Since option prices contain important information about the pricing kernel that cannot

necessarily be inferred from the underlying futures returns dynamics, the market prices of

risk for the normal and jump components and the implied risk premiums are of particular

interest. The combined average risk premiums for the CI and DI models are very similar,

10.42 and 10.16 percent respectively. This is a bit larger than the ones implied by the esti-

mates in Table 2.2. Both the normal and the jump components are economically important,

and as a percent of the total risk premium, the importance of the jump risk premiums in

Table 2.4 is similar to Table 2.2.

Figure 2-9 plots the resulting time variation in the conditional normal risk premium, the
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Table 2.4: Joint MLE Estimates Using Crude Oil Futures and Options, 1990-2008

Parameters GARCH
Normal Normal Jump Normal Jump

λ 5.83E­01 6.76E­01 4.03E­03 1.17E+00 1.86E­03
­2.26E­04 ­7.03E­04 ­4.34E­06 ­6.89E­04 ­6.21E­07

w 1.57E­02
­7.18E­06

a 2.95E­05 3.18E­05 1.10E­05
­1.08E­07 ­3.19E­08 ­1.25E­08

b 9.63E­01 9.43E­01 8.04E­01
­1.28E­04 ­4.81E­05 ­2.74E­04

c 2.53E+01 3.78E+01 1.30E+02
­7.14E­03 ­3.09E­02 ­9.63E­02

d 1.44E­02 2.55E­03
­4.16E­06 ­1.09E­06

θ ­1.54E­03 ­1.20E­03
­9.27E­07 ­7.50E­07

δ 3.97E­02 7.61E­02
­2.09E­05 ­1.29E­04

k 1.65E+02
­2.02E­01

Properties
Number of jumps / Yr
Risk Premium 8.19 8.81 1.61 8.04 2.12
% of Annual Variance 100 95.4 4.6 51.08 48.92
Ave. Annual Volatility 0.37
IV Bias 1.83
IV RMSE 4.67
Likelihood 318236.525 339331.74 354223.97

CI DI

3.98 11.41

0.37 0.37
0.76 0.29
4.11 3.78

We report estimation results from MLE estimation using daily crude oil futures and options

from January 2, 1990 to December 3, 2008. Reported in parentheses are standard errors

computed using the Hessian matrix.
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Figure 2-8: Conditional Variance and Jump Intensity Estimated Using Futures and Option

Contracts

We plot the annualized conditional variance, hz;t+1, in the left column and the annualized

conditional jump intensity, hy;t+1, in the right column for two jump models.
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Figure 2-9: Risk Premiums Estimated Using Futures and Option Contracts

We plot the normal risk premium, 
z;t � �zhz;t in the left column, the jump risk premium,


y;t � �yhy;t, in the middle column, and the total risk premium, 
t � �zhz + �yhy, in the

right column, for two jump models.

conditional jump risk premium, and the total risk premium. Although the CI model has a

slightly higher conditional variance than the DI model, the total risk premium implied by

both models is very similar, because jumps occur more frequently in the DI model.

Other properties di¤er between the jump models. Table 2.4 indicates that in the DI

model with time-varying jump intensities, jumps explain approximately 49% of the total

variance, while jumps explain 4.6% of the total variance of the CI model. Note that this

�nding for the CI model is at odds with the �ndings from futures returns in Table 2.2. For

the model with time-varying jump intensities, the percentage of variance explained by the
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jumps is relatively similar in Tables 2.2 and 2.4. With regard to the average number of

jumps, both models yield di¤erent results in Tables 2.2 and 2.4. For the CI model, futures

data imply slightly more jumps, but for the DI model, futures data indicate far fewer jumps.

Figure 2-10 plots the sample paths of the number of jumps, as well as that of the

�ltered jump component and normal component. For the DI model, jumps are the dominant

components of returns during the �rst Gulf war, and we �nd evidence of multiple jumps per

day. Skewness and kurtosis are determined by the jump parameters. The average jump sizes,

�, for both jump models in Table 2.4 are smaller in magnitude compared to those estimated

using only crude oil futures returns in Table 2.2. Consequently, the time path of conditional

skewness in Figure 2-11 indicates that for both jump models, the average skewness is smaller

in absolute value than that estimated from futures returns only in Table 2.7. The estimates

of the variance of the jump size � in Table 2.4 are smaller for both jump models compared

to that in Table 2.2, and this determines the kurtosis estimates. Conditional excess kurtosis

in the right column of Figure 2-11 is lower compared to that in Figure 2-7. Table 2.5 further

investigates the di¤erences in �t between the models. We report IVRMSE and IV bias by

moneyness and maturity category. Because of space constraints, we limit ourselves to a

comparison of the DI model and the benchmark GARCH model. For all moneyness and

maturity categories in Panel A of Table 2.6, the average IVRMSE is signi�cantly lower for

the DI model compared to the GARCH model. We also report the Implied Volatility Bias

(IV Bias) across moneyness and maturity in Panel B of Table 2.6. Again the average IV

Bias is signi�cantly lower for the DI model compared to the GARCH model. However, the

IV Bias di¤erences between the two models are much larger than the IVRMSE di¤erences.

Since RMSEs re�ect model bias and variance, we conclude that the data may be rather

noisy, and that some contracts are poorly �t by both models. The much improved bias for

the DI model is therefore very important.
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Figure 2-10: Decomposition of Daily Futures Returns estimated Using Futures and Option

Contracts

We plot the �ltered number of jumps, nt, in the left column, the �ltered jump component,

yt, in the middle column, and the �ltered standardized normal component, zt, in the right

column, for two jump models. Results are obtained using the analytical �lter and the joint

MLE estimates of futures and options from Table 2.4.
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Figure 2-11: Conditional Skewness and Excess Kurtosis from Futures and Option Contracts

We plot the daily conditional skewness, in the left column, and the conditional excess

kurtosis, in the right column, for two jump models. The moments are estimated using joint

MLE on futures and options data.
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Table 2.5: IVRMSEs and IV Bias for Crude Oil Options by Moneyness and Maturity

Panel A. IVRMSEs for Crude Oil Options by Moneyness and Maturity

Moneyness Model M1 M2 M3 M4 M5 M6 Q1 Q2
GARCH 5.22 4.54 4.97 5.39 5.71 5.89 6.79 6.88

DI 4.09 3.66 3.84 3.98 3.98 4.03 4.32 4.54
GARCH 4.1 3.67 4.41 5.09 5.65 5.91 6.82 7.65

DI 3.52 3.13 3.54 3.84 3.9 4.05 4.29 4.74
GARCH 3.86 3.23 4.19 5.15 5.4 6.05 6.7 7.89

DI 3.5 2.98 3.36 3.68 3.77 3.93 4.26 4.84
GARCH 4.06 2.97 3.9 4.32 5.15 5.31 6.33 7.26

DI 3.68 2.59 3.14 3.5 3.84 3.8 4.21 4.55
GARCH 4.02 2.67 3.47 4.16 4.58 4.84 6.01 7.17

DI 3.7 2.55 3.15 3.6 3.75 3.71 4.21 4.48
GARCH 3.72 2.61 3.29 3.93 4.1 4.65 5.83 6.87

DI 3.53 3 3.41 3.66 3.63 3.61 4.22 4.51
GARCH 3.19 2.59 3.06 3.49 3.93 4.39 5.38 6.44

DI 3.77 3.69 3.55 3.56 3.57 3.76 4.23 4.56
GARCH 3.11 2.89 3.24 3.7 3.81 4.14 5.09 6.04

DI 3.31 3.39 3.36 3.5 3.57 3.83 4.28 4.67
GARCH 3.1 3.54 3.67 3.82 3.75 4.22 4.98 6.01

DI 2.7 3.15 3.32 3.52 3.71 3.91 4.45 5.01
GARCH 3.69 4.14 4.26 4.17 3.9 4.33 5.08 5.83

DI 2.75 3.27 3.58 3.76 3.73 3.93 4.9 5.44
GARCH 4.32 4.67 4.78 4.86 4.4 4.28 4.48 5.28

DI 3.36 3.74 3.92 4.07 3.91 3.87 4.34 5.24

1.06­1.10

1.10­1.14

1.14­1.18

1.18­1.22

Maturity

Puts

0.78­0.82

0.82­0.86

0.86­0.90

0.90­0.94

0.94­0.98

0.98­1.02

Calls

1.02­1.06
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Table 2.5 (Continued)

Panel B. IV Bias for Crude Oil Options by Moneyness and Maturity

Moneyness Model M1 M2 M3 M4 M5 M6 Q1 Q2
GARCH 3.42 2.65 3.02 3.45 3.66 3.72 4.47 4.16

DI 1.37 0.51 0.75 0.64 0.11 ­0.56 ­0.57 ­0.84
GARCH 1.96 1.92 2.46 3.08 3.61 3.79 4.61 5

DI 1.12 0.46 0.54 0.38 0.02 ­0.47 ­0.65 ­0.39
GARCH 1.88 1.58 2.34 3.21 3.49 4.04 4.64 5.57

DI 1.63 0.95 0.71 0.54 0.28 ­0.03 ­0.28 0.19
GARCH 2.06 1.52 2.1 2.42 3.22 3.43 4.35 5.25

DI 1.53 0.63 0.57 0.53 0.45 0.19 0.09 0.35
GARCH 2.03 0.89 1.18 1.99 2.66 2.99 4.08 5.29

DI 1.81 0.65 0.39 0.3 0.46 0.41 0.55 0.86
GARCH 1.14 0.04 0.8 1.45 2.07 2.69 3.81 4.96

DI ­0.71 ­0.88 ­0.61 ­0.25 0.17 0.31 0.9 1.18
GARCH 0.45 ­0.45 0.13 0.58 1.5 2.01 3.1 4.24

DI ­2.05 ­2.35 ­1.52 ­0.75 ­0.2 0.23 0.91 1.21
GARCH ­0.27 ­1.23 ­0.89 0.03 0.83 1.15 2.5 3.52

DI ­0.98 ­2.08 ­1.22 ­0.54 ­0.06 0.22 1.1 1.41
GARCH ­1.4 ­2.16 ­1.61 ­0.58 ­0.07 0.7 2.04 3.01

DI ­0.21 ­1.24 ­0.46 ­0.05 0.28 0.52 1.45 1.78
GARCH ­2.24 ­2.82 ­2.43 ­1.76 ­0.77 0.15 1.22 2.57

DI ­0.25 ­0.47 0.01 0.22 0.47 0.58 1.44 2.35
GARCH ­2.67 ­3.26 ­3.09 ­2.8 ­1.97 ­1.27 0.21 1.52

DI ­0.12 0.24 0.49 0.15 0.06 0.06 1.06 2.21

Maturity

Puts

0.78­0.82

0.82­0.86

0.86­0.90

0.90­0.94

0.94­0.98

0.98­1.02

Calls

1.02­1.06

1.06­1.10

1.10­1.14

1.14­1.18

1.18­1.22

We report the option implied volatility root mean squared errors (IVRMSE) and the

implied volatility bias within each moneyness-maturity category for the GARCH and DI

models. The models are estimated using daily crude oil returns and options jointly for

the period January 2, 1990 to December 3, 2008. The pricing errors are de�ned as the

di¤erence between �tted and actual implied volatilities and reported in percentages. M1

(M2, M3, M4, M5, M6) refers to option contracts with expiration in 1 (2, 3, 4, 5, 6) months;

Q1 and Q2 refers to the next two option contracts with expiration in either March, June,

September or December. Moneyness is de�ned as the option strike divided by the price of

the underlying futures contract.
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Figure 2-12 illustrates the improvement in �t provided by jump models by depicting the

models�ability to capture the �smiles�and �smirks�in the data. We again limit ourselves

to a comparison between the benchmark GARCH model and the DI model. The green

solid line shows the average log-normal volatility smiles and smirks from the data. The

blue dashed line and the red dotted line show the average of the �tted �smiles�for the DI

model and the GARCH model respectively. Averages are taken over a maximum of 4,753

daily observations from January 2, 1990 through December 3, 2008. Figure 2-12 clearly

demonstrates that the DI model �ts the implied volatility �smiles�vastly better than the

GARCH model for options on all di¤erent maturity futures contracts, in line with the bias

results in Panel B of Table 2.6. As maturity increases, the pricing errors of both the GARCH

model and the DI model decrease, suggesting that both models �t long maturity options

better.

2.7 Conclusion

We estimate discrete-time jump models for CME crude oil futures and options on futures.

The proposed models allow for a heteroskedastic normal innovation and a jump component.

We investigate one jump model with a constant jump intensity and another model with a

time-varying jump intensity, as well as a benchmark GARCH model that does not contain

a jump component. All models are tractable, providing a quasi-analytical option valuation

formula, and analytical results for �ltering the volatility and jump intensity are available.

We �nd strong evidence for the presence of jumps in the crude oil derivatives market,

using futures data as well as options data. Both the analysis of futures data and that based

on the joint estimation of futures and options suggests jumps are relatively rare events in

the crude oil market.

We �nd strong evidence in favor of time-varying jump intensities. Jump models with

dynamic jump intensity dramatically improve model performance. This is the case whether

or not futures options are used in estimation. During crisis periods, when market risk is

high, jumps occur more frequently.
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Figure 2-12: Average Implied Volatility Smiles and Smirks

We plot the average implied volatility across moneyness. Moneyness is de�ned as the option

strike divided by the price of the underlying futures contract. The green solid line shows the

average volatility smiles in the option data. The blue dashed line shows the average over

time of the �tted smiles for the DI model. The red dotted line shows the average over time

of the �tted smile for the GARCH model. Model parameters are from Table 2.4. Averages

are based on 4,753 daily observations from January 2, 1990 through December 3, 2008.
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Jumps account for a large part of the risk premium in crude oil market, regardless of

whether jump intensities are time-varying, and regardless of whether futures or options are

used in estimation. The primary bene�t of modeling jumps in crude oil markets seems to

be that the excess kurtosis of the distribution is modeled more adequately, whereas the

modeling of skewness is a second-order e¤ect.
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Appendix

A. The Analytical Filter

Christo¤ersen, Jacobs, and Ornthanalai (2012) propose an analytical �lter that can sepa-

rately identify the normal and jump components in daily returns. We use a variation on

their proposed �lter. Consider the log return dynamic of

Rt = �t + zt + yt (A.2.1)

where �t is the �rst conditional moment of returns in (4.5). The �ltered normal innovation

can be written as

ezt = Et[zt] = 1X
j=0

zt(Rt; nt = j) Prt(zt; nt = j) (A.2.2)

where Prt(zt; nt = j) is the joint probability of zt and nt = j given that Rt is known. If the

return Rt and the number of jumps nt = j at time t are known, we can express zt as

zt(Rt; nt = j) =

vuut ehz;tehz;t + j�2 (Rt � �t � j�) (A.2.3)

Using Bayes�rule, the �ltering density Prt(zt; nt = j) up to the normalizing constant can

be written as

Prt(zt; nt = j) � Prt�1(zt; nt = j j Rt) / Prt�1(zt; nt = j) Prt(nt = j) (A.2.4)

This is the ex-post inference on zt given time t information. To compute the �rst term on

the right hand side in (A.2.4), we express zt as zt(Rt; nt = j) and use the change of variable

technique to obtain

Prt�1(zt j Rt; nt = j) = Prt�1(Rt; nt = j j Rt; nt = j)

vuut ehz;tehz;t + j�2 (A.2.5)

The second term in (A.2.4), Prt(nt = j), is the �ltering density for the number of jumps at

time t, nt. Applying Bayes�rule, it is given by

Prt(nt = j) � Prt�1(nt = j j Rt) =
ft�1(Rt j nt = j) Prt(nt = j)

ft�1(Rt)
(A.2.6)
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Using (A.2.3), (A.2.4), (A.2.5) and (A.2.6), the expected ex-post normal component of

returns is

ezt =
1X
j=0

zt(Rt; nt = j) Prt�1(zt j Rt; nt = j) Prt(zt; nt = j) (A.2.7)

=
1X
j=0

ehz;tehz;t + j�2 (Rt � �t � j�) Prt(zt; nt = j)
Therefore, the �ltered jump innovation is given by

eyt = Rt � �t � ezt (A.2.8)

The �ltered number of jumps is then

ent = 1X
j=0

j Prt(nt = j) (A.2.9)

The ex-post �lter for hz;t+1 conditional on the information set at time t is given by

ehz;t+1 = E [hz;t+1 j Rt] = 1X
j=0

hz;t+1(Rt; nt = j) Prt(hz;t+1; nt = j) (A.2.10)

Write hz;t+1 = hz;t+1(Rt; nt = j). From the GARCH dynamic, we have hz;t+1 as

hz;t+1 = !t + bzehz + azehz (zt(Rt; nt = j)� czehz)2 + dz(Rt � �t � zt(Rt; nt = j) (A.2.11)

Applying Bayes�rule again, the second term in (A.2.10), Prt(hz;t+1; nt = j), is given by

Prt(hz;t+1; nt = j) � Prt�1(hz;t+1; nt = j j Rt) (A.2.12)

/ Prt�1(hz;t+1 j Rt; nt = j) Prt(nt = j)

Using the change of variable technique, Prt�1(hz;t+1 j Rt; nt = j) can be written as

Prt�1(hz;t+1 j Rt; nt = j) =
����@hz;t+1@zt

����Prt�1(zt j Rt; nt = j) (A.2.13)

where the �rst term on the right hand side in (A.2.13) is

@hz;t+1
@zt

=
2az(zt(Rt; nt = j)� czehz;t)ehz;t � dz (A.2.14)

The ex-post �lter for hy;t+1 conditional on the information set at time t, hy;t+1 = E [hy;t+1 j Rt],

can be obtained using a similar approach.
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B. The Generating Function and the Option Valuation Formula

We solve for the coe¢ cients A('; t; T ), B('; t; T ), and C('; t; T ) in equation (2.28) as in

Ingersoll (1987) and Heston and Nandi (2000), utilizing the fact that the conditional moment

generating function is exponential a¢ ne in the state variables hz;t+1 and h�y;t+1.

Since ST is known at time T , equation (2.28) requires the terminal condition

A1(';T; T ) = B1(';T; T ) = C1('; t; T ) = 0 (B.2.1)

Applying the law of iterated expectations to f('; t; T )�, we get

f�('; t; T ) = EQt [f('; t+ 1; T )
�] (B.2.2)

= S't E
Q
t [exp('Rt+1 +A1('; t+ 1; T ) +B1('; t+ 1; T )hz;t+2 + C1('; t+ 1; T )h

�
y;t+2)]

We can rewrite the futures return process in (2.25) as

Rt+1 = �zhz;t+1 + �yh
�
y;t+1 + zt+1 + y

�
t+1 (B.2.3)

where �z = �1
2 ; �y = ��y(1)

�.

Substituting the futures return process in equation (B.2.3), the conditional normal vari-

ance dynamic equation (2.26), and the conditional jump intensity dynamic equation (2.27)

into (B.2.2), we get

f�('; t; T ) = S't E
Q
t [exp('(�zhz;t+1 + �yh

�
y;t+1 + zt+1 + y

�
t+1) +A1('; t+ 1; T )(B.2.4)

+B1('; t+ 1; T )(!z + bzhz;t+1 +
az

hz;t+1
(zt+1 � czhz;t+1)2 + dzyt+1)

+C1('; t+ 1; T )(!�y + byh
�
y;t+1 +

a�y
hz;t+1

(zt+1 � c�yhz;t+1)2 + d�yy�t+1))]

After rearranging terms through completing squares and following some algebra we get

f�('; t; T ) = S't E
Q
t [exp(A1('; t+ 1; T ) +B1('; t+ 1; T )!z + C1('; t+ 1; T )!

�
y (B.2.5)

+('�z + (bz + azc
2
z)B1('; t+ 1; T ))hz;t+1 + ('�y + (by + a

�
yc
�2
y )C1('; t+ 1; T ))h

�
y;t+1

+(azB1('; t+ 1; T ) + ayC1('; t+ 1; T ))
z2t+1
hz;t+1

+('� 2azczB1('; t+ 1; T )� 2aycyC1('; t+ 1; T ))zt+1

+('+ dzB1('; t+ 1; T ) + d
�
yC1('; t+ 1; T ))y

�
t+1)]
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where we use the following results for normal and Poisson variables

EQt [exp(�zt+1 + �z
2
t+1)] = exp(

�2hz;t+1
2(1� 2�hz;t+1)

� 1
2
log(1� 2�hz;t+1) (B.2.6)

EQt [exp(�y
�
t+1)] = exp(�y(�)

�hy;t+1) (B.2.7)

where �y(�)
� = exp(���� + 1

2�
�2�2)� 1:

Substituting (B.2.6) and (B.2.7) into (B.2.5) and subsequently equating terms in the

right hand sides of (B.2.5) and (2.28) gives the analytical solutions for the a¢ ne coe¢ cients

A('; t; T ), B('; t; T ), and C('; t; T ) in (2.29) and (2.30).

C. Extracting Conditional Variance from Implied ATM Volatilities

Let IVt be the 30-day ATM implied volatility. In the absence of jumps, the relationship of

IVt with daily variances is

(IVt)
2 �=

365

30
Et
X30

j=1
ht+j (C.2.1)

where Et(:) is a conditional expectation given information at time t. Using (2.2) we get

Etht+j = ht	
j
1 + (! + a)

1�	j1
1�	1

(C.2.2)

where 	1 = b+ 2ac. Substituting (C.2.2) into (C.2.1), we have

ht =
1X30

j=1
	j1

264 30
365

IV 2t � (! + a)

X30

j=1
(1�	j1)

1�	1

375 (C.2.3)

This method of extracting variances from implied volatility is similar to Kanniainen (2013).

For jump models, we use the relationship between implied volatilities and total variances

IV 2t
�=
365

30
Et
X30

j=1

�
hz;t+j + (�

2 + �2)hy;t+j
�

(C.2.4)

For the CI model, from equation (2.8) and constraint (2.11), we have

Ethz;t+j = hz;t+j	
j
2 + (!z + az + dz�!y)

1�	j2
1�	2

(C.2.5)

where 	2 = bz + azc2z. Substituting (2.11) and (C.2.5) into (C.2.4), we get

hz;t =
1P30

j=1	
j
2

"
30

365
IV 2t � 30(�2 + �2)!y � (!z + az + dz�!y)

P30
j=1(1�	

j
2)

1�	2

#
(C.2.6)
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For the DI model, substituting the constraint (2.12) into (2.8), we have

Ethz;t+j = hz;t	
j
3 + (!z + az)

1�	j3
1�	3

(C.2.7)

where 	3 = bz + azc2z + dz�k. Substituting (C.2.7) and (2.12) into (C.2.4), we obtain

hz;t =
1P30

j=1	
j
3

"
30

365

IV 2t
(1 + (�2 + �2)k)

� (!z + az)
P30
j=1(1�	

j
3)

1�	3

#
(C.2.8)
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