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ABSTRACT

We study the efficiency of non-parametric estimation of stochastic differential equations driven by

Brownian motion (i.e., Diffusions) from long stationary trajectories. First, we introduce estima-

tors based on conditional expectation which is motivated by the definition of Drift and Diffusion

coefficients for SDEs. These estimators involve time- and space- discretization parameters for com-

puting discrete analogs of expected values from discretely-sampled stationary data. The number

of observational points is the third important computational parameter. Next, we derive bounds

for the asymptotic behavior of L2 errors for the Drift and Diffusion estimators. The asymptotic

behavior is characterized when the number of observational points becomes infinite and observa-

tional time-step and bin size for spatial discretization of Drift and Diffusion coefficients tend to

zero. Using our asymptotic analysis we are able to obtain practical guidelines for selecting com-

putational parameters. Finally, we perform a series of numerical simulations which support our

analytical investigation and illustrate practical guidelines for selecting near-optimal and computa-

tionally efficient values for computational parameters.
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1 Introduction

The amount of observational and numerical data has been growing at an increasing rate during

the last few decades. Now data demonstrates its vital position in our daily life. Not long ago we

did not have a convenient and efficient ways to obtain information and obtaining quality observa-

tional and/or numerical data required a substantial amount of effort. Now, the amount of data

is abundant. Presently it is very easy to develop and install all kinds of observational devices.

Computing and data-storage capabilities also advanced significantly in the last few decades and

nowadays computers are capable of producing enormous amounts of data. We are entering a data

boosting epoch and data reflects many aspects of our daily life.

Here we address the problem of estimating Drift and Diffusion terms in stochastic differen-

tial equations driven by Brownian motion from observational data. This is a somewhat classical

problem and there exists a considerable amount of literature on this topic. Here we concentrate

on non-parametric estimation. The main motivation for our work is that until recent the past

few decades there was a problem collecting enough data for successful application of this tech-

nique. Nowadays, with increasing amounts of observational and numerical data, some techniques

should be revisited since they might become applicable in practice. We consider non-parametric

estimators motivated by conditional expectations used in definitions of the Drift and Diffusion co-

efficients [7, 12]. For instance, non-parametric estimation of SDEs using similar ideas was applied

to the one-dimensional problem in [4], but now the interest to this non-parametric purely data-

driven technique has reemerged (e.g., [16–19,31]) with potential applications to higher-dimensional

models.

There are many practical problems where estimating an effective model from available observa-

tional or numerical data is of great interest. Such models can be used for future predictions as well

as for the analysis of the underlying physics. The mathematical approach here applies primarily

to temporal measurements. There are many possible areas of application in applied science and

engineering such as econometrics, turbulence [20–22, 24, 32, 33], weather forecasting [23, 25, 38–44],
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climate studies [34–37], biology [16, 18, 31, 45, 46], reduced model on nonlinear dynamics [26–30],

etc.

There are many branches related to the topic of my dissertation, such as time series analysis, dif-

ferential equation, some topics in statistics, etc. Time series analysis [47–51] comprises methods for

analyzing time series data which may have some internal structures, for instance, auto-correlation

- the similarity between observations as a function of the time lag among them; seasonality - fluc-

tuations that repeat regularly over time; and stationarity - time series where statistical properties

do not change over time. The most closely related topic here is on autoregressive processes such as

AR(p) [59–63] or GARCH [64–68].

There has been an effort to develop mathematical tools for effective learning of right-hand

sides of differential equations from data. The main idea is quite similar to the overall goal of

my dissertation - learn about dynamic rules which govern behavior of dynamic variables. Some

recently developed approaches include Sparse Identification of Nonlinear Dynamics (SINDy) [69,70]

and machine learning techniques [71].

Statistics [52–55] is one of the main scientific disciplines addressing various aspects of data

science such as collection, management, illustration, analysis, interpretation, and presentation.

Statistical inference [56] is one of the most popular areas, which includes estimation of parametric

and non-parametric models. Parametric estimation is widely a used method based on the hypothesis

of fitting empirical data into a known distribution with hidden properties or generic structures.

The topic of my dissertation is related to non-parametric estimation. Non-parametric estimation

is a statistical method that allows the functional form of a fit to data to be obtained in the

absence of any guidance or constraints from theory [15] or any underlying assumptions. The non-

parametric approach is more flexible and compatible with any data sets. However, this approach

is sometimes more difficult to validate and it typically requires much more data compared to

parametric techniques [74–78].

Finally, regression analysis is a subset of statistical modeling which deals with estimating the

functional form of relationships between dependent and independent variables. It is widely used

2



in finance, investing, and other disciplines that attempts to determine the importance of different

variables for generating predictions. Generally, regression can be separated into two groups - (i)

linear regression models (e.g., [53, 57, 58]) which was particular popular several decades ago when

computers were non-existent and (ii) nonlinear regression models (e.g., [72, 73]) which can tackle

more general problems.

Every estimator has internal computational parameters which control the quality of estimation.

Of the most obvious parameters is the number of points, M , available for evaluating the estimator.

Another parameter which is common is the observation time-step for collecting the discrete data,

∆t. In our application of non-parametric estimation there is a third parameter, ∆x, related to

space-discretization for estimating the Drift and Diffusion coefficients. One of the most important

practical problems is the optimal choice of these internal computational parameters such that it

minimizes the computational cost while maximizing the efficiency of estimators. In my dissertation

I use analytical estimates derived in the limiting regime of M → ∞, ∆t, ∆x → 0 to analyze the

optimal selection of these computational parameter. It turns out that accuracy of the Drift and

Diffusion estimators depends on these three parameters in a non-trivial way. Thus, we develop

practical guidelines for selecting these computational parameters.

The rest of the dissertation is organized as follows - in Chapter 2 background material from

real analysis and stochastic differential equations is introduced first, then estimators for the Drift

and Diffusion terms are introduced, and properties of the truncated density are discussed in more

detail. Bias of these estimators is also discussed in detail. The most important important analytical

contribution is the analysis of the Mean-Square Error (MSE) for the Drift and Diffusion estimators

in sections 2.9 and 2.10, respectively. Numerical simulations are presented in Chapter 3 where we

analyze the behavior of Absolute Error and Mean-Square-Error (MSE) for two particular models.

Our simulations support our analytical conclusions and provide practical guidelines for the optimal

choice of computational parameters M , ∆t, and ∆x for the Drift and Diffusion estimators. Also,

we use several regression techniques to estimate the functional form of the Drift and Diffusion

terms from our non-parametric estimators. In particular, we compare and contrast polynomial fit

3



(least square [53]) and two shrinkage methods - Lasso [53, 57] and Ridge regression [53, 58] in the

Root-Mean-Square-Error (RMSE) sense.
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2 Theoretical formulation

Our goal is to derive practical formulas for computing estimators of the Drift and Diffusion co-

efficients in SDEs from discretely sampled stationary time-series. To this end, we consider one-

dimensional Diffusions (stochastic differential equations driven by Brownian motion) and use the

definition of Drift and Diffusion coefficients to define our estimators. These estimators can be easily

generalized to higher dimensions, but the analysis becomes much more difficult. Thus, we stay in

the context of one-dimensional models.

We introduce our estimators in (10) and (11); the main theoretical results contain an analysis

of Bias (sections 2.6 and 2.7) and Mean-Square-Error (sections 2.9 and 2.10). The analysis of the

MSE for the Drift and Diffusion estimators is much more challenging since it requires estimating the

behavior of many correlated terms and products of stochastic integrals. Results for the asymptotic

behavior of the MSE are summarized in sections 2.9.1 and 2.10.1.

SDEs are widely used in the fields of finance, physics, meteorology, mathematical biology, etc.

With the increase of observational data in recent years, estimation of effective processes (including

SDEs) has become an important practical task. In this chapter we lay the main theoretical results

which have practical consequences on how to determine computational parameters used in our Drift

and Diffusion estimators.

2.1 Known inequalities

In this section we list some well-known inequalities for future reference.

Inequality 2.1 (Hölder inequality in 6.6.2 of [5]). Suppose 1 < p <∞ and p−1 + q−1 = 1 (that is,

q = p/(p− 1)). If f and g are measurable functions on arbitrary set X, then

‖fg‖1 ≤ ‖f‖p‖g‖q. (1)

In particular, if f ∈ Lp and g ∈ Lq, then fg ∈ L1, and in this case equality holds in (1) iff

α|f |p = β|g|q a.e. for some constants α, β with αβ 6= 0.

5



Specifically, take p = q = 2, we have

Inequality 2.2 (Cauchy-Schwarz Inequality). If f and g are measurable functions on an arbitrary

set X, then

‖fg‖1 ≤ ‖f‖2‖g‖2. (2)

Inequality 2.3 (Minkowski’s Inequality in 6.6.5 of [5]). If 1 ≤ p ≤ ∞ and f, g ∈ Lp, then

‖f + g‖p ≤ ‖f‖p + ‖g‖p. (3)

2.2 Preliminary results for SDEs

In this section we recall some background theoretical results for SDEs. Consider a one-dimensional

SDE driven by Brownian motion

dXt = A(Xt)dt+B(Xt)dWt. (4)

Here A(Xt) and B(Xt) are called the Drift and Diffusion coefficients, respectively. SDEs driven by

Brownian motion are often called Diffusion processes or simply Diffusions. The equation above is

understood in an integral sense, i.e.,

X(t) = X0 +

t∫
0

A(X(s)) ds+

t∫
0

B(X(s)) dWs.

Here we treat all integrals with respect to the Brownian motion (a.k.a. Wiener process) in the Itô

sense [1, 7, 12].

We would like to recall the following basic properties for Diffusions -

1. Functions A and B have to be Lipschitz to ensure existence and uniqueness of solution of

6



the SDE in (4) [1, 12]

|A(x)−A(y)| ≤ KA|x− y|,

|B(x)−B(y)| ≤ KB|x− y|,

where KA and KB are some constants.

2. The Drift and Diffusion coefficients can be defined using conditional expectations of the

process Xt [7–11]

A(x) = lim
∆t→0

1

∆t
E

[
Xt+∆t − x

∣∣∣∣∣Xt = x

]
, (5)

B(x)2 = lim
∆t→0

1

∆t
E

[
(Xt+∆t − x)2

∣∣∣∣∣Xt = x

]
. (6)

3. We can also easily derive the Fokker-Planck equation [2, 3, 7] for the conditional probability

f(x, t) = p(x, t|x0, t0) for any initial x0, t0.

∂f(x, t)

∂t
= − ∂

∂x
[A(x)f(x, t)] +

1

2

∂2

∂x2
[B(x)f(x, t)] (7)

with the initial condition p(x, t0|x0, t0) = δ(x − x0). The transition probability density is defined

as

Pr{X(t) ∈ A|X(0) = x0} =

∫
A

p(x, t|x0, t0) dx.

Equations (4) and (7) are regarded as complementary to each other.

2.3 Estimators

In this section we introduce estimators for the Drift and Diffusion coefficients. These estimators are

based on definitions (5) and (6), but take into account the fact that we use discrete observations. In

particular, we cannot implement conditioning in (5) and (6) directly for discrete data. Therefore,

we introduce bins to compute discrete versions of conditional expectation in (5) and (6). We assume
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that all bins have the same width and we denote it as ∆x. Our approach can be easily generalized to

bins of varying size, but this does not affect conclusions reached here because our analysis is carried

out separately for each bin. We introduce a discrete mesh xk, k = 1, . . . ,K with xk+1 − xk = ∆x.

Points xk represent centers of bins [xk −∆x/2, xk + ∆x/2] which are used for conditioning when

computing discrete analogs of expected values.

We also assume that data is sampled with time-step ∆t and a data set contains exactly M

observations for each bin. Therefore the total number of observational time-instances is M × K

where K is the number of bins defined above.

We define discrete estimators analogously to expressions in (5) and (6)

Â(xk) =
1

∆t

1

M

MK∑
j=1

(Xtj+∆t −Xtj )1(Xtj , k),

B̂2(xk) =
1

∆t

1

M

MK∑
j=1

(
Xtj+∆t −Xtj

)2
1(Xtj , k),

where the indicator function is defined as

1(Xt, k) =


1, Xt ∈ Bink,

0, Xt 6∈ Bink,
(8)

and

Bink '
[
xk −

∆x

2
, xk +

∆x

2

]
. (9)

The estimators above can be rewritten slightly differently as

Â(xk) =
1

∆t

1

M

∑
j∈Mk

(Xtj+∆t −Xtj ), (10)

B̂2(xk) =
1

∆t

1

M

∑
j∈Mk

(
Xtj+∆t −Xtj

)2
, (11)

where the set Mk = {j : 1(Xtj , k) = 1}, and card(Mk) = M . Set Mk is a set of indexes such that
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Xtj ∈ Bink and contains exactly M time-instances. The indicator function 1(Xtj , k) is defined in

(8).

Here, the indicator function 1(Xt, k) plays the role of conditioning in expressions (10), (11),

but the conditioning is done on the interval Bink instead of a particular value. We also impose

card(Mk) = M for all k, which means that we consider the situation when the number of time-

instances for estimating the Drift and Diffusion coefficients does not depend on xk. This implies

that for all bins data always contains at least M time-instances tj such that Xtj ∈ Bink for all k.

In practice, such a situation is likely to occur when none of the xk are in the tails of stationary

distribution ρ(x), e.g., max(xk) −min(xk) ≈ stddev(ρ(x)). This is exactly the situation for many

practical applications when observational data is produced by numerical simulations in stationary

regime or long empirical observations of stationary processes and rare events are unlikely to be

a part of the observed trajectory. Stationary turbulence is one example of such applications.

Another application are the long-term climatology observations and simulations/observation of

macro molecular dynamics (e.g., protein folding).

2.4 Truncated density

We assume that the SDE (4) admits a unique stationary distribution ρ(x) which is the solution of

the Fokker-Planck equation

0 = − ∂

∂x
[A(x)ρ(x)] +

1

2

∂2

∂x2
[B(x)ρ(x)].

We define a restricted density corresponding to Bink as

pk(x) =


cρ(x), if x ∈ Bink,

0, if x 6∈ Bink,
where c =


xk+ ∆x

2∫
xk−∆x

2

ρ(s)ds


−1

. (12)

9



The corresponding cumulative distribution function is

Pk(x) =

x∫
xk−∆x

2

pk(s)ds.

Since pk(x) is the density of the truncated distribution, we have

Pk

(
xk −

∆x

2

)
= 0, Pk

(
xk +

∆x

2

)
= 1.

Lemma 2.4. Assuming that ρ(x) is a sufficiently differentiable function, then the constant c in the

definition of the truncated density (12) is given to the leading order by

c =
1

ρ(xk)∆x
+O(∆x).

Proof. Expanding ρ(s) at xk using Taylor series, we obtain

ρ(s) = ρ(xk) + ρ′(xk)(s− xk) +
ρ′′(xk)

2
(s− xk)2 + · · · .

Then

c−1 =

xk+ ∆x
2∫

xk−∆x
2

ρ(s)ds =

xk+ ∆x
2∫

xk−∆x
2

ρ(xk)ds+ ρ′(xk)

xk+ ∆x
2∫

xk−∆x
2

s− xkds+
ρ′′(xk)

2

xk+ ∆x
2∫

xk−∆x
2

(s− xk)2ds+ · · ·

= ρ(xk)∆x+
ρ′′(xk)

24
(∆x)3 +O

(
(∆x)5

)
= ∆x

(
ρ(xk) +

ρ′′(xk)

24
(∆x)2 +O

(
(∆x)4

))
.

If we use

1

x+ ε
≈ 1

x
− ε

x2
for ε << 1

10



then we obtain

c =
1

∆x

[
1

ρ(xk)
− 1

ρ2(xk)

(
ρ′′(xk)

24
(∆x)2 +O

(
(∆x)4

))]

=
1

∆x

[
1

ρ(xk)
− 1

ρ2(xk)

ρ′′(xk)

24
(∆x)2 +O

(
(∆x)4

)]
.

Rearranging the expansion result for the density ρ, we obtain

ρ(xk)∆x = 1− ρ′′(xk)

24
(∆x)3 +O

(
(∆x)5

)
. (13)

2.4.1 Moments for the truncated density function

In this section, we analyze moments of the truncated density. In particular, we formulate the

following lemma

Lemma 2.5. For any function f(x) ∈ C2
[
xk − ∆x

2 , xk + ∆x
2

]
, the conditional expectation of f(x)

is given by

E[f(Xt)|Xt ∈ Bink] = f(xk) + C (∆x)2 +O((∆x)4), (14)

where Xt is the stationary solution of (4) and

C =
f ′′(xk)ρ(xk) + 2f ′(xk)ρ

′(xk)

24ρ(xk)
.

11



Proof. From the definition of the conditional expectation in (14)

E[f(Xt)|Xt ∈ Bink] =

∞∫
−∞

f(x)pk(x) dx = c

xk+∆x/2∫
xk−∆x/2

f(x)ρ(x) dx

= c

[
f(xk)ρ(xk)∆x+

f ′′(xk)ρ(xk) + 2f ′(xk)ρ
′(xk) + f(xk)ρ

′′(xk)

24
(∆x)3 +O((∆x)5)

]
= f(xk) +

f ′′(xk)ρ(xk) + 2f ′(xk)ρ
′(xk)

24ρ(xk)
(∆x)2 +O((∆x)4),

where we used Lemma 2.4.

Low-order moments. From Lemma 2.5, we have the following expression for the first four

moments

E[Xt|Xt ∈ Bink] = xk +
ρ′(xk)(∆x)2

12ρ(xk)
+O((∆x)4),

E[X2
t |Xt ∈ Bink] = x2

k +
ρ(xk) + 2f ′(xk)ρ

′(xk)

12ρ(xk)
(∆x)2 +O((∆x)4),

E[X3
t |Xt ∈ Bink] = x3

k +
xk(ρ(xk) + x2

kρ
′(xk))

4ρ(xk)
(∆x)2 +O((∆x)4),

E[X4
t |Xt ∈ Bink] = x4

k +
x2
k(3ρ(xk) + 2xkρ

′(xk))

6ρ(xk)
(∆x)2 +O((∆x)4).

If we assume that A(x) and B(x) are twice differentiable, then using Lemma 2.5 we also straight-

forwardly compute the expected values of the Drift term

Ek[A(Xt)] = E[A(Xt)|Xt ∈ Bink] = c

xk+ ∆x
2∫

xk−∆x
2

A(s)ρ(s)ds

= A(xk) +
2A′(xkρ

′(xk)) +A′′(xk)ρ(xk)

24ρ(xk)
(∆x)2 +O

(
(∆x)4

)

12



and the Diffusion term

Ek[B2(Xt)] = E
[
B2(Xt)|Xt ∈ Bink

]
= c

xk+ ∆x
2∫

xk−∆x
2

B2(s)ρ(s)ds

= B2(xk) +
2B(xk)B

′(xk)ρ
′(xk) + [(B′(xk))

2 +B(xk)B
′′(xk)]ρ(xk)

12ρ(xk)
(∆x)2 +O

(
(∆x)4

)
.

2.4.2 Behavior of truncated density for small bin size

In this section, we study behavior of truncated density pk in (12) for small bin size. In particular,

the truncated density approximates the delta function δ(x − xk) for small ∆x (see Lemma 2.5).

Thus, we want to understand the rate of growth (with respect to ∆x ) for the conditional density

pk(x) as ∆x→ 0.

Recall from Lemma 2.4

c =

(
ρ(xk)∆x+

ρ′′(xk)

24
(∆x)3 +O

(
(∆x)5

))−1

.

Next, expanding ρ(x) at xk using Taylor series, we obtain

ρ(x) = ρ(xk) + ρ′(xk)(x− xk) +
ρ′′(xk)

2
(x− xk)2 + · · · .

Recall that p(x) = cρ(x) for x ∈ Bink and combining the two expressions above we obtain

pk(x) ≈ ρ(xk)

∆x

(
ρ(xk) +

ρ′′(xk)

24
(∆x)2 +O

(
(∆x)4

))−1

.

Similarly,

p′k(x) ≈ ρ′(xk)

∆x

(
ρ(xk) +

ρ′′(xk)

24
(∆x)2 +O

(
(∆x)4

))−1

p′′k(x) ≈ ρ′′(xk)

∆x

(
ρ(xk) +

ρ′′(xk)

24
(∆x)2 +O

(
(∆x)4

))−1

13



Suppose that ρ(xk) 6= 0, then we get

1

1 + ρ′′(xk)
24ρ(xk)(∆x)2 +

O((∆x)4)
ρ(xk)

−→ 1 as ∆x→ 0

and we can formally state the following theorem

Theorem 2.6. Suppose ρ(xk) 6= 0 and ρ(xk) ∈ C2
[
xk − ∆x

2 , xk + ∆x
2

]
then

pk(x)∆x −→ C1,

p′k(x)∆x −→ C2,

p′′k(x)∆x −→ C3

as ∆x→ 0, where C1, C2 and C3 are finite constants.

2.4.3 Comment about the number of points M for computing Drift and Diffusion

estimators for each bin

In this work we treat the number of time-instances which fall into each bin, M , as constant. In

practice, one is often given a fixed dataset which contains a long stationary trajectory with a fixed

total number of discrete time-instances for computing estimators. In such a situation there is little

flexibility in choosing how many points falls in each bin and in such cases M(xk) ≡ card(Mk)

should be treated as random. This implies that the summations in (10) and (11) become random

sums. Therefore, theoretically, all formulas for the bias and L2 errors should contain expectations

with respect to the distribution for Mk. One can compute the mean of M(xk) as

E[M(xk)/Mtotal] =

xk+∆x/2∫
xk−∆x/2

ρ(x)dx,

14



where ρ(x) is the stationary distribution of the process, and Mtotal (fixed and not random) is the

total number of time-instances in the stationary trajectory. By Jensen’s inequality (φ(E[X]) ≤

E[φ(x)] for any convex φ)

E
[

1

M(xk)

]
≥ C(xk)

Mtotal
,

where C(xk) depends on bin k and stationary density ρ(x). Expectations with respect to random

M(xk) can be simplified using conditional expectations, e.g.

EÂ(xk) = E

 1

∆t

1

M(xk)

∑
j∈Mk

(X(tj + ∆t)−X(tj))1(Xtj , k)


= EM(xk)

E
 1

∆t

1

M(xk)

∑
j∈Mk

(X(tj + ∆t)−X(tj))1(Xtj , k)
∣∣∣M(xk) = M




= EM(xk)

 1

∆t

1

M

M∑
j=1

E
[
(X(tj + ∆t)−X(tj))1(Xtj , k)

]
=

1

∆t
E
[
(X(t+ ∆t)−X(t))1(Xt, k)

]
,

where we reordered points in the data set to make the summation explicit. If M(xk) is treated

as random, the analysis of the asymptotic properties of the Mean Squared Error (MSE) for our

estimators becomes rather difficult since leading-order terms in those expressions involve M−1(xk).

Using formulas for the conditional expectation we can simplify calculation of the total MSE using

condition M(xk) = m and then take the expectation over M(xk). However, computing the expec-

tation of M−1(xk) depends on the particular form of the stationary distribution ρ(x). In addition,

if the total number of points in the stationary trajectory is large, we expect that M(xk) would not

deviate significantly from the mean and expressions for a fixed M provide sufficient insight into

behavior of our estimators.
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2.5 Truncated Itô-Taylor expansion

In this section we introduce the main technical tool for the analysis of our estimators. In particular,

we need to analyze various moments of (Xtj+∆t−Xtj )1(Xtj , k). One can proceed by analyzing the

joint density of Xtj and Xtj+∆t. This requires an explicit knowledge (either exact or approximate)

of the transition probability density which is equivalent to solving the Fokker-Planck equation for

short times, ∆t.

Here we follow an alternative approach and introduce stochastic Itô-Taylor expansions for

Xtj+∆t. This allows us to simplify analytical computations because we no longer need the joint

density of Xtj and Xtj+∆t to carry out the analysis. Instead, moments of (Xtj+∆t −Xtj )1(Xtj , k)

can be estimated (up to certain order in ∆t) from the stationary density of Xtj and properties of

the Brownian motion on the interval [tj , tj + ∆t].

The Itô-Taylor expansion of Xtj+∆t with respect to stochastic integrals is defined as (see [14])

Xtj+∆t = Xtj +A0(Xtj )I(0),j +A1(Xtj )I(1),j +A2(Xtj )I(0,0),j +A3(Xtj )I(0,1),j +

A4(Xtj )I(1,0),j +A5(Xtj )I(1,1),j +A6(Xtj )I(1,1,1),j +

A7(Xtj )I(0,1,1),j +A8(Xtj )I(1,0,1),j +A9(Xtj )I(1,1,0),j + . . .

where I(·),j are multiple stochastic integrals and coefficients Ak(Xtj ) are computed explicitly using

the Drift and Diffusion coefficients and their derivatives.

For our analysis we can truncate the Itô-Taylor expansion at a certain order. The motivation for

truncating higher-order terms will be given later in this section. Thus, we consider the truncated

Itô-Taylor expansion of the following form

Xtj+∆t ≈ Xtj +A0(Xtj )I(0),j +A1(Xtj )I(1),j +A2(Xtj )I(0,0),j +A3(Xtj )I(0,1),j

+A4(Xtj )I(1,0),j +A5(Xtj )I(1,1),j +A6(Xtj )I(1,1,1),j

= Xtj +

6∑
q=0

Aq(Xtj )Iαq ,j , (15)
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where αq is the index used to define the corresponding stochastic integral (i.e., α0 = (0), α1 = (1),

α2 = (0, 0), etc.) and A0(x) ≡ A(x) and A1(x) ≡ B(x) and other terms in the expansion are given

by

A2(Xtj ) = A(Xtj )A
′(Xtj ) +

1

2
B2(Xtj )A

′′(Xtj ),

A3(Xtj ) = A(Xtj )B
′(Xtj ) +

1

2
B2(Xtj )B

′′(Xtj ),

A4(Xtj ) = B(Xtj )A
′(Xtj ), A5(Xtj ) = B(Xtj )B

′(Xtj ),

A6(Xtj ) = B(Xtj )
(

(B′(Xtj ) +B(Xtj )B
′′(Xtj )

)
.

Multiple stochastic integrals are defined as

I(0),j =

∫ t+∆t

t
dt′, I(1),j =

∫ t+∆t

t
dW (t′),

I(0,0),j =

∫ t+∆t

t

∫ s

t
dt′ds, I(0,1),j =

∫ t+∆t

t

∫ s

t
dt′dW,

I(1,0),j =

∫ t+∆t

t

∫ s

t
dW (t′)ds, I(1,1),j =

∫ t+∆t

t

∫ s

t
dW (t′)dW (s),

I(1,1,1),j =

∫ t+∆t

t

∫ s

t

∫ t′

t
dW (r)dW (t′)dW (s).

We can easily see that integrals I(0),j and I(0,0),j are deterministic and are given by I(0),j = ∆t,

I(0,0),j = ∆t2/2. Other integrals are stochastic, but some of them can also be computed explicitly

in terms of ∆Wj+1 = Wtj+∆t −Wtj . For instance, I(1),j = ∆Wj+1. We can also compute I(1,1),j

using a simple lemma below.

Lemma 2.7. The stochastic integral I(1,1),j can be computed explicitly as

I(1,1),j =
1

2

(
(∆Wj+1)2 −∆t

)
,

where

I(1,1),j =

∫ tj+∆t

tj

∫ s

tj

dWt′dWs and ∆Wj+1 = Wtj+∆t −Wtj .
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Proof. Using Integration by parts and the properties of stochastic integral, we have

I(1,1),j =

∫ tj+∆t

tj

∫ s

tj

dWt′dWs =

∫ tj+∆t

tj

[
Ws −Wtj

]
dWs

=

∫ tj+∆t

tj

WsdWs −Wtj∆Wj+1

=
1

2

∫ tj+∆t

tj

[
dW 2

s − dt
]
−Wtj∆Wj+1

=
1

2

[
W 2
tj+∆t −W 2

tj −
(
tj + ∆t− tj

)]
−Wtj

(
Wtj+∆t −Wtj

)
=

1

2

[
Wtj+∆t −Wtj

]2
− 1

2
∆t

=
1

2

[
(∆Wj+1)2 −∆t

]
.

Here we also list some of the properties stochastic integrals

I(0),j = ∆t, I(0,0),j =
∆t2

2
,

EI(1),j = EI(1,0),j = EI(0,1),j = EI(1,1,1),j = EI(1,1),j = 0,

EI2
(1),j = ∆t, EI2

(1,1),j =
(∆t)2

2
, EI2

(1,1,1),j = O(∆t3)

EI2
(0,1),j = EI2

(1,0),j =
(∆t)3

3
, E

[
I(0,1),jI(1,0),j

]
= O(∆t3),

E
[
I(1),jI(0,1),j

]
= E

[
I(1),jI(1,0),j

]
= E

[
I(1),jI(1,1,1),j

]
= O(∆t2),

EI2
(1),jI

2
(1,1),j = O(∆t3).

Additional properties of stochastic integrals will be discussed during our analysis.

For a stochastic Itô integral Iαq ,j , if index αq contains only zeros, then this integral is determin-

istic. Then, if components of αq are not all 0, the first moment of Iαq ,j is zero with probability 1

(see Lemma 5.7.1 of [14]). In the same subsection, authors provides a way to calculate the expec-

tation of two stochastic Itô integrals (see Lemma 5.7.2 of [14]) which can be called second moment

estimate.
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We can see that stochastic integrals I(1,0),j , I(0,1),j , and I(1,1,1),j represent highest-order terms

in the truncation (15). In particular, E[I(1,0),j ] = E[I(0,1),j ] = E[I(1,1,1),j ] = 0 and E[I2
(1,0),j ] =

E[I2
(0,1),j ] = E[I2

(1,1,1),j ] = O(∆t3). Thus, these terms are of order ∆t3/2. Other stochastic integrals

with three or more integral are of even higher order in ∆t. Therefore, truncated higher integrals

will not contribute to lower-order terms in the analysis of bias and MSE for the Drift and Diffusion

estimators. We also keep term I(0,0),j = ∆t2/2 which is formally of a higher order. The reasons are

that (i) this term is deterministic does not present any difficulties in the analysis, and (ii) combined

with the term I(0),j = ∆t, it can produce terms of order ∆t3, i.e. I(0),jI(0,0),j = ∆t3/2 which is the

same order as E[I2
αq ,j

] for αq = (1, 0), (0, 1), (1, 1, 1).

2.6 Bias of the Drift term estimator

Recall our discrete estimator for the Drift term (10)

Â(xk) =
1

∆t

1

M

∑
j∈Mk

(Xtj+∆t −Xtj ).

Taking expectation of both sides for the expression above we obtain

E[Â(xk)] ≈ 1

∆t

1

M

∑
j∈Mk

6∑
q=0

E
[
Aq(Xtj )Iαq ,j

]

=
1

∆t

1

M

∑
j∈Mk

6∑
q=0

Ek
[
Aq(Xtj )

]
E
[
Iαq ,j

]
=

1

∆t

1

M

∑
j∈Mk

(
Ek
[
A0(Xtj )

]
∆t+ Ek

[
A2(Xtj )

] ∆t2

2

)

=
1

M

∑
j∈Mk

Ek
[
A(Xtj )

]
+

∆t

2

1

M

∑
j∈Mk

Ek
[
A2(Xtj )

]
= A(xk) + C (∆x)2 +O

(
(∆x)4

)
+O (∆t)

= A(xk) +O
(

∆x2
)

+O (∆t)

−→ A(xk) as ∆x, ∆t→ 0.
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Here we used Lemma 2.5 to approximately compute conditional expectations where Ek[A(Xtj )] and

Ek[A2(Xtj )]. Also, recall that according to the notation in (15) A0(x) ≡ A(x).

Conclusion: The Bias of the Drift term estimator behaves asymptotically as ∆t, ∆x→ 0 as

E[Â(xk)]−A(xk) = O
(

∆x2
)

+O (∆t) .

2.7 Bias of the Diffusion term estimator

Recall the Diffusion estimator in (11)

B̂2(xk) =
1

∆t

1

M

∑
j∈Mk

(
X(tj + ∆t)−X(tj)

)2
.

Taking expectation of both sides we obtain

E[B̂2(xk)] =
1

∆t

1

M

∑
j∈Mk

Ek

 6∑
q=0

Aq(Xtj )Iαq ,j

2

=
1

∆t

1

M

∑
j∈Mk

6∑
q,l=0

Ek
[
Aq(Xtj )Al(Xtj )

]
E
[
Iαq ,jIαl,j

]
=

1

M

∑
j∈Mk

Ek
[
B2(Xtj )

]
+

1

M

∑
j∈Mk

Ek
[
A2(Xtj )

]
∆t+

C

M

∑
j∈Mk

(
Ek
[
A2

5(Xtj )
]

+Ek
[
B(Xtj )A3(Xtj )

]
+ Ek

[
B(Xtj )A4(Xtj )

]
+ Ek

[
A1(Xtj )A6(Xtj )

])
∆t+O(∆t2)

=
1

M

∑
j∈Mk

Ek
[
B2(Xtj )

]
+ C̃∆t+O(∆t2)

= B2(xk) + C (∆x)2 +O
(

(∆x)4
)

+O (∆t)

= B2(xk) +O
(

∆x2
)

+O (∆t)

−→ B2(xk) as ∆x, ∆t→ 0,

where we used Lemma 2.5 and properties of stochastic integrals in section 2.5. Also note that

A1(x) ≡ B2(x).
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Conclusion: The Bias of the Diffusion term estimator behaves asymptotically as ∆t, ∆x→ 0

E[B̂2(xk)]−B2(xk) = O
(

∆x2
)

+O (∆t) .

2.8 Drawback of a slightly different estimator

We can define our estimators for the Drift and Diffusion coefficients slightly differently. Here

we concentrate on the Drift estimator. In particular, when we introduce analog of conditional

expectation for discrete summations, we can subtract the middle of the bin instead of the time-

instance Xtj , i.e., we can define the estimator for the Drift term as (compare with definition of

Â(xk) in (10))

Ã(xk) =
1

∆t

1

M

∑
j∈Mk

(Xtj+∆t − xk) (16)

where set Mk is defined identically as for estimator (10). We will demonstrate that the definition

above leads to an inferior estimator compared to Â(xk) in (10).

Taking expectation on both sides of (16) and using Lemma 2.5, we obtain the following expres-

sion for the bias

E[Ã(xk)] =
1

M∆t

∑
j∈Mk

Ek
[
Xtj − xk

]
+

1

M∆t

∑
j∈Mk

6∑
q=0

Ek
[
Aq(Xtj )

]
E
[
Iαq ,j

]
= C

(∆x)2

∆t
+

1

M

∑
j∈Mk

Ek
[
A(Xtj )

]
+O(∆t) +O

(
(∆x)4/∆t

)
= C

(∆x)2

∆t
+A(xk) +O(∆t) +O

(
∆x2

)
+ h.o.t.,

where higher-order terms involve fractions ∆x2n/∆t with n ≥ 2.

Analyzing the bias for Drift term estimator Ã(xk) computed above, we find that even if we let

∆x,∆t → 0, this does not guarantee that this estimator is asymptotically unbiased because the

ratio ∆x2/∆t contributes to the bias of the Drift term estimator (16). Therefore, in the regime

when ∆x2/∆t → c > 0 Drift term estimator Ã(xk) will be biased for all ∆x and ∆t. A similar

conclusion can be reached for the modified Diffusion estimator. Therefore, Ã(xk) in (16) is inferior
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to the estimator Â(xk) introduced in (10).

2.9 MSE of Drift term estimator

It is well-known that consistency in the mean discussed in the sections 2.6 and 2.7 for the Drift and

Diffusion estimators, respectively, does not imply convergence of these estimators to the true values

of the Drift and diffusion. Moreover, we have three computational parameters - (i) the number of

sampled points for computing discrete analog of expectation, M , (ii) sampling time-step, ∆t, and

(iii) size of each bin or space-discretization step, ∆x. Thus, it is feasible that some combinations of

these parameters (e.g., ratios and/or products) will determine the asymptotic behavior of estimators

as M →∞ and ∆t, ∆x→ 0.

Therefore, a standard approach in the literature is to analyze the Mean-Square Error (MSE).

The MSE is a widely used metric to analyze performance of estimators, since it takes both, the

mean and variance of the estimator into account.

The MSE is defined as

MSE{Â(xk)} = E
[(
Â(xk)−A(xk)

)2
]

(17)

and the expectation is taken with respect to the truncated density and distribution of the Brownian

motion. If under some conditions MSE{Â(xk)} → 0, then the random variable Â(xk) converges

to the constant A(xk) in L2.

Recall the Drift estimator in (10)

Â(xk) =
1

∆t

1

M

∑
j∈Mk

(Xtj+∆t −Xtj ).
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Thus, we can substitute the truncated Itô-Taylor expansion (15) and the MSE becomes

MSE{Â(xk)} = E
[(
Â(xk)−A(xk)

)2
]

= E


 1

M∆t

∑
j∈Mk

[A(Xtj )−A(xk)]∆t+

6∑
q=1

Aq(Xtj )Iαq ,j




2 ∣∣∣∣∣Xtj ∈ Bink


= E

 1

M2∆t2

∑
i,j∈Mk

[A(Xtj )−A(xk)]∆t+
6∑
q=1

Aq(Xtj )Iαq ,j

 ×
[A(Xti)−A(xk)]∆t+

6∑
l=1

Al(Xti)Iαl,i

∣∣∣∣∣Xti , Xtj ∈ Bink

 . (18)

After unfolding formula (18), we have 49 terms in total. However, many terms are similar and,

thus, we consider several groups of terms.

Type 1: Consider the cross-product of the first two terms in Formula (18) -

1

(M∆t)2

∑
i,j∈Mk

∣∣∣∣E [(A(Xti)−A(xk)) (A(Xtj )−A(xk))∆t
2
∣∣∣Xti , Xtj ∈ Bink

]∣∣∣∣
≤ 1

M2

∑
i,j∈Mk

E

[
K2
A

∣∣Xti − xk
∣∣ ∣∣∣Xtj − xk

∣∣∣ ∣∣∣∣∣Xti , Xtj ∈ Bink

]

≤ C∆x2,

where we used that A(x) is Lipschitz and |Xtj −xk|, |Xti −xk| ≤ ∆x/2 since both Xtj , Xti ∈ Bink

and xk is the center of the bin.
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Type 2: Consider cross-terms of the form

1

(M∆t)2

∑
i,j∈Mk

E
[
(A(Xti)−A(xk))∆t Aq(Xtj )Iαq ,j+

(A(Xtj )−A(xk))∆t Al(Xti)Iαl,i

∣∣∣∣∣Xti , Xtj ∈ Bink

]

=
2

M2∆t

∑
i,j∈Mk

E

[
(A(Xti)−A(xk))Aq(Xtj )Iαq ,j

∣∣∣∣∣Xti , Xtj ∈ Bink

]
, for q = 1, . . . , 6

where we used symmetry between ti and tj and αl and αq. We have a total of 12 terms. The

problem arises because Xti and Iαl,j are not independent if ti > tj . Thus, we cannot compute

expectation above easily and proceed to simplify the expression above using the Lipschitz property

of the Drift coefficient A(x), Therefore, we use the Lipschitz property of A(x) and obtain

2

M2∆t

∣∣∣∣∣∣∣E
∑

q

∑
i,j∈Mk

(A(Xti)−A(xk))Aq(Xtj )Iαq ,j

∣∣∣∣∣Xti , Xtj ∈ Bink


∣∣∣∣∣∣∣

≤ 2

M2∆t

∑
q

∑
i,j∈Mk

E

[∣∣∣(A(Xti)−A(xk)
)
Al(Xtj )Iαl,j

∣∣∣ ∣∣∣∣∣Xti , Xtj ∈ Bink

]

≤ KA∆x

M2∆t

∑
q

∑
i,j∈Mk

E

[∣∣∣Aq(Xtj )Iαq ,j

∣∣∣ ∣∣∣∣∣Xtj ∈ Bink

]

≤ KA∆x

M2∆t

∑
q

∑
i,j∈Mk

(
EkA2

q(Xtj )
)1/2 (

EI2
αq ,j

)1/2

≤ C∆x√
∆t

(
1 +
√

∆t+O(∆t3/2)
)
,

where we used the Hölder inequality in section 2.1 and lowest-order terms are due to EI2
(1),j =

∆t and EI2
(1,1),j = ∆t2/2. Other stochastic integrals contribute to higher-order terms. Here we

use a notation for the conditional expectation Ekf(x) = E[f(x)|x ∈ Bink]. Since the truncated

density has a finite support, we assume that all conditional expectations exist and are finite., e.g.,

EkA2
q(Xtj ) <∞.

Type 3: Consider terms with stochastic integrals for either q = 2 or l = 2, in other words, we have
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the following 11 terms

αq = (0, 0) and αl = (1), (1, 1), (1, 0), (0, 1), (0, 0), (1, 1, 1),

αl = (0, 0) and αq = (1), (1, 1), (1, 0), (0, 1), (1, 1, 1).

Due to symmetry, we only need to consider q = 2. Recall that I(0,0),j = ∆t2/2. Then the formula

(18) becomes

1

M2

∣∣∣∣∣∣
∑

i,j∈Mk

E

[
A2(Xti)Aq(Xtj )Iαq ,j

∣∣∣∣∣Xti , Xtj ∈ Bink

]∣∣∣∣∣∣
≤ 1

M2

∑
i,j∈Mk

(
E
[
A2

2(Xti)A
2
q(Xtj )

∣∣∣Xti , Xtj ∈ Bink
])1/2

‖Iαq ,j‖2,

where used the Hölder inequality in section 2.1. Similar to Type 2 terms, we assume that all expec-

tations with respect to the joint truncated density exist and are finite (i.e. Ek
[
A2

2(Xti)A
2
q(Xtj )

]
<

∞). The exact form of this joint density is hard to analyze, but it has a finite support and, thus,

this assumption is quite reasonable.

As a final step, we only need to analyze lowest-order terms resulting from stochastic integrals.

Therefore,

1

2M2

∣∣∣∣∣∣
∑
l

∑
i,j∈Mk

E
[
A2(Xti)Aq(Xtj )Iαq ,j

∣∣∣Xti , Xtj ∈ Bink
]∣∣∣∣∣∣

≤ C
√

∆t
(

1 +
√

∆t+O(∆t3/2)
)
,

where lowest-order terms are due to ‖I(1),j‖2 =
√

∆t and ‖I(1,1),j‖2 = ∆t/
√

2 and C is some generic

constant representing upper bound for all expectations of the form Ek
[
A2

2(Xti)A
2
q(Xtj )

]
.

Type 4: Consider all possible combinations of stochastic integrals with the following indexes

αq, αl = (1), (1, 1), (0, 1), (1, 0), (1, 1, 1). (19)
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From the property of stochastic integrals, we have E
[
Aq(Xti)Iαq ,iAl(Xtj )Iαl,j

]
= 0 when i 6= j.

Assume that tj > ti. Then random variables Xti and Xtj and increments of the Brownian motion

on the interval [tj , tj + ∆t] are independent and, thus, Xti and Xtj and stochastic integral Iαl,j are

independent random variables. Therefore,

E
[
Aq(Xti)Iαq ,iAl(Xtj )Iαl,j

]
= E

[
Aq(Xti)Iαq ,iAl(Xtj )

]
E
[
Iαl,j

]
= 0 for tj > ti

from the properties of stochastic integral Iαl,j for l = 1, 3, 4, 5, 6. A similar argument holds for

ti > tj .

Therefore, for these combinations of stochastic integrals we only need to consider case i = j

and the terms with (19) in (18) become

1

(M∆t)2

∣∣∣∣∣∣
∑

i,j∈Mk

E
[
Aq(Xti)Iαq ,iAl(Xtj )Iαl,j

∣∣∣Xti , Xtj ∈ Bink
]∣∣∣∣∣∣

=
1

(M∆t)2

∣∣∣∣∣∣
∑
i∈Mk

E
[
Aq(Xti)Al(Xti)Iαq ,iIαl,i

∣∣Xti ∈ Bink
]∣∣∣∣∣∣ ,

≤ 1

(M∆t)2

∑
i∈Mk

(
Ek
[
A2
q(Xti)A

2
l (Xti)

])1/2

‖Iαq ,iIαl,i‖2.

Either when Iαq ,i = Iαl,i or Iαq ,i 6= Iαl,i, we need to calculate fourth moments of stochastic integrals.

In particular, the lowest-order term is due to ‖I2
(1),i‖2 =

√
3∆t. All other moments are of higher

order, some of them are given by 5.2 and 5.7 of [14], Lemma 2.7 and (3)

‖I(1),iI(1,1),i‖2 = O(∆t3/2),

‖I2
(1,1),i‖2 =

√
15

2
(∆t)2,

‖I2
(0,1),i‖2 = ‖I2

(1,0),i‖2 = ‖I2
(1,1,1),i‖2 = O(∆t3)
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Therefore,

1

(M∆t)2

∣∣∣∣∣∣
∑
q,l

M∑
i=1

E
[
Aq(Xti)Al(Xti)Iαq ,iIαl,i

∣∣Xti ∈ Bink
]∣∣∣∣∣∣

≤ C

M∆t

(
1 +
√

∆t+O(∆t)
)

where summation over q, l is taken over (19) and C is a suitable constant.

2.9.1 Main results

Combining all terms we obtain

MSE{Â(xk)} ≤ C
(√

∆t+
1

M∆t
+ ∆x2 +

∆x√
∆t

)
+ h.o.t. (20)

which describes the leading-order behavior of the Mean-Square Error for the Drift estimator. Here

“h.o.t.” denotes higher-order terms.

Therefore, for the estimator to be asymptotically consistent, the following conditions need to

be fulfilled

M∆t→∞, ∆t, ∆x→ 0, ∆x/
√

∆t→ 0.

The first condition arises quite often in the analysis of various estimators for SDEs. The condition

M∆t → ∞ implies that the total observational time, T , should become infinite for the estimator

to be consistent. The conditions ∆t, ∆x → 0 are also not surprising, since these conditions were

observed in the analysis of bias for the Drift estimator. This also could have been predicted from

the definition of the Drift term (5) since this definition involves limit ∆t → 0 and it is reasonable

that the size of the bin should tend to zero in order to mimic the conditional expectation in (5).

However, the last condition ∆x/
√

∆t → 0 is new and, thus, we discuss it in more detail. This

condition implies that the bin size, ∆x, has to tend to zero faster than
√

∆t. However, it also

implies that ∆x might tend to zero slower than the observation time-step, ∆t. To see this consider
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the scaling

∆x = ∆ta, then
∆x√
∆t

= ∆ta−1/2 → 0 for a >
1

2
.

However, since ∆t → 0, then if ∆x is chosen with 1/2 < a < 1 then ∆ta = ∆x � ∆t. This has

important practical consequences. In particular, this implies that the bin size can be chosen to be

(much) larger compared to the observational time-step ∆t. This, in turn, implies that it is much

easier to obtain a trajectory with M points in each bin because for larger bin size it is much easier

to generate observational trajectories where M points fall into a particular bin (interval).

To balance the error terms on the right-hand side of (20) we have to enforce
√

∆t ∼ ∆x/
√

∆t

which implies

∆x ∼ ∆t. (21)

We also would like to point out that the scaling above effectively makes the error due to the ∆x2

term in (20) much smaller since ∆x2 �
√

∆t for the scaling in (21). Thus, the error due to the

larger bin size becomes negligible under the scaling (21).

Finally, we also would like to point out that the scaling in (21) also makes errors due to

O(∆x2) negligible in the expression for the bias of Â(xk) considered in subsection 2.6. Recall, that

EÂ(xk) = A(xk) +O(∆x2) +O(∆t).

To balance the first two error terms in the MSE of Â(xk) in (20) we can choose

M ∼ ∆t−3/2. (22)

The scalings (21) and (22) represent an optimal sampling regime for computing the Drift estimator

Â(xk). We also expect that errors due to changes in the bin size should be negligible in the MSE

of Â(xk).

To improve the computational efficiency of the Drift estimator one can choose the scaling

∆x ∼ ∆t0.5+ε, 0 < ε� 1. (23)
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we would like to point out that the scaling above is not optimal, but the Drift term estimator is

still consistent under this scaling. The scaling in (23) increases the bin size and potentially reduces

the number of bins. Therefore, if the sampled trajectory is fixed, the scaling in (23) increased the

number of points which falls into each bin and potentially reduces the error due to (M∆t)−1 term.

2.10 MSE of Diffusion term estimator

In this section, we focus our attention on the performance of the Diffusion term estimator. In

particular, we analyze the MSE

MSE{B̂2(xk)} = E
[(
B̂2(xk)−B2(xk)

)2
]
. (24)

After we substitute the truncated Itô-Taylor expansion (15) into the Diffusion term estimator (11),

this estimator becomes

B̂2(xk) =
1

∆t

1

M

∑
j∈Mk

 6∑
q=0

Aq(Xtj )Iαq ,j

2
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and the MSE becomes

MSE{B̂2(xk)} ≈ E


 1

M∆t

∑
j∈Mk

 6∑
q=0

Aq(Xtj )Iαq ,j

2

−B2(xk)


2


= E


 1

M∆t

∑
j∈Mk

6∑
q,l=0

Aq(Xtj )Al(Xtj )Iαq ,jIαl,j −B
2(xk)

2


=
1

(M∆t)2
E

 ∑
i,j∈Mk

(
B2(Xti)I

2
(1),i −B

2(xk)∆t
)(

B2(Xtj )I
2
(1),j −B

2(xk)∆t
)

︸ ︷︷ ︸
Type1

+ (25)

1

(M∆t)2
E


∑
j∈Mk

6∑
q,l=0
q×l 6=1

Aq(Xtj )Al(Xtj )Iαq ,jIαl,j


2


︸ ︷︷ ︸
Type2

+ (26)

2

(M∆t)2
E

 ∑
i,j∈Mk

(
B2(Xti)I

2
(1),i −B

2(xk)∆t
)
×

6∑
q,l=0
q×l 6=1

Aq(Xtj )Al(Xtj )Iαq ,jIαl,j


︸ ︷︷ ︸

Type3

. (27)

Similar to the MSE for the Drift estimator, we consider several different types of terms in the

expression above, but first, we state a simple lemma

Lemma 2.8.

Ek
[
B2(Xti)B

2(Xtj )
(
I2

(1),i −∆t
)(

I2
(1),j −∆t

)]
= 0, for i 6= j.

Proof. Because of symmetry, we only consider j > i. In particular, consider j = i+ k with k > 0.

Since time internals [ti, ti + ∆t] and [ti+k, ti+k + ∆t] do not overlap (because ti + ∆t ≤ ti+1)

E
[
B2(Xti)B

2(Xti+k
)
(
I2

(1),i −∆t
)(

I2
(1),i+k −∆t

)]
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= E
[
B2(Xti)B

2(Xti+k
)
(
I2

(1),i −∆t
)]

E
[(
I2

(1),i+k −∆t
)]

= 0

because E
[(
I2

(1),i+k −∆t
)]

= 0.

Next we separate all the terms in the MSE of the Diffusion estimator into 3 different types.

Type 1: First, we consider the first term in (25) and by adding and subtracting B2(Xti)∆t and

B2(Xtj )∆t in the first and second bracket, respectively, we obtain

1

(M∆t)2
E

 ∑
i,j∈Mk

(
B2(Xti)I

2
(1),i −B

2(xk)∆t
)(

B2(Xtj )I
2
(1),j −B

2(xk)∆t
)

=
1

(M∆t)2
E

 ∑
i,j∈Mk

B2(Xti)B
2(Xtj )

(
I2

(1),i −∆t
)(

I2
(1),j −∆t

)
+

2

M2∆t
E

 ∑
i,j∈Mk

B2(Xti)
(
I2

(1),i −∆t
)(

B2(Xtj )−B2(xk)
)

+
1

M2
E

 ∑
i,j∈Mk

(
B2(Xti)−B2(xk)

)(
B2(Xtj )−B2(xk)

)
≤ 1

(M∆t)2

∑
i∈Mk

Ek
[
B4(Xti)

]
E
[(
I2

(1),i −∆t
)2
]

+ C
KB∆x

∆t
E
[
|I2

(1),i −∆t|
]

+
(KB∆x)2

4

= C

(
1

M
+ ∆x+ ∆x2

)
.

where C is some constant and KB is a Lipschitz constant for B2(x).

Type 2: Consider the terms arising from (26). There are many terms come from squaring the sum

in (26), but all of them have the following form

1

(M∆t)2
E

 ∑
i,j∈Mk

Aq(Xti)Al(Xti)Iαq ,iIαl,iAr(Xtj )Am(Xtj )Iαr,jIαm,j

 , (28)

where q, l, r,m = 0, · · · , 6 with restriction q × l 6= 1 and r ×m 6= 1 since the case q × l = 1 and

r ×m = 1 corresponds to terms of type 1 and type 3 considered separately. This means that we

cannot have αq = αl = (1) or αr = αm = (1). Here indexes q, l correspond to time ti and indexes
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r,m correspond to time tj . There are total of M2 terms in the summation in (28) . There are

many terms of this type, and we will distinguish several sub-types.

Type 2(i):

Consider type 2 terms with the following 3 restrictions -

– 1) at least one of the integrals in each pair Iαq ,iIαl,i and Iαr,jIαm,j is stochastic,

– 2) q 6= l and r 6= m,

– 3) the number of 1’s in both (αq, αl) and (αr, αm) pairs are odd.

Without loss of generality we can consider

E
[
Aq(Xti)Al(Xti)Iαq ,iIαl,iAr(Xtj )Am(Xtj )Iαr,jIαm,j

]
with j > i.

Using j > i, we can write

E
[
Aq(Xti)Al(Xti)Iαq ,iIαl,iAr(Xtj )Am(Xtj )Iαr,jIαm,j

]
= E

[
Aq(Xti)Al(Xti)Iαq ,iIαl,iAr(Xtj )Am(Xtj )

]
E
[
Iαr,jIαm,j

]
Since time intervals [ti, ti+∆t] and [tj , tj +∆t] do not overlap. And using the fact that the number

of 1’s in the pair (αr, αm) is odd,

E
[
Iαr,jIαm,j

]
= 0.

where we use Lemma 5.7.2 in [14]. A similar argument holds for i > j. Therefore, since the number

of 1’s in both pairs Iαq ,iIαl,i and Iαr,jIαm,j is odd, we can reduce the sum in (28) to the case i = j,

i.e.,

1

(M∆t)2
E

 ∑
i,j∈Mk

Aq(Xti)Al(Xti)Iαq ,iIαl,iAr(Xtj )Am(Xtj )Iαr,jIαm,j


=

1

(M∆t)2
E

∑
j∈Mk

Aq(Xtj )Al(Xtj )Iαq ,jIαl,jAr(Xtj )Am(Xtj )Iαr,jIαm,j

 .
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This reduces the number of terms in the summation from M2 (when i, j ∈ Mk) to M (when

j ∈Mk).

There are many combinations of indexes αq, αl, αr, αm which satisfy requirements for Type 2(i)

terms. Intuitively, it is clear that since I(1),i ∼
√

∆t and I(1),j ∼
√

∆t are lowest-order stochastic

integrals in the expansion (15), lowest-order terms for Type 2(i) will appear when q = r = 1 (or

when l = m = 1 by symmetry). In this case αq = αr = (1). Let us remind about the restriction

we’re considering, if q = r = 1, then l 6= 1 and m 6= 1 due to restriction 2) for Type 2(i) above.

This significantly reduces the number of terms. In addition, it is also clear that in order to capture

the leading-order terms of Type 2(i) integrals Iαl,i and Iαm,j should be of the lowest possible order.

There are two integrals of order ∆t, namely I(0),i = ∆t and ||I(1,1),i||2 ∼ ∆t. Therefore, indexes

αl and αm should correspond to those two integrals. Thus, here we list some lower order terms of

Type 2(i).

(a) q = r = 1 and l = m = 5 or we can switch q, l and r, m because of symmetry. In this case

αq = αr = (1) and αl = αm = (1, 1).

1

(M∆t)2

∑
i,j∈Mk

E
[
A1(Xti)A5(Xti)I(1),iI(1,1),iA1(Xtj )A5(Xtj )I(1),jI(1,1),j

]
=

1

(M∆t)2

∑
j∈Mk

E
[
A2

1(Xtj )A
2
5(Xtj )I

2
(1),jI

2
(1,1),j

]
=

1

M∆t2
Ek
[
B2

1(x)B2
2(x)

]
‖I2

(1),jI
2
(1,1),j‖

2
2 ≤

C∆t

M
.

(b) q = r = 1 and l = m = 0 or we can switch q, l and r, m. In this case αq = αr = (1) and

αl = αm = (0) and we would like to remind that I(0),i = I(0),j = ∆t. Therefore, (28) reduces to

1

M2

∑
i,j∈Mk

E
[
A1(Xti)A0(Xti)I(1),iA1(Xtj )A0(Xtj )I(1),j

]
=

1

M2

∑
j∈Mk

E
[
A2

1(Xtj )A
2
0(Xtj )I

2
(1),j

]
=

1

M2

∑
j∈Mk

Ek
[
A2

1(Xtj )A
2
0(Xtj )

]
E
[
I2

(1),j

]
≤ C∆t

M
.
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(c) q = r = 1, l = 0 and m = 5 (index q corresponds to time ti) or we can switch q, l and r, m. In

this case Iαl,i = I(0),i = ∆t, Iαm,j = I(1,1),j and, therefore, (28) becomes

1

(M∆t)2

∑
i,j∈Mk

E
[
A1(Xti)A0(Xti)I(1),i∆tA1(Xtj )A5(Xtj )I(1),jI(1,1),j

]
=

1

M2∆t

∑
j∈Mk

E
[
A2

1(Xtj )A0(Xtj )A5(Xtj )I
2
(1),jI(1,1),j

]
=

1

M2∆t

∑
j∈Mk

Ek
[
A2

1(Xtj )A0(Xtj )A5(Xtj )
]
E
[
I2

(1),jI(1,1),j

]
≤ C∆t

M
.

where we utilize Lemma 2.7 and (3) to expand the expectation term E
[
I2

(1),jI(1,1),j

]
, then we use

Lemma 5.7.2 and Lemma 5.7.5 in [14] to obtain the order of ∆t. Other terms result in higher-order

terms. Therefore, Type 2(i) terms are equivalent to O(∆t/M).

Type 2(ii):

Consider type 2 terms with the following 3 restrictions -

– 1) at least one of the integrals in each pair Iαq ,iIαl,i and Iαr,jIαm,j is stochastic,

– 2) q 6= l and r 6= m,

– 3) the number of 1’s in (αq, αl) or (αr, αm) pairs is even.

The main difference between type 2(ii) and type 2(i) is that for type 2(ii) the number of 1’s

in either (αq, αl) or (αr, αm) is even. This condition is complimentary to the condition 3) of type

2(i) terms. Here we cannot reduce the summation over i, j ∈Mk, and, therefore, there will be M2

terms in the summation
∑

i,j∈Mk

. Here we have to provide different types of estimates compared with

Type 2(i) terms.

In particular, we consider

1

(M∆t)2

∣∣∣∣∣∣∣E
 ∑
i,j∈Mk

Aq(Xti)Al(Xti)Iαq ,iIαl,iAr(Xtj )Am(Xtj )Iαr,jIαm,j


∣∣∣∣∣∣∣

≤ 1

∆t2
‖Aq(Xti)Al(Xti)Ar(Xtj )Am(Xtj )‖2 ‖Iαq ,iIαl,iIαr,jIαm,j‖2

=
C

∆t2
‖Iαq ,iIαl,iIαr,jIαm,j‖2. (29)
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We would like to point out that when i 6= j the L2 norm above reduces to

‖Iαq ,iIαl,iIαr,jIαm,j‖2 = ‖Iαq ,iIαl,i‖2 ‖Iαr,jIαm,j‖2 for i 6= j.

The constant C is always finite because we’re computing the expectation and the norm with respect

to the joint conditional distribution of Xti and Xtj , i.e.,

‖Aq(Xti)Al(Xti)Ar(Xtj )Am(Xtj )‖2

=

(
E
[(
Aq(Xti)Al(Xti)Ar(Xtj )Am(Xtj )

)2
|Xti , Xtj ∈ Bink

])1/2

.

Therefore, we have to compute the lowest-order terms of the form

‖Iαq ,iIαl,iIαr,jIαm,j‖2 (30)

where we can use Lemma 5.7.5 in [14] as i = j for estimates of higher moments belong to a multiple

Ito integral and Lemma 5.7.2 in [14] as i 6= j for second moment estimates with indexes restricted

to Type 2(ii). We would like to note that without any restrictions, the lowest order terms would

be ‖I2
(1),iI

2
(1),j‖2 = ∆t2. However, with restrictions for Type 2(ii) outlined above neither I2

(1),i nor

I2
(1),j are allowed.

Without the loss of generality we consider the case when number of 1’s in the pair (αr, αm) is

even. We just list the lowest order terms:

(a) When (αq, αl) = ((1), (0)) and (αr, αm) = ((0), (1, 1)), we have

∆t−2‖Iαq ,iIαl,iIαr,jIαm,j‖2 = ∆t−2∆t2‖I(1),iI(1,1),j‖2 ≤ C∆t
3
2

for both, i = j and i 6= j. In fact, the norm above can be computed exactly in both cases using

Iα(1),i = ∆Wi+1 and Lemma 2.7 and (3).
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(b) When (αq, αl) = ((1), (0)) and (αr, αm) = ((1), (0, 1)), we have

∆t−2‖Iαq ,iIαl,iIαr,jIαm,j‖2 = ∆t−2∆t‖I(1),iI(1,1),jI(0,1),j‖2 ≤ C∆t
3
2

for both i = j and i 6= j. Where we use Lemma 2.7 and (3), ignore the higher order terms when

i = j. Considering i 6= j, the stochastic integrals with different subscripts are independent, we can

seperate them into the multiplication of two L2 norm, according to Lemma 5.7.2 in [14].

(c) When (αq, αl) = ((1), (0)) and (αr, αm) = ((1), (1, 0)), we have

∆t−2‖Iαq ,iIαl,iIαr,jIαm,j‖2 = ∆t−2∆t‖I(1),iI(1,1),jI(1,0),j‖2 ≤ C∆t
3
2

for both i = j and i 6= j. Similar reasons of calculation as (b), If i = j, we utilize Lemma 2.7 and

(3). If i 6= j, we use independence and Lemma 5.7.2 in [14].

(d) When (αq, αl) = ((1), (1, 1)) and (αr, αm) = ((0), (1, 1)), we have

∆t−2‖Iαq ,iIαl,iIαr,jIαm,j‖2 = ∆t−1‖I(1),iI(1,1),iI(1,1),j‖2 ≤ C∆t
3
2

for both i = j and i 6= j. When i = j, we use direct computation by Lemma 2.7. If i 6= j, we had

independence, Lemma 2.7, and (3).

(e) When (αq, αl) = ((1), (1, 1)) and (αr, αm) = ((1), (0, 1)), we have

∆t−2‖Iαq ,iIαl,iIαr,jIαm,j‖2 = ∆t−2‖I(1),iI(1,1),iI(1),jI(0,1),j‖2 ≤ C∆t
3
2

for both i = j and i 6= j. Considering i = j, we use (3), Lemma 2.7 and Lemma 5.7.2 in [14]. If

i 6= j, we have independence, Lemma 2.7 and (3).

(f) When (αq, αl) = ((1), (1, 1)) and (αr, αm) = ((1), (1, 0)), we have

∆t−2‖Iαq ,iIαl,iIαr,jIαm,j‖2 = ∆t−2‖I(1),iI(1,1),iI(1),jI(1,0),j‖2 ≤ C∆t
3
2
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for both i = j and i 6= j. Where we use exactly the same reasons as bounding (e), because they

have different αm.

(g) When (αq, αl) = ((1), (1, 1)) and (αr, αm) = ((1), (1, 1, 1)), we have

∆t−2‖Iαq ,iIαl,iIαr,jIαm,j‖2 = ∆t−2‖I(1),iI(1,1),iI(1),jI(1,1,1),j‖2 ≤ C∆t
3
2

for both i = j and i 6= j. From 5.2.21 of [14], we have expression I(1,1,1),j = 1
3!(I

3
(1),j−3∆tI(1),j). We

use this with (3) and Lemma 2.7 for calculation in case i = j. For case i 6= j, we have independence,

Lemma 2.7, and Lemma 5.7.2 in [14].

Therefore, Type 2(ii) terms are equivalent to O(∆t3/2).

Type 2(iii):

Here we consider the case when both integrals in the same pair Iαq ,iIαl,i or Iαr,jIαm,j are determin-

istic. Without the loss of generality we consider both integrals Iαq ,iIαl,i to be deterministic. There

are only two determined integrals considered in the truncated Ito-Taylor expansion (15), namely

I(0),i = ∆t and I(0,0),i = ∆t2/2. Clearly, the lowest-order terms arise from (αq, αl) = ((0), (0)) (i.e.,

Iαq ,iIαl,i = I2
(0),i = ∆t2).

Here we use the same reduction as for Type 2(ii) terms in (29). In particular, we write

1

(M∆t)2

∣∣∣∣∣∣∣E
 ∑
i,j∈Mk

Aq(Xti)Al(Xti)Iαq ,iIαl,iAr(Xtj )Am(Xtj )Iαr,jIαm,j


∣∣∣∣∣∣∣

≤ C‖Iαr,jIαm,j‖2.

Here we list some lowest-order terms.

(a) When (αq, αl) = ((0), (0)) and (αr, αm) is ((1), (0)) or ((0), (1)), we have

‖Iαr,jIαm,j‖2 = ∆t‖I(1),j‖2 = ∆t3/2.
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(b) When (αq, αl) = ((0), (0)) and (αr, αm) is ((1), (1, 1)) or ((1, 1), (1)), we have

‖Iαr,jIαm,j‖2 = ‖I(1),jI(1,1),j‖2 ≤ C∆t3/2.

All other combinations of stochastic integrals yield terms of higher order.

Therefore, Type 2(iii) terms are equivalent to O(∆t3/2).

Type 2(iv):

Consider terms with q = l or r = m. Without loss of generality we consider the case q = l. We

would like to remind that Type 2 terms are computed under the restriction q× l 6= 1, which means

that we cannot have αq = αl = (1). The next stochastic integral which yield the lowest-order terms

is q = l = 5 or I2
(1,1),i ∼ E

[
∆W 4

i+1

]
∼ ∆t2.

Here we use the same reduction as for Type 2(ii) terms in (29). In particular, we write

1

(M∆t)2

∣∣∣∣∣∣∣E
 ∑
i,j∈Mk

Aq(Xti)Al(Xti)Iαq ,iIαl,iAr(Xtj )Am(Xtj )Iαr,jIαm,j


∣∣∣∣∣∣∣

≤ C

∆t2
‖I2

(1,1),iIαr,jIαm,j‖2.

The lowest-order terms arise from combination of indexes (αr, αm = ((1), (0)) and (αr, αm =

((1), (1, 1)).

(a) When (αr, αm = ((1), (0)) we have

C∆t−2‖I2
(1,1),iIαr,jIαm,j‖2 = C∆t−2∆t‖I2

(1,1),iI(1),j‖2 ≤ C∆t3/2.

for both i = j and i 6= j. Where we use Lemma 2.7 and (3).

(b) When (αr, αm = ((1), (1, 1)) we have

C∆t−2‖I2
(1,1),iIαr,jIαm,j‖2 = C∆t−2∆t‖I2

(1,1),iI(1),jI(1,1),j‖2 ≤ C∆t3/2.
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for both i = j and i 6= j. Where we use Lemma 2.7 and (3). All other combinations of integrals

yield terms of higher order.

Therefore, Type 2(iv) terms are equivalent to O(∆t3/2).

Type 3: Finally, we consider Type 3 terms and using Lemma 2.7 we obtain

2

(M∆t)2
E


 ∑
i,j∈Mk

(
B2(Xti)I

2
(1),i −B

2(xk)∆t
) 6∑
q,l=0
q×l 6=1

Aq(Xtj )Al(Xtj )Iαq ,jIαl,j




=
2

(M∆t)2
E


 ∑
i,j∈Mk

B2(Xti)
(
I2

(1),i −∆t
) 6∑
q,l=0
q×l 6=1

Aq(Xtj )Al(Xtj )Iαq ,jIαl,j


+

2

(M∆t)2
E


 ∑
i,j∈Mk

∆t
(
B2(Xti)−B2(xk)

) 6∑
q,l=0
q×l 6=1

Aq(Xtj )Al(Xtj )Iαq ,jIαl,j




=
4

(M∆t)2
E


 ∑
i,j∈Mk

B2(Xti)I(1,1),i

6∑
q,l=0
q×l 6=1

Aq(Xtj )Al(Xtj )Iαq ,jIαl,j




︸ ︷︷ ︸
Type3(i)

+

2

M2∆t
E


 ∑
i,j∈Mk

(
B2(Xti)−B2(xk)

) 6∑
q,l=0
q×l 6=1

Aq(Xtj )Al(Xtj )Iαq ,jIαl,j




︸ ︷︷ ︸
Type3(ii)

.

Type 3(i): For the first term in Type 3(i), the lowest-order terms arise from q = 1, l = 0 and

q = 1, l = 5 which corresponds to (αq, αl) = ((1), (0)) and (αq, αl) = ((1), (1, 1)), respectively.
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(a) Consider q = 1, l = 0 first. Then using the same argument as in Lemma 2.8 we can show that

4

(M∆t)2
E

 ∑
i,j∈Mk

B2(Xti)I(1,1),iA1(Xtj )A0(Xtj )I(1),j∆t


=

4

M2∆t
E

∑
i∈Mk

B2(Xti)I(1,1),iA1(Xti)A0(Xti)I(1),i


=

4

M2∆t

∑
i∈Mk

Ek
[
B2(Xti)A1(Xti)A0(Xti)

]
E
[
I(1,1),iI(1),i

]
= 0.

(b) Next, consider q = 1, l = 5. Then using the same argument as in Lemma 2.8 we obtain

4

(M∆t)2
E

 ∑
i,j∈Mk

B2(Xti)I(1,1),iA1(Xtj )A5(Xtj )I(1),jI(1,1),j


=

4

(M∆t)2
E

∑
i∈Mk

B2(Xti)I(1,1),iA1(Xti)A5(Xti)I(1),iI(1,1),i


=

4

(M∆t)2

∑
i∈Mk

Ek
[
B2(Xti)A1(Xti)A5(Xti)

]
E
[
I(1),iI

2
(1,1),i

]
= 0.

(c) The next order terms appear due to combinations of indexes which correspond to (αq, αl) =

((1), (0, 1)), (αq, αl) = ((1), (1, 0)), and (αq, αl) = ((1), (1, 1, 1)). In these cases we cannot apply

argument from Lemma 2.8 since E
[
I(1),iI(1,0),i

]
6= 0, E

[
I(1),iI(0,1),i

]
6= 0, and E

[
I(1),iI(1,1,1),i

]
6= 0.

Therefore, we proceed as in (29) to obtain

4

(M∆t)2
E

 ∑
i,j∈Mk

B2(Xti)I(1,1),iA1(Xtj )A4(Xtj )I(1),jI(1,0),j


≤ 4

∆t2
‖B2(Xti)A1(Xtj )A4(Xtj )‖2 ‖I(1,1),iI(1),jI(1,0),j‖2 ≤ C∆t.

A similar argument can be applied to (αq, αl) = ((1), (0, 1)) and (αq, αl) = ((1), (1, 1, 1)).

(d) We would like to point out that the combination of indexes (αq, αl) = ((0), (1, 1)) yield a
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higher-order term because in this case we can use the argument similar to Lemma 2.8, i.e.,

4

(M∆t)2
E

 ∑
i,j∈Mk

B2(Xti)I(1,1),iA0(Xtj )A5(Xtj )∆tI(1,1),j


=

4

M2∆t
E

 ∑
i,j∈Mk

B2(Xti)I(1,1),iA0(Xtj )A5(Xtj )I(1,1),j


=

4

M2∆t
E

∑
i∈Mk

B2(Xti)A0(Xti)A5(Xti)I
2
(1,1),i


≤ 4

M2∆t

∑
i∈Mk

Ek
[
B2(Xti)A0(Xti)A5(Xti)

]
E
[
I2

(1,1),i

]
≤ C∆t

M
.

Type 3(ii):

2

(M∆t)2

∣∣∣∣∣∣∣∣∣∣
E

 ∑
i,j∈Mk

∆t
(
B2(Xti)−B2(xk)

) 6∑
q,l=0
q×l 6=1

Aq(Xtj )Al(Xtj )Iαq ,jIαl,j


∣∣∣∣∣∣∣∣∣∣

≤ 2Kd∆x

∆t

6∑
q,l=0
q×l 6=1

E
[∣∣∣Aq(Xtj )Al(Xtj )Iαq ,jIαl,j

∣∣∣]

=
2KB∆x

∆t

6∑
q,l=0
q×l 6=1

Ek
[∣∣Aq(x)Al(x)

∣∣] ‖Iαq ,jIαl,j‖1.

When q = 1, l = 0 or q = 1, l = 5, we get the lowest order term. Consider q = 1, l = 0. Then

‖I(1),jI(0),j‖1 = ∆t‖I(1),j‖1 = O(∆t3/2) and

2Kd∆x

∆t
Ek
[∣∣A1(x)A0(x)

∣∣] ‖I(1),jI(0),j‖1 ≤ C∆x
√

∆t.

One can also show that ‖I(1),jI(1,1),j‖1 ∼ E[|∆W 3
j+1|] = O(∆t3/2) which yields a similar bound for

q = 1, l = 5.
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2.10.1 Main results

MSE{B̂2(xk)} ≤ C
(

1

M
+ ∆x+ ∆t

)
+ h.o.t. (31)

where C is some constant.
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3 Numerical Simulations

In this chapter we present numerical simulations to check our analytical results discussed in Chap-

ter 2. In particular, we apply our estimators in (10) and (11) to simulated data and analyze the

performance of these estimators in various parameter regimes. In Chapter 2, we derived asymptotic

formulas for the MSEs of the Drift and Diffusion estimators. These asymptotic formulas have three

parameters - (i) the sub-sampling (or observational) time-step ∆t, (ii) the number M of observed

data-points in each bin, (iii) the space-discretization ∆x. The expressions for MSEs of Â(x) and

B̂2(x) contain various combinations of these three parameters and, therefore, different terms in the

expressions for MSEs become dominant depending on different behavior of computational parame-

ters ∆t, M , and ∆x. The goal of this chapter is to verify the asymptotic behavior of different errors

terms and study numerically how errors from different terms dominate or balance each other.

In practice some error terms can be small and some error terms can be quite large. Since

error terms are closely interwoven, we consider two important cases - (i) M∆t → ∞ and (ii)

M∆t = Const. The expression T = M∆t represents the total time of the sampled trajectory

required for estimation. Thus, the two regimes mentioned above represent two different sampling

schemes - for T → ∞ the total time-length of the trajectory required for estimation of the Drift

and Diffusion coefficients diverges to infinity, and for T = Const the length of the trajectory stays

finite. In addition, our analytical estimates involve various “generic constants” which arise through

various inequalities and bounds. It is impossible to determine the precise value of these constants

and elucidate the most dominant error terms. Thus, we use the numerical results to study the

importance of different terms in the MSEs of the Drift and Diffusion estimators. In addition,

in practice, it is important to develop a estimation strategy which is the least computationally

expensive. Therefore, it is important to assess the balance of various error terms and understand

how changes in computational parameters reduce or increase the overall estimation errors.

We use two sets of simulations with two different stochastic processes in this Chapter. In

particular, we perform the simulations of the Ornstein-Uhlenbeck (OU) process and the nonlinear
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(cubic) model with multiplicative noise.

3.1 Two particular examples for numerical simulations

In this section, we present two different stochastic processes – the Ornstein-Uhlenbeck process (OU)

and the Nonlinear Drift and Multiplicative Noise (cubic) process. For the OU process, we utilize a

hybrid numerical scheme where we use a second order Runge-Kutta scheme for the deterministic

part and Euler discretization for the noise. For the cubic process, we use 1.5 order strong Itô-Taylor

scheme for robust and accurate simulations [14].

3.1.1 Ornstein-Uhlenbeck process

In this section we present the Ornstein-Uhlenbeck process, describe numerical scheme, and list

parameters in the numerical simulations. The Ornstein-Uhlenbeck process is given by the following

stochastic differential equation

dXt = −γXtdt+ σdWt. (32)

We use a second order Runge-Kutta discretization for the deterministic part and Euler scheme for

the stochastic part

K1 = f(x), K2 = f

(
x+

δt

2
,K1

)
, f(x) = −γx,

Xt+δt = Xt +K2(Xt)δt+ σδW,

where δW ∼ N(0, δt).

We choose the following parameters in our simulations

γ = 0.5, σ = 1

and time-step δt = 0.0005. We define intervals (bins) for the estimation and conditioning as in (9)

where ∆x is the parameter representing the size of the bin and xk is the center of the bin. Results
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presented here will correspond to estimating the Drift A(x) and Diffusion B2(x) on a finite interval

[−L,L] with L = 1. This is motivated by the stationary variance of the OU process for the above

choice of γ and σ

Stationary V ar{Xt} =
σ2

2γ
= 1.

We would like to point out that the Ornstein-Uhlenbeck process is a Gaussian process. Moreover,

since the Drift term is linear like A(x) = −γx and the Diffusion term is a constant like B(x) = σ.

Given the Drift and Diffusion terms, we have some coefficients for higher-order terms in the Itô-

Taylor expansion (15) are zero (e.g. A3 ≡ A5 ≡ A6 ≡ 0). Therefore, our generic bounds for the

behavior of the bias and MSE can be re-derived taking explicitly into account absence of those

terms. Therefore, the generic asymptotic behavior discussed in the previous chapter can be quite

different compared to a particular case of the OU process. Nevertheless, we do not repeat the

derivation of the bias and MSE for the Ornstein-Uhlenbeck process separately. Instead, we observe

numerically that the behavior of the bias and MSEs for this process is rather generic and agrees

with the overall asymptotic behavior of MSEs for a more general nonlinear process considered in

the next section.

3.1.2 Nonlinear drift and Multiplicative Noise (Cubic) process

In this section we present the “cubic” process, numerical scheme and parameters. We consider the

following stochastic process with cubic drift and linear Diffusion and refer to this process as the

cubic process

dXt = −γX3
t dt+ (σ1 + σ2Xt)dWt. (33)
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In our numerical simulations we utilize the order 1.5 strong Itô-Taylor discretization [14]

Xt+δt = Xt − γX3
t δt+ (σ1 + σ2Xt)δW +

σ2(σ1 + σ2Xt)

2
((δW )2 − δt)− 3γX2

t (σ1 + σ2Xt)δZ

+
1

2

(
3γ2X5

t − 3γXt(σ1 + σ2Xt)
2
)
δt2 − γσ2X

3
t (δWδt− δZ)

+
σ2

2(σ1 + σ2Xt)δW

2

(
1

3
(δW )3 − δt

)
,

where δW ∼ N(0, δt), δZ is an approximation for I(1,0) =
∫ t+∆t
t

∫ s
t dW (t′)ds and the pair of random

variables (δW, δZ) can be determined from two independent random variables U1 ∼ N(0, 1) and

U2 ∼ N(0, 1) by a linear transformation [14]. (δW, δZ) can be computed explicitly and have the

following properties

δW = U1

√
δt, δZ =

(δt)
3
2

2

(
U1 +

1√
3
U2

)
,

with

E[δZ] = 0, E[(δZ)2] =
1

3
δt3, E[δZδW ] =

1

2
δt2.

We choose the following parameters in our simulations

γ = 1, σ1 = σ2 =
1√
2
, δt = 0.0005.

For the above choice of parameters

A(x) = −x3, B2(x) = 0.5x2 + x+ 0.5.

We define the estimation bin as in (9) where ∆x is the parameter representing the size of the bin,

and xk is the center of the bin. We estimate the Drift and Diffusion terms on the interval [−L,L]

with L = 0.5 since the variance of the cubic process is smaller than the variance of the OU process.

For the cubic process Stationary V ar{Xt} ≈ 0.25.

We would like to point out that the cubic process in (33) represents a more generic situation for

studying numerically the behavior of the Drift and Diffusion estimators since terms in the Itô-Taylor
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expansion are not zero.

3.2 Conditional moments

In this section, we analyze numerically the behavior of moments with respect to the truncated

density. In particular, we analyze numerically the convergence of moments as ∆x → 0. The

corresponding analytical expressions were derived in section 2.4.1, Lemma 2.5. In particular, we

showed that the conditional moments obey

E[Xp
t |1(Xt ∈ Bink)] = xpk +O(∆x2).

For the both, Ornstein-Uhlenbeck (32) and cubic (33) processes coefficients in the Itô-Taylor ex-

pansion become polynomial functions. Therefore, we need to verify the behavior of non-central

conditional moments. The property above was used in the derivation of our generic bounds for the

bias and MSE of the Drift and Diffusion estimators. Therefore, we would like to verify numerically

that the bin size is selected adequately and we’re working in the correct regime (i.e., the expression

above is approximately correct).

3.2.1 Conditional moments of the Ornstein-Uhlenbeck process

We present the simulation results with changing ∆x to verify the above formula. We consider

M = 1000 points which fall in each bin and the discrete estimation formula becomes

E[Xp
t |1(Xt ∈ Bink)] ≈

1

M

M∑
i=1

xpi1(xi ∈ Bink) ≡ mp(k), (34)

where p is the order of the corresponding moment. We select the following values for ∆x

∆x = 0.01, 0.025, 0.05, 0.1

and the estimation interval xk ∈ [−L,L] with L = 1.
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To analyze numerically the behavior of moments with respect to the truncated density we

compute the Absolute error

AbsErrp = max
k

∣∣mp(k)− xpk
∣∣ , (35)

where mp(k) is defined in (34) and xk is the center of the kth bin.

Figure 1: Log-log plot of the absolute error in the estimation of conditional moments E[Xp
t |1(Xt ∈

Bink)] with p = 1, . . . , 4 as defined in (35). Solid Blue line - numerically computed errors, Dashed
Red line - linear fit.

Figure 1 presents the log-log plots of AbsErrp vs ∆x for p = 1, . . . , 4. This plot shows that for

moments up to order four, the absolute error decays approximately as O(∆x2). In particular, the

slopes for linear fits are 1.6894, 1.8995, 1.7522, 1.8128.
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3.2.2 Conditional moments of the cubic process

In this section we verify numerically the behavior of conditional moments for cubic model (33). We

consider M = 1000 points in each bin and the discrete estimation formulas (34), where p is the

order of the corresponding moment. We select the following values for ∆x

∆x = 0.005, 0.0125, 0.025, 0.05

and the estimation interval xk ∈ [−L,L] with L = 0.5.

Figure 2: Log-log plot of the absolute error in the estimation of conditional moments E[Xp
t |1(Xt ∈

Bink)] with p = 1, . . . , 4 as defined in (35). Solid line - numerically computed errors, Dashed line
- linear fit.

Similar to the previous section we plot the absolute error defined in (35). The results for the
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convergence of conditional moments are presented in Figure 2. Similar to the simulations for the

OU process, Figure 2 shows that the absolute error decays approximately as O(∆x2). In particular,

the slopes for linear fits are 1.7886, 1.9034, 1.9288, 1.9167.

3.2.3 Conclusions

In this section we verified numerically that for bin sizes in the range of

∆x ∈ [0.005, 0.1]

the conditional moments behave according to the analytical prediction derived in Lemma 2.5.

Therefore, this range of bin sizes appears to be suitable to the estimation of the Drift and Diffusion

coefficients and verification of our bounds for MSEs for the corresponding estimators. In practice,

we would like to keep the bin size as large as possible, since this will allow to collect more points

for estimation and, thus, reduce the computational complexity. The bin size ∆x ≈ 0.1 seems to be

adequate for this purpose. We’ll perform addition investigation how bin size affects the estimation

in subsequent sections.

3.3 Absolute errors for the Drift and Diffusion estimators

In this section, we analyze numerically the absolute errors for the drift and Diffusion estimation.

We analyze several regimes when M → ∞ and ∆t → 0. The goal of this section is to provide the

numerical evidence for the behavior of the absolute errors of the Drift and Diffusion estimators and

obtain practical guidelines for selecting the computational parameters M , ∆t, and ∆x. Although

we do not have the analytical expressions for the absolute errors, they are often used as a measure

of accuracy for the estimators. Thus, we carry out a numerical investigation of the absolute errors

as we vary the estimation parameters ∆t, M , and ∆x. We define absolute errors for Drift and

50



Diffusion terms as

AbsErrdrift =
1

MC

MC∑
j=1

(
max
k

∣∣∣∣Âk(j) −A(k)

∣∣∣∣) , (36)

AbsErrdiff =
1

MC

MC∑
j=1

(
max
k

∣∣∣∣B̂2
k

(j)
−B2(k)

∣∣∣∣) , (37)

and MC is the number of Monte-Carlo Realizations, Âk
(j)

and B̂2
k

(j)
are the estimates for the Drift

and Diffusion value for the jth Monte-Carlo Realization, respectively. The parameter k represents

the kth bin.

3.3.1 Ornstein-Uhlenbeck process

For the OU process the Drift and Diffusion terms are given by

A(k) = −γxk, B2(k) = σ2,

with the parameters described in section 3.1.1. We consider the number of points in each bin

M = 50, 100, 200, 500, 1000 (38)

and we also perform three sets of runs with

∆x = 2L/20, 2L/40, 2L/80, xk ∈ [−L,L], L = 1. (39)

The choice of L is motivated by the stationary variance of the OU process σ2/(2γ) = 1. There-

fore, we effectively sample the points for estimation in the range [−StdDev, StdDev] which en-

sures that there is enough points in each bin. We simulate MC = 500 realizations and con-

sider two estimation regimes M∆t → ∞ and M∆t = Const. For M∆t = Const we use ∆t =

0.02, 0.01, 0.005, 0.002, 0.001 for the corresponding value of M in (38) and for M∆t → ∞ we use
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∆t = 0.01 for all values of M in (38).

Figure 3: Absolute errors of the Drift (top) and Diffusion (bottom) estimators for the OU process
with two different sampling regimes M∆t = 500 (left) and M∆t→∞ (right).

Figure 3 depicts the behaviors of absolute errors in both regimes for the Drift and Diffusion

estimators. For the case M∆t = Const, the absolute errors for the Drift estimator are approxi-

mately constant as M → ∞. When M∆t → ∞, the top-right part of Figure 3 demonstrates that

errors decrease sharply as M∆t→∞ (with fixed ∆t). This reflects our analytic prediction for the

MSE in (20). We can see that the behaviors of absolute errors for the Diffusion estimator is very

similar in two regimes and is primarily driven by the O(M−1) term which agrees with the analytical

prediction for the MSE of the Diffusion estimator in (31).

52



Figure 4: Absolute errors of Drift (top) and Diffusion (bottom) estimators for the OU process for
M∆t→∞ for two different ranges of M ∈ [50, 1000] (left) and M ∈ [50, 5000] (right).

Larger number of observational points, M .

We can see in Figure 3 that for the range of M considered in those simulations (M ∈ [50, 1000]) the

absolute errors decay significantly in this range, and there is a significant decrease of the absolute

errors from M = 500 to M = 1000 in the regime M∆t → ∞ (right part of Figure 3). Thus, the

terms (M∆t)−1 and M−1 for errors of the Drift and Diffusion estimators, respectively, seem to be

significant for this range of M . Therefore, we extend the range of M and consider

M = 50, 100, 200, 500, 1000, 2000, 5000 fixed ∆t = 0.01 (40)
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to analyze numerically the range where terms O(M−1) are significant. This corresponds to the case

M∆t → ∞. The numerical results are presented in Figure 4 and Table 1. We can see that the

absolute errors are still quite large in the range M ∈ [50, 5000], especially for the Drift estimator.

Table 1: Absolute errors of Drift and Diffusion estimators for the OU process for M∆t → ∞
on M ∈ [50, 5000] for three cases NumBin = 20, NumBin = 40, and NumBin = 80 where
∆x = 2L/NumBin.

Absolute error

Drift estimator Diffusion estimator

M ∆x = 0.1 ∆x = 0.05 ∆x = 0.025 ∆x = 0.1 ∆x = 0.05 ∆x = 0.025

50 3.045 3.466 3.803 0.4405 0.4919 0.5588

100 2.168 2.400 2.679 0.3039 0.3471 0.3842

200 1.523 1.708 1.896 0.2143 0.2422 0.2725

500 0.9621 1.101 1.200 0.1355 0.1526 0.1701

1000 0.6850 0.7691 0.8510 0.09702 0.1084 0.1188

2000 0.4895 0.5382 0.5962 0.06872 0.07544 0.08468

5000 0.3071 0.3415 0.3764 0.04424 0.04910 0.05336

Smaller ∆x and ∆t.

Figure 4 demonstrates that the absolute errors are quite large, especially for the Drift estimator.

Even for large values of M = 5000, the absolute error is still approximately AbsError{Drift} ≈

0.3, . . . , 0.38 (see Table 1). This is an indication that error terms due to other computational

parameters (i.e. ∆x and ∆t) become significant for the larger values of M . Therefore, we consider

the estimation regime with much smaller ∆x and ∆t and larger M

M = 5000, 10000, 25000 (41)

with the time steps ∆t = 0.002 and ∆x = 2L/160. The numerical results in this regime are

presented in Figure 5 (cf., with Figure 4 for ∆t = 0.01 and ∆x = 2L/80). Please note that

Figures are both depicted on the same vertical scale. Drift Estimator. First, we compare

the absolute error for the Drift Estimator for M = 5000 and (∆t,∆x) = (0.002, 2L/160) vs.

(∆t,∆x) = (0.01, 2L/80) (cf., the left part of Figure 5 and the top-right part of Figure 4). We

observe that the absolute error increases for (∆t,∆x) = (0.002, 2L/160). This suggests that there
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Figure 5: Absolute errors of the Drift and Diffusion term estimators for the OU process with smaller
∆t = 0.002 and ∆x = 2L/160 and M in (41).

is a term with ∆t in the denominator. This is consistent with our analytical estimate for MSE in

(20). It is rather difficult to estimate the precise form of this error term and, in particular, the

power of ∆t in the denominator because there are also the other error terms which contribute to

the overall error increase/decrease. However, this computational example suggests that it is not

practical to select a very small ∆t, since it may yield large errors in the estimation of the Drift

term, even for very large M . Diffusion Estimator. Next, we compare the absolute error for the

Diffusion Estimator for M = 5000 and (∆t,∆x) = (0.002, 2L/160) vs. (∆t,∆x) = (0.01, 2L/80)

(cf., the right part of Figure 5 and the bottom-right part of Figure 4). We observe that smaller

computational parameters ∆t and ∆x do not affect significantly the absolute error computed with

M = 5000 points. Therefore, we can conclude that it is unlikely that there is a term with ∆t in

the denominator, which is consistent with our analysis in (31).

3.3.2 Cubic process

For the cubic process (33) the Drift and Diffusion coefficients are given by

A(k) = −γx3
k, B2(k) = (σ1 + σ2xk)

2.
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We consider the parameter values described in section 3.1.2. We consider values of M in (38) and

we also perform three sets of runs with

∆x = 2L/20, 2L/40, 2L/80, xk ∈ [−L,L], L = 0.5. (42)

We consider MC = 500 and two estimation regimes M∆t = Const and M∆t→∞. Smaller L here

is motivated by the smaller stationary variance of the cubic process for the choice of parameters

above. For M∆t = Const we use ∆t = 0.02, 0.01, 0.005, 0.002, 0.001 and for M∆t → ∞ we use

∆t = 0.01.

Figure 6: Absolute errors of Drift (top) and Diffusion (bottom) estimators for the cubic process
with two different sampling regimes M∆t = 500 (left) and M∆t→∞ (right).
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Figure 6 presents the absolute error of Drift and Diffusion estimators with two different sampling

regimes M∆t = Const and M∆t→∞ for cubic process. This figure is consistent with simulations

for the OU process (cf., with Figure 3). In particular, we observe that the error behaves very

differently for the Drift estimator in two regimes (no decay for M∆t = Const vs. decay for

M∆t→∞), while decay of error for the Diffusion estimator is approximately the same in the two

regimes. We also observe that change in ∆x has a slightly more pronounced affect for the cubic

process. However, for the Diffusion estimator the vertical scale for the error is rather small, and the

error difference due to different ∆x is O(10−3). In addition, the error for the Diffusion estimator

appear to stabilize for M = 500, 1000, but is still quite large, which suggests the importance of the

other terms in the expression for the error.

Larger number of observational points, M .

We also perform the simulations with the larger values of M in (40). The numerical results are

presented in Figure 7 and Table 2. The absolute error for the Drift estimator decays for the

whole range of M ∈ [50, 5000], while the absolute error for the Diffusion estimator stabilizes after

M ≈ 500. This suggests that the error term (M∆t)−1 for the Drift estimator has a larger pre-

constant compared to the term M−1 for the Diffusion estimator.

Table 2: Absolute errors of Drift and Diffusion estimators for the cubic process for M∆t → ∞
on M ∈ [50, 5000] for three cases NumBin = 20, NumBin = 40, and NumBin = 80 where
∆x = 2L/NumBin.

.

Absolute error

Drift estimator Diffusion estimator

M ∆x = 0.05 ∆x = 0.025 ∆x = 0.0125 ∆x = 0.05 ∆x = 0.025 ∆x = 0.0125

50 2.510 2.781 3.172 0.872 0.8841 0.8963

100 1.728 1.995 2.219 0.8653 0.8768 0.8850

200 1.232 1.439 1.598 0.8642 0.8722 0.8798

500 0.7944 0.8987 1.022 0.8627 0.8695 0.8742

1000 0.5764 0.6599 0.7555 0.8629 0.8687 0.8734

2000 0.4356 0.4924 0.5573 0.8627 0.8687 0.87245

5000 0.3165 0.3518 0.3888 0.8626 0.8688 0.8720
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Figure 7: Absolute errors of Drift (top) and Diffusion (bottom) estimators for the cubic process for
M∆t→∞ for two different ranges of M ∈ [50, 1000] (left) and M ∈ [50, 5000] (right).

Smaller ∆x and ∆t.

Similar to the OU case, we consider the number of points, M , in (41) with ∆t = 0.002 and

∆x = 2L/160. The numerical results are presented in Figure 8. This picture is also consistent with

the numerical results for the OU process depicted in Figure 5. Drift estimator. In particular,

we observe that the absolute error for the Drift estimator increases approximately 3 times large

for M = 5000 when (∆t,∆x) = (0.002, 2L/160) vs. (∆t,∆x) = (0.01, 2L/80) (cf., the left part of

Figure 8 and the top-right part of Figure 7). We would like to point out that we expect that the

results for the cubic process are more generic because it has a more general Itô-Taylor expansion.
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Figure 8: Absolute errors of the Drift and Diffusion term estimators for the cubic process with
smaller ∆t = 0.002 and ∆x = 2L/160 and M in (41).

3.3.3 Conclusions

In this section we analyzed numerically the absolute errors for the Drift and Diffusion estimators

(defined in (36) and (37) respectively). These errors are practically equivalent to the L1 errors.

Although we do not have analytical estimates for the behaviors of these errors, we can obtain

valuable guidelines for the role of the sub-sampling parameters M , ∆t, and ∆x.

The main emphasis of section 3.3 is on comparing and contrasting behavior of the absolute

errors in the two sampling regimes M∆t = Const and M∆t → ∞. We analyzed the performance

of these errors for two particular stochastic processes - the Ornstein-Uhlenbeck (OU) process (32)

and the cubic process (33). The numerical results for these two processes are consistent with each

other. Overall, our numerical simulations in section 3.3 suggest the following conclusions -

• there is a term O((M∆t)−1) in the error for the Drift estimator,

• there is a term O(M−1) in the error for the Diffusion estimator,

• there is a term with ∆t in the denominator in the error for the Drift estimator,

• refining ∆x makes a secondary effect on accuracy of estimators.
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The numerical results and conclusions reached in this section are consistent with our analyt-

ical expressions for the MSE in (20) and (31). We will discuss practical guidelines for selecting

estimation parameters in the section for the MSE for the Drift and Diffusion estimators.
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3.4 Mean squared error for the Drift and Diffusion estimators

In this section, we use the MSE as a gauge for verifying the quality of Drift and Diffusion estimator

with respect to the three parameters M , ∆t and ∆x. The MSE is defined as (17) and (24) and

is equivalent to the L2 norm squared. We would like to remind that our analytical prediction for

the asymptotic behaviors of the MSE was derived in (20) and (31) for the Drift and Diffusion

estimators, respectively. Therefore, the goal of this section is to verify numerically the analytical

expressions for the asymptotic behavior of the MSEs for the Drift and Diffusion estimators.

To compute the MSE numerically we need to perform Monte-Carlo simulations and compute

many realizations of the sampled trajectories and, in turn, of the Drift and Diffusion estimators.

Let us introduce the discrete analog of the MSE

MSEdrift =
1

MC

MC∑
j=1

∑
k

(
Âk

(j) −A(k)

)2

∆x

 , (43)

MSEdiff =
1

MC

MC∑
j=1

∑
k

(
B̂2
k

(j)
−B2(k)

)2

∆x

 , (44)

where MC is the number of Monte-Carlo Realizations, Âk
(j)

and B̂2
k

(j)
are the Drift and Diffusion

estimators computed for the jth Monte-Carlo Realizations, respectively, and k represents the k-th

bin (all bins are of size ∆x).

3.4.1 Ornstein-Uhlenbeck process

For the OU process, the Drift and Diffusion coefficients are given by

A(k) = −γxk, B2(k) = σ2,

with the parameters described in section 3.1.1. We consider the same sampling parameters as in

section 3.3.1 and perform MC = 500 Monte-Carlo simulations in the estimation regimes M∆t→∞

and M∆t = Const.
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Figure 9: MSEs of the Drift (top) and Diffusion (bottom) estimators for the OU process with two
different sampling regimes M∆t = 500 (left) and M∆t→∞ (right).

The numerical results for the asymptotic behaviors of the MSEs are presented in Figure 9.

Overall, the behavior of MSEs for the Drift and Diffusion estimators is consistent with our analytical

predictions in (20) and (31). In particular, the MSE for the Drift estimator in the regime M∆t =

Const does not decay as M increases. We also observe that for M∆t→∞, the MSEs for both, the

Drift and the Diffusion estimators do not stabilize and keep decreasing as M → 1000. In addition,

we also observe that decreasing (or increasing) the bin size ∆x in the range ∆x ∈ [2L/80, 2L/20]

(with L = 1) does not have a visible affect on the accuracy of both, the Drift and Diffusion

estimators. This suggests that ∆x can be chosen quite large in practice.
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Larger number of observational points, M .

In order to estimate the relative importance of terms (M∆t)−1 and M−1 for the MSEs of the Drift

and Diffusion estimator, respectively, we consider larger number of points in each bin, M , in (40).

Figure 10: MSEs of Drift (top) and Diffusion (bottom) estimators for the OU process forM∆t→∞.
for two different ranges of M ∈ [50, 1000] (left) and M ∈ [50, 5000] (right).

The results of these simulations are presented in Figure 10. First, MSE for the Drift estimator

is much larger than the MSE for the Diffusion estimator. For M = 1000 the Diffusion estimator

appears to be quite accurate, while the Drift estimator has significant errors. We also observe that

MSEs for both the Drift and the Diffusion estimators do not stabilize in the range M ∈ [50, 5000],

which suggests the relative importance of terms (M∆t)−1 and M−1 for the MSEs of the Drift and

Diffusion estimator, respectively, for the whole range of M considered here.
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Numerical results are presented in Figure 10 and Table 3.

Table 3: MSEs of Drift and Diffusion estimators for the OU process forM∆t→∞ onM ∈ [50, 5000]
for three cases NumBin = 20, NumBin = 40 and NumBin = 80 where ∆x = 2L/NumBin.

MSE

Drift estimator Diffusion estimator

M ∆x = 0.1 ∆x = 0.05 ∆x = 0.025 ∆x = 0.1 ∆x = 0.05 ∆x = 0.025

50 3.963 4.058 3.957 0.08138 0.07871 0.08092

100 1.998 1.999 2.013 0.03945 0.03967 0.03956

200 1.003 0.9880 0.999 0.01926 0.01999 0.02019

500 0.3977 0.4052 0.4011 0.007983 0.007982 0.0079477

1000 0.2018 0.1995 0.2006 0.004009 0.003994 0.003982

2000 0.1035 0.1003 0.0990 0.002032 0.002005 0.002009

5000 0.04046 0.04061 0.04010 0.0008397 0.00082198 0.0008161

Smaller ∆x and ∆t.

We also consider the much larger values of M in (41) with ∆t = 0.002.

Figure 11: MSEs of the Drift and Diffusion term estimators for the OU process with smaller
∆t = 0.002 and ∆x = 2L/160 and M in (41).

The numerical results are presented in Figure 11. We observe that the behaviors of MSEs for

the Drift and Diffusion estimators are consistent with (20) and (31). In particular, the MSE for

the Drift estimator increases for M = 5000 and smaller ∆t (cf., the left part of Figure 11 for

(M,∆t) = (5000, 0.002) and the top-right part of Figure 10 for (M,∆t) = (5000, 0.01)).
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We also observe that MSEs for both, Drift and Diffusion estimators keep decaying in the range

M ∈ [5000, 25000]. This indicates the significance of terms (M∆t)−1 and M−1 for the MSEs of

the Drift and Diffusion estimator, respectively. However, the MSE for the Diffusion estimator is

much smaller than the MSE for the Drift estimator. This implies that the Drift estimator is less

accurate (especially for small ∆t) than the Diffusion estimator and estimation of the Drift term

can be quite computationally expensive for small ∆t. This suggests that one can possibly use two

different sampling time-steps for the Drift and Diffusion estimators - a larger sampling time-step to

compute the Drift estimator and a smaller sampling time-step to compute the Diffusion estimator.

We’ll also address this issue in subsequent sections.

3.4.2 Cubic process

For the cubic process (33) the Drift and Diffusion coefficients are given by

A(k) = −γx3
k, B2(k) = (σ1 + σ2xk)

2.

We consider the parameter values as in section 3.1.2. We choose the same computational and

sampling parameters as in section 3.3.2. We consider values of M in (38) and we also operate three

sets of runs with ∆x in (42) in the regimes M∆t→∞ and M∆t = Const. Similar to other sections

we perform MC = 500 Monte-Carlo simulations.

Figure 12 illustrates the behaviors of MSEs for the Drift and Diffusion estimators in two different

sampling regimes M∆t = Const and M∆t → ∞. Our results for the behavior of MSEs for the

cubic process are consistent with previous results for the absolute errors in sections 3.3.1 (OU

process) and 3.3.2 (cubic process) and MSEs for the OU process in section 3.4.1. The results

are also consistent with analytical predictions in (20) and (31). Neither the MSE for the Drift

estimator nor the MSE for the Diffusion estimator stabilizes in the range M ∈ [50, 1000] in the

regime M∆t → ∞. This suggests that terms (M∆t)−1 and M−1 in the MSEs of the Drift and

Diffusion estimator, respectively, are quite significant for this range of M . In addition, the smaller
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Figure 12: MSEs of Drift (top) and Diffusion (bottom) estimators for the cubic process with two
different sampling regimes M∆t = 500 (left) and M∆t→∞ (right).

values of ∆x do not have any visible effect on the accuracy of the Drift estimator, while changes

in ∆x have only slight effect for the accuracy of the Diffusion estimator. Also, similar to the

simulations for the OU process, the MSE for the Drift estimator is larger (approximately twice in

this case) than the MSE for the Diffusion estimator.

Larger number of observational points, M .

To investigate numerically the range of the significant values of terms (M∆t)−1 and M−1 in the

MSEs for the Drift and Diffusion estimators, respectively, we consider number of the sampling

points in each bin, M , in (40).
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Figure 13: MSEs of Drift (top) and Diffusion (bottom) estimators for the cubic process for M∆t→
∞. for two different ranges of M ∈ [50, 1000] (left) and M ∈ [50, 5000] (right).

Figure 13 shows the comparison of MSEs for the Drift and Diffusion estimators for M ∈

[50, 1000] (left part) and M ∈ [50, 5000] (right part) in the regime M∆t → ∞. We observe

that the MSE for the Diffusion estimator stabilizes in the range M ∈ [1000, 5000], while the MSE

for the Drift estimator is decaying for the whole range M ∈ [50, 5000]. This suggests that for the

Diffusion estimator the other terms in the (31) become significant in the range M ∈ [1000, 5000].

The numerical results are presented in Figure 13 and Table 4.

Smaller ∆x and ∆t.
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Table 4: MSEs of Drift and Diffusion estimators for the cubic process for M∆t → ∞ on M ∈
[50, 5000] for three cases Numbin = 20, Numbin = 40 and Numbin = 80 respectively.

MSE

Drift estimator Diffusion estimator

M ∆x = 0.05 ∆x = 0.025 ∆x = 0.0125 ∆x = 0.05 ∆x = 0.025 ∆x = 0.0125

50 1.127 1.084 1.104 0.3098 0.3093 0.3101

100 0.5504 0.5534 0.5536 0.3014 0.3030 0.3021

200 0.2838 0.2862 0.2827 0.2990 0.2984 0.2983

500 0.1201 0.1158 0.1174 0.2959 0.2961 0.2961

1000 0.06335 0.06392 0.06461 0.2953 0.2951 0.2952

2000 0.03770 0.03746 0.03689 0.2950 0.2948 0.2947

5000 0.02139 0.02109 0.02085 0.2946 0.2945 0.2946

Here we consider the much larger values of M in(41) with ∆t = 0.002

Figure 14: MSEs of the Drift and Diffusion term estimators for the cubic process with smaller
∆t = 0.002 and ∆x = 2L/160 and M in (41).

Figure 14 depicts the MSEs for the Drift and Diffusion estimators in this regime. The MSE of

the Diffusion estimator is not affected by changes in M . Therefore, the Diffusion estimator does

not benefit from increasing the number of the sampling points, M , beyond M = 1000 (cf., the

bottom-right part of Figure 13 and the right part of Figure 14).
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3.4.3 Conclusions

In sections 3.4.1 and 3.4.2 we considered the asymptotic behaviors of the MSEs for the Drift and

Diffusion estimators for two particular examples - the Ornstein-Uhlenbeck process and the cubic

process. We compared and contrasted behavior of the MSEs for these two processes in the two

sampling regimes M∆t = Const and M∆t→∞. We also varied the size of the bin, ∆x. The main

conclusions reached by considering the numerical simulations are

• our numerical simulations agree well with our analytical predictions in (20) and (31),

• numerical simulations in this section agree with numerical results for the absolute error in

section 3.3.1 and 3.3.2

• our numerical simulations confirm that there are terms O((M∆t)−1) and O(M−1) in the

MSEs for the Drift and Diffusion estimators, respectively,

• the MSE for the Drift estimator appear to be large than the MSE for the Diffusion estimator

for the same choice of computational parameters M , ∆t, and ∆x,

• conclusions reached in this section with conclusions for the absolute error discussed in section

3.3.3,

• it might be computationally beneficial to choose different sampling regimes for the Drift and

Diffusion estimators.

We elaborate a little bit more about important practical guidelines on selecting the sampling and

computational parameters M , ∆t, and ∆x to reduce computational complexity while maintaining

accuracy of estimators. In particular, it might be beneficial to select different sampling regimes for

computing the Drift and Diffusion estimators. Here are the practical guidelines motivated by our

numerical simulations -

• very small sampling time-step ∆t is very likely to negatively impact the accuracy of the Drift

estimator; therefore, ∆t should be selected to be relatively large in the computation of the

Drift estimator,
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• sampling time-step, ∆t, does not seem to severely affect the accuracy of the Diffusion esti-

mator; therefore, ∆t can be selected to be quite small for computing the Diffusion estimator

which can yield in necessity to process relatively short time-series of observations,

• bin size, ∆x, in the range considered here does not seem to have a significant impact on

accuracy of both, the Drift and the Diffusion estimators; therefore ∆x ≈ L/10 (where L =

StdDev{Xt}) appears to be a good practical guideline for selecting the bin size.
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3.5 Regression for the Drift and Diffusion terms

In the previous sections we investigated how Drift and Diffusion estimators perform for each bin.

Our analysis applies to each bin separately and numerical simulations take the spacial distribution

of errors into account in a rather simple form (either by taking a max or averaging). However, it

is a very natural question to estimate the functional form of the Drift and Diffusion terms once

we compute their estimators for each bin. It is quite beneficial to know the functional form of

the Drift and Diffusion coefficients explicitly since it is possible to carry out a detailed analysis of

the model (e.g., stability). Therefore, in this section we utilize regression techniques to estimate

the functional form of the Drift and Diffusion coefficients from the numerical values obtained by

computing the corresponding estimators. To this end, we assume a particular functional form for

the Drift and Diffusion terms with estimate coefficients. We would like to point out that it is rather

difficult to obtain the analytical error estimates for those coefficients because it is not clear how

errors in the Drift and Diffusion estimator would “propagate” through the regression procedure.

Thus, we concentrate here on some numerical results.

In this section, we compare the true Drift and Diffusion coefficients with computational results

using statistical techniques. We test several approaches known to work well in practice – Polynomial

fit, Lasso, and Ridge regression. We carry out th eregression estimation for both the Ornstein-

Uhlenbeck process and the cubic process. To quantify the regression error we introduce the Root

Mean Squared Error (RMSE)

RMSE =

NB∑
k=1

(
predict(xk)− true(xk)

)21/2

, (45)

which is a standard measure of accuracy in regression.

Since the bin size is not a dominant factor for accomplishing the accuracy of the Drift and

Diffusion estimators as discussed in section 3.3 and 3.4, we use the numerical values for the Drift and

Diffusion estimators obtained with the number of bins NumBin = 40. We would like to point out

that the total number of bins is twice that, i.e., the total number of bins is NB = 80 = 2NumBin
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since we have to take estimation for both, the positive and negative values of xk. This corresponds

to using numerical results for the Drift and Diffusion estimation with ∆x = 0.025 for the OU

process and with ∆x = 0.0125 for the cubic process, respectively. We select few particular values

of M and ∆x from sets of simulations described in the previous section. In particular, we present

the results for (M,∆t) = (1000, 0.001) and (M,∆t) = (1000, 0.01).

3.5.1 Polynomial fit

In this section we perform polynomial regression for the Drift and Diffusion coefficients. In partic-

ular, we assume a polynomial functional form

fl(a, x) = alx
l + . . .+ a2x

2 + a1x+ a0 (46)

with vector a = (al, . . . , a0) (please note that coefficients al are ordered backwards, but the num-

bering corresponds to the power of x for each term) and optimize the norm

â = arg min
a

∑
k

(
fl(a, xk)− F̂ (xk)

)2
(47)

where F̂ (xk) is either the Drift (i.e., F̂ (xk) ≡ Â(xk)) or the Diffusion (i.e., F̂ (xk) ≡ B̂2(xk)) esti-

mator and xk is the center of the corresponding bin. The RMSE is then computed by substituting

fl(â, xk) as the predicted value predict(xk).

It is known that polynomial regression is likely to produce very oscillatory results if we take a

(relatively) large l (highest power) in the definition of fl(a, x) in (46). Therefore, plain polynomial

regression is rarely used in practice. Thus, we just want to obtain some benchmark results in

this section. Therefore, we choose l to be the lowest possible power for the Drift and Diffusion

coefficients for each model (OU and cubic processes).

OU process.

Here we choose l = 1 for the Drift and l = 0 for Diffusion. The numerical results are presented in
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Figure 15 and Table 5. We can see that the smaller ∆t makes a big difference for the accurate

Figure 15: Polynomial regression fit for the Drift (left part) and Diffusion (right part) terms of the
OU process with (M,∆t) = (1000, 0.001) (top part) and (M,∆t) = (1000, 0.01) (bottom part).

estimation of the Drift term (cf., the two sub-plots in the left part of Figure 15). In particular,

the estimated numerical values of Â(x) are much more dispersed for larger ∆t = 0.01. This is also

manifested in a larger RMSE for the Drift term for ∆t = 0.01. However, Table 5 illustrates that

the Drift term estimator is more accurate for ∆t = 0.01. In contrast to the Drift estimation, the

estimation of the Diffusion term is not considerably affected by increasing ∆t. In particular, the

estimated numerical values of B̂2(x) do not appear to be dispersed very differently for ∆t = 0.001

vs. ∆t = 0.01. The estimated value changes slightly for ∆t = 0.01, but Table 5 indicates that the

RMSE for the Diffusion term is not affected much by a larger ∆t. Finally, Table 5 demonstrates
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Table 5: Polynomial regression fit results for the OU process.

(M,∆t) Drift coef. Diffusion coef.

(1000, 0.001)
Estimated −0.5171x− 0.0022 1

RMSE 0.4136 0.0158

(1000, 0.01)
Estimated −0.4984x+ 0.0015 0.9961

RMSE 0.1300 0.0190

that the Diffusion term estimator performs better than Drift estimator, since the RMSE is smaller

for Diffusion estimator.

Cubic process.

We select l = 3 and l = 1 for the Drift and Diffusion estimation, respectively. The results are

presented in Figure 16 and Table 6. Here we can see that the Drift term is estimated much better

Table 6: Polynomial regression fit results for the cubic process.

(M,∆t) Drift coef. Diffusion coef.

(1000, 0.001)
Estimated −0.57x3 + 0.038x2 − 0.055x− 0.0046 0.499x2 + 0.999x+ 0.5

RMSE 0.2479 0

(1000, 0.01)
Estimated −0.953x3 − 0.0106x2 − 0.012− 0.0002 0.485x2 + 0.997x+ 0.501

RMSE 0.0792 0.0114

with ∆t = 0.01 (the bottom part of Figure 16). This is also supported by a much smaller RMSE for

the Drift term for ∆t = 0.01 (Table 6). The Diffusion term is estimated comparably accurately for

∆t = 0.01 and ∆t = 0.001. The RMSE for the Diffusion term is only slightly bigger for ∆t = 0.01

compared to ∆t = 0.001.

3.5.2 Estimation of the Diffusion coefficient for the OU process for different ∆t

In this section we discuss the behavior of the Diffusion term estimator for (M,∆t) = (1000, 0.01)

vs. (M,∆t) = (1000, 0.001). This behavior is depicted in the right part of Figure 15 and Table

5. In particular, the estimator is less accurate for ∆t = 0.01. In particular, the estimator for the

constant Diffusion shifts slightly (B̂2(x) = 1 for ∆t = 0.001 vs. B̂2(x) = 0.996 for ∆t = 0.01) which

results in a slightly higher RMSE for ∆t = 0.01. Similar to the previous section we use NB = 80

(same as ∆x = 0.025).
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Figure 16: Polynomial regression fit for the Drift (left part) and Diffusion (right part) terms of the
cubic process with (M,∆t) = (1000, 0.001) (top part) and (M,∆t) = (1000, 0.01) (bottom part).

Since the Diffusion is just a constant, it is relatively easy to analyze the behavior of the error for

the regression for the Diffusion term. We would like to remind that we use l = 0 as the highest-order

power in the polynomial for the Diffusion term. We define the bias

Biasdrift = |a1 − γ|, Biasdiff = |a0 − σ|, (48)

where a1 is the coefficient for the linear term in the regression for the Drift and a0 is the coefficient

for the free (constant) term in the regression for Diffusion. The particular values of parameters are
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γ = 1/2 and σ = 1. We vary ∆t over

∆t = 0.02, 0.01, 0.005, 0.002, 0.001 (49)

and compute bias for the Drift and Diffusion estimators for these five value of ∆t. Figure 17

Figure 17: Regression Bias of the Drift (left part) and Diffusion (right part) terms in (48) computed
from simulations of the OU process with M = 1000 and ∆t in (49).

shows that the bias for the Diffusion decreases approximately linearly with ∆t and Bias → 0 as

∆t→ 0. This demonstrates that the accuracy of the regression for the Diffusion estimator depends

considerably on ∆t and it is important to have a small ∆t if a high accuracy of the Diffusion

estimation is the objective. On the other hand, the numerical errors for the Diffusion increase

only slightly as ∆t increases and larger ∆t = 0.02 considered here the results in relatively small

errors for the Diffusion estimation. Figure 17 demonstrates that the bias for the Drift term has a

U-shape and increases for very small ∆t. This illustrates that small values of ∆t should be avoided

for estimating the Drift term. The simulations in this section are consistent with our numerical

analysis for the absolute error and MSE in sections 3.3 and 3.4, respectively and regression results

in the previous section.
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3.5.3 Polynomial, Lasso, and Ridge estimation for the cubic model

In the section 3.5.1 we observed that the polynomial regression works quite well to estimate the

shape of the Drift and Diffusion terms when the highest power of the fitted polynomial is low (i.e.,

l is small in (46)). It is well-known that polynomial regression becomes unstable and produces

very large coefficients for the higher values of l. Therefore, we utilize Lasso and Ridge regression.

We consider l = 7 (i.e., we try to fit polynomials of 7-th order) and compare the results for the

polynomial, Lasso, and Ridge regressions.

Here we concentrate on the numerical results for the cubic process since for the OU process it

is very easy to estimate visually the functional form of the Drift and Diffusion terms. The results

for the cubic process are more generic since it is not so easy to guess the functional form of the

Drift and Diffusion terms for this model. We use the numerical results for estimating Â(xk) and

B̂2(xk) with (M,∆t) = (1000, 0.01) since we saw in the previous section that ∆t = 0.01 results in

considerably more accurate Drift estimation. Similar to the previous section we utilize NB = 80

as the total number of bins which corresponds to ∆x = 0.025.

Polynomial Regression.

Here we use the same optimization function (45) as in section 3.5.1 with l = 7. We obtained the

following fits for the polynomial regression of degree l = 7 for the Drift and Diffusion terms

âdrift = (19.17, 4.02,−8.49,−1.38, 0.134, 0.106,−0.0474,−0.00158), RMSE ≈ 0.077,

âdiff = (1.831, 0.366,−0.529,−0.0705, 0.00392, 0.4833, 1.0011, 0.5012), RMSE ≈ 0.010227.

We would like to remind that first coefficients correspond to power xl (see definition (46)). Fitting

higher order polynomial with q = 7 slightly reduces the RMSE for both, Drift and Diffusion (cf.,

with results for (M,∆t) = (1000, 0.01) in Table 6), but the reduction is not really significant. On

the other hand, polynomial fit with degree q = 7 produces results which are completely misleading

and cannot be used for predicting the Drift and Diffusion outside of the range [−L,L]. Therefore,
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if one wants to use the estimated model for numerical or analytical prediction, it is very likely that

numerical results using the fitted model obtained by polynomial regression would not be accurate.

Lasso Regression.

In this section, we utilize Lasso to shrink the regression coefficients by adding a L1 penalty term.

The optimization problem becomes

â = arg min
a

1

NB

NB∑
k=1

(
fl(a, xk)− F̂ (xk)

)2
+ α

l∑
i=0

|ai| (50)

where F̂ (xk) are the numerical computed Drift and Diffusion coefficients Â(xk) and B̂2(xk). Here

an empirical parameter α balances the relative strength of the polynomial regression term and

penalty term. We would like to point out that 1/NB is just a normalization factor for the sum and

can be “absorbed” in the parameter α. Results for the Lasso regression for the Drift and Diffusion

estimators computed with ∆t = 0.01 are presented below.

âdrift = (0, 0,−0.26, 0,−0.866, 0,−0.014,−0.001),

âdiff = (0.0895, 0.0095, 0, 0.0234,−0.0223, 0.475, 0.9999, 0.5013)

with

RMSEdrift = 0.0801, RMSEdiff = 0.01052

and the corresponding optimal parameters

αdrift = αdiff = 10−4.

The results of Lasso regression for both, the Drift term and the Diffusion terms are quite

good. The Diffusion term is estimated very well and is very close to the true functional form

B2(x) = 0.5x2 + x + 0.5. The Lasso regression results for the Drift term are slightly worse, but
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these results convincingly suggest that the dominant power in the Lasso regression for the Drift

term should be x3 (aLassodrift (3) = −0.866). However, the coefficient for the x5 is also significant

(aLassodrift (5) = −0.26). Perhaps these results can be improved by eliminating some terms with

coefficients close to zero (e.g., enforcing that a(0) = a(1) = 0 in the definition of fl(a, x) in (46) for

the Lasso drift regression).

In addition, these results might be improved if we consider a larger domain for estimating the

Drift coefficient. We would like to recall that the Drift and Diffusion terms are estimated on the

interval [−L,L] with L = 0.5 for the cubic model. Clearly, the effect of the term x5 is quite

negligible compared to the term x3 on this interval. Therefore, increasing L might provide more

sensitivity for the Lasso regression and alleviate this problem.

Ridge Regression.

In this section, we use Ridge regression to shrink the regression coefficients by imposing a penalty

term of coefficients squared. The optimization problem becomes

â = arg min
a

1

NB

NB∑
k=1

(
fl(a, xk)− F̂ (xk)

)2
+ α

l∑
i=0

|ai|2. (51)

Similar to the Lasso regression we consider (M,∆t) = (1000, 0.01) and ∆x = 0.0125 for the cubic

model. The results for the Ridge regression are presented below.

âdrift = (0, 0, 0, 0,−0.9036,−0.0105,−0.0191,−1.7× 10−4),

âdiff = (0, 0, 0, 0, 0, 0.484, 0.9961, 0.5011)

with

RMSEdrift = 0.0796, RMSEdiff = 0.01173

79



and the corresponding optimal parameters

αdrift = 0.0001, αdiff = 0.01.

We can see that the Ridge regression works very well in this case and is superior to the Lasso

regression. In particular, the ridge regression is able to correctly identify the functional form of

the Drift and Diffusion estimators. In contrast with the Lasso regression, here we can clearly see

that the highest power for the Drift term is x3 with aRidgedrift (3) = −0.9036 which agrees well with

A(x) = −x3. For the Ridge regression coefficient of x5 for the Drift is aRidgedrift (5) = O(10−14). While

the RMSE for the Drift term are comparable for the Lasso and Ridge regression, Ridge regression

is clearly superior since it correctly identifies the functional form of the Drift term. The Diffusion

term is also estimated very well here (B2(x) = 0.5x2 + x+ 0.5).

Lasso and Ridge Regression for ∆t = 0.001.

Here we present the results for the Lasso and Ridge regression for the Drift and Diffusion estima-

tors for the cubic model computed with (M,∆t) = (1000, 0.001). As we saw in section 3.5.1 on

the polynomial regression for the cubic model, the Drift estimator is computed considerably less

accurately for ∆t = 0.001 and thus, polynomial regression could not correctly identify coefficients

of the Drift term (see Table 6 for (M,∆t) = (1000, 0.001)). Thus, we want to verify whether Lasso

and Ridge regression techniques would mitigate this drawback of estimation for small ∆t.

The results for (M,∆t) = (1000, 0.001) are presented below.

âLassodrift = (0, 0,−0.6247, 0.112,−0.3843, 0,−0.063,−2.7× 10−3)

âLassodiff = (−0.016,−0.02,−2.3× 10−4,−9.2× 10−3, 2.5× 10−3, 0.5015, 0.999, 0.4999)

with RMSELassodrift = 0.24803 and RMSELassodiff = 0.0108 (with αdrift = αdiff = 10−4).

âRidgedrift = (−2.098,−0.131,−0.833, 0.124,−0.259, 0.016,−0.063,−0.004)
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âRidgediff = (0, 0, 0, 0, 0, 0.4988, 0.9991, 0.500)

with RMSERidgedrift = 0.2485 and RMSERidgediff = 0.01087 (with αdrift = 10−4, αdiff = 10−2).

Both techniques are able to estimate the Diffusion term correctly. It is easy to see that the results

of both, Lasso and Ridge regression, suggest that the diffusion term is very close to B2(x) = 0.5x2 +

x + 0.5. However, both techniques fail for correctly estimating the Drift term A(x) = −x3. Both,

Lasso and Ridge regression, suggest that the highest power in the Drift term should higher than

x3. For the Lasso regression, the highest power is x5 and for the Ridge regression the highest power

is x7. The corresponding regression coefficients for the Lasso and Ridge are aLassodrift (5) = −0.6247

and aRidgedrift (7) = −2.098, respectively. The results of this and previous sections on Lasso and Ridge

regression suggest that it is crucial to select correct (larger) ∆t for computing the Drift estimator

Â(xk). In contrast to the Drift estimator, the Diffusion estimator is less sensitive to the selection

of ∆t.
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