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Abstract 

 

Presented in this dissertation is a nonlinear controller synthesis methodology based on 

the inverse Sinusoidal Input Describing Function (SIDF) for a class of regulating 

systems. The design goal is to improve regulating performance beyond what is 

achievable by a linear control for a predicted level of disturbance step size. The controller 

design is executed using open loop frequency domain information and is applicable when 

the frequency response of a linear design cannot satisfy the designed open loop gain and 

phase characteristics. The gain and phase differences between the designed open loop 

frequency response and that of a linear design is treated as SIDF distortions. The inverse 

describing function approach is employed to identify an isolated explicit nonlinearity that 

is associated with obtained gain and phase distortions.  

For this, a computational solution to the inverse SIDF for a broad class of hysteresis 

or memoryless explicit nonlinearities is developed. The proposed numerical solution uses 

gain and phase distortions as a function of input amplitude size to identify the 

nonlinearity, and does not require a priori knowledge of the nonlinearity in the estimation 

process. The output from the algorithm is a non-parametric model of the nonlinearity 

from which a parametric model can be recovered.  

To illustrate the proposed nonlinear controller design technique, the idle speed control 

of a V-6 fuel injected engine model subject to an external torque load disturbance is 

considered. The closed loop performance is validated through simulation and the closed 
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loop stability in the sense of the bounded-input-bounded-output (BIBO) is assessed using 

Circle Theorem.  
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Chapter 1. Introduction 

 

The controller design for a system is considered an open-ended problem. In general, 

controller design addresses imposing the performance requirements on the closed loop 

system. More specifically, a feedback controller provides one or more of the followings: 

(i.) stabilization of unstable systems, (ii.) tracking of reference inputs, (iii.) rejection of 

external disturbances, and (iv.) prevention of actuator saturation. 

Typically, the controller design process provides a trade-off between the controller 

complexity and the closed loop performance requirements. A block diagram of a 

generalized control system is shown in Figure 1-1, where 𝑝 denotes the derivative 

operator. Without loss of generality, this block diagram excludes sensor noises and input 

disturbances.  

 

Figure 1-1 Block Diagram of a General Control System. 
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The dynamics between the controlled output, 𝑢(𝑡), and the system output, 𝑦(𝑡), are 

denoted by 𝐺!(𝛼,𝑝), where 𝛼 represents parametric uncertainties in the system. The 

dynamics between the external disturbance, 𝑑(𝑡), and the system output, 𝑦(𝑡), are 

denoted by 𝐺!(𝛼,𝑝). Typically, these dynamics are given a priori to the controller design 

process and are considered fixed. The sensor dynamics, 𝐻(𝑝), provides a proper 

translation of the system output for the feedback controller. 

For a single input single output (SISO) control system, there are generally three types 

of controllers available. (i.) The feed-forward controller, 𝐺!!(𝑝), that provides a direct 

actuation of the reference input signal, 𝑟(𝑡), to the plant. This type of controller can be 

considered as a proactive response to a reference input. (ii.) The prefilter, 𝐹(𝑝),  that is 

used to include additional dynamics to the reference input signal to improve the tracking 

performance of the closed loop system. (iii.) The feedback controller, 𝐺!(𝑝), that is used 

to provide disturbance rejection, reduce sensitivity of the system to the uncertainty, and 

provide stability for the closed loop system. The amount of feedback control specified 

during controller design procedure is proportional to the degree of uncertainty in the 

system and the magnitude of the external disturbance [1].  

The controller design techniques can be classified in different ways, depending on the 

type of information available for the open loop system and the performance requirements 

on the closed loop system. One general way to categorize these techniques is in the time 

domain and in the frequency domain. There is a tremendous knowledge base concerning 

both methods for linear systems. For example reference [2] provides a complete 
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discussion on the classical time domain and frequency domain controller design 

techniques for linear systems.  

As the closed loop performance requirements become more stringent, linear 

controller design techniques prove inadequate and nonlinear controller design procedures 

are desirable. Nonlinear feedback control methodologies have been proven effective in 

dealing with a large variety of real world issues such as (i.) rate and magnitude saturation 

of actuators, (ii.) restricted controller bandwidth, (iii.) sensor noise, (iv.) time delays, (v.) 

disturbances, and (vi.) system uncertainties associated with feedback maximization [3].  

There is a vast knowledge base of the literature available in the area of time domain 

nonlinear feedback controller design. One way to deal with the nonlinearities in the 

feedback system is to remove their effect with feedback control. This is formulated as the 

feedback linearization method [4]. In this method, the nonlinear dynamics of the system 

will be transformed into a linear form using state feedback. For this method to be fully 

effective, the full states of the system must be measurable. Another shortcoming 

associated with this method is related to the nonlinear systems with uncertainties, in 

which the issue of robustness is not guaranteed.  

To address the uncertainty in the nonlinear systems, other approaches have been 

developed. The uncertainty in the system can be related to either parametric uncertainties 

(unknown parameters of the system) or unstructured uncertainties (due to un-modeled 

dynamics). The issue of parametric uncertainty is considered in the robust control area 

such as the Sliding Mode Control (SMC) methodology. A robust controller is generally 

comprised of a nominal part and an additional term aimed for model uncertainties. For 
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unstructured uncertainties, on the other hand, the adaptive control methodology is useful, 

in which the structure of the controller is very similar to those in robust control but in 

addition, the model itself will be updated based on the performance measurements during 

the operation of the system [4]. These adaptation techniques can also be incorporated into 

the feedback linearization methodologies to address the robustness issues [5]. 

The so-called bifurcation controller design methodology develops nonlinear 

controllers that modify the stability point behavior of a nonlinear system. These methods 

have been employed to design the feedback controllers to modify the nature of the 

bifurcation. The design is conducted in the phase plane using equilibrium point analysis 

with the goal of designing nonlinear controller that transforms one form of bifurcation to 

another (e.g., subcritical bifurcation to a supercritical bifurcation) [6, 7]. Similar to 

feedback linearization, this methodology requires an accurate knowledge of the system 

nonlinearities. Although this method changes the fundamental nature of the nonlinear 

system, it does not address the performance issue and only focuses on the stability [8]. 

There is also a vast knowledge base of the literature available in the area of nonlinear 

controller design in the frequency domain that is of the interest of this dissertation as 

well. The frequency domain analysis of nonlinear systems is formulated as the 

Describing Function (DF) method [9-11]. The most deployed DF in the literature is the 

Sinusoidal Input Describing Function (SIDF). In simple words, SIDF is the quasi-

linearization of a nonlinear system that represents the nonlinear systems in terms of the 

gain and phase distortions of the nonlinear element response due to the harmonic input. 

The SIDF can be considered as the equivalence of transfer functions in the linear control 
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systems. However, unlink linear systems, SIDF can be function of both amplitude and 

frequency of the input signal. 

The inverse SIDF has been utilized for designing nonlinear controllers for nonlinear 

plants. Different methods are suggested that yield to a great flexibility in the design of 

nonlinear controllers by adjusting their gain and phase distortions [12]. In this regard, one 

possible structure for the nonlinear controller to consider is a combination of a static 

nonlinearity and a dynamic linear controller. One application for this is to reduce the 

closed loop sensitivity to the input amplitude in a certain range of operation. In other 

words, the nonlinear controller is designed such that the gain and phase distortions due to 

the nonlinear controller will cancel the effect of the gain and phase distortions due to the 

nonlinearity in the plant. Different nonlinear controller structures such as PID or Fuzzy 

can be obtained by this method [13-15]. There are multiple design methods proposed to 

obtain gain and phase distortions of the nonlinear controller: (i.) M-circle method, (ii.) 

Error Criterion (EC) method, and (iii.) Frequency Constraint (FC) method [13-16]. In the 

first method, the gain and phase distortions of the nonlinear controller are calculated such 

that they all required touching a pre-specified M-circle in the Nichols chart at the same 

frequency. In the other two methods, on the other hand, the gain and phase distortions of 

the nonlinear controller are obtained by minimizing an error function over a certain 

frequency range.  

Another important issue to consider is the possibility of utilizing nonlinear 

controllers, similar to those described above, to improve the closed loop performance of a 

linear system beyond what is achievable by a linear controller. In this regard, nonlinear 
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controller design methodologies in the frequency domain are developed. In [1, 8, 17, 18], 

a Volterra series representation is used to design a nonlinear controller in the frequency 

domain for a class of linear regulating systems subject to time domain constraints. The 

use of Volterra series limits the class of nonlinear controllers to the continuous functions. 

Their proposed strategy involves two steps: (i.) designing a linear controller that balances 

the trade-off between output performance and required actuation, and  (ii.) augmenting 

the linear controller with a nonlinear controller that has the characteristics of an odd cubic 

polynomial. The coefficients for the nonlinear term are calibrated such that the gain and 

phase distortions associated with the augmented open loop plant meet the time domain 

constraints.  

Additionally, in [19] a controller design technique is proposed that utilizes actuator 

saturation to meet output performance specification for linear regulating systems subject 

to time domain constraints. The proposed nonlinear controller saturates for large 

disturbance sizes while it operates linearly for smaller disturbance sizes. The gain and 

phase distortions of the nonlinear controller are obtained by enforcing time domain 

constraints in the frequency domain. Since the structure of the nonlinearity (saturation 

element) is known, the amplitude of the input signal to the nonlinearity is obtained by 

relating the characteristics of the analytical formulation of SIDF of the saturation element 

to the required gain and phase distortions.  

In this dissertation, a novel nonlinear controller design methodology is developed for 

a class of linear regulating systems subject to time domain constraints. The proposed 

nonlinear controller design methodology is executed in the frequency domain. The design 
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methodology allows for an increase in the external disturbance size (beyond what is 

predicted for a linear controller) by imposing required gain and phase distortions on the 

linear open loop transfer function to assure that the time domain constraints are satisfied. 

Doing so, the closed loop performance will be improved.  

In the proposed methodology, the time domain performance constraints will be 

translated in to the frequency domain tolerances. Additionally, the increase in the 

disturbance step size will be translated in terms of gain and phase distortions due to a 

nonlinearity. To identify the nonlinearity, a computational method for solving inverse 

SIDF problem is developed that estimates an isolated explicit nonlinearity from its gain 

and phase distortions information.  

 

1.1 Connection between Time Domain Performance and Frequency 

Domain Characteristicts 

The performance requirements of a system are usually defined in the time domain. To 

accommodate designing the controller in the frequency domain, translating the time 

domain properties in to the frequency domain characteristics is necessary.  

In general, enforcing time domain specifications in the frequency domain is not 

trivial, due to intrinsic incompatibilities between these two domains. However, some of 

the classical time domain performance specifications can be translated to the frequency 

domain characteristics for a limited class of systems. For this, consider a unity feedback 

second order system shown in Figure 1-2. 
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Figure 1-2 Block Diagram of a Unity Feedback System. 
 

In Figure 1-2, the second order system dynamics are represented by 

𝐺 𝑠 =
𝜔!!

𝑠 𝑠 + 2𝜉𝜔!
, (1.1) 

where 𝜔! is the natural frequency and 𝜉 is the damping ratio of the system. Equation 

(1.1) represents many different dynamic systems such as DC motors. For this system, a 

direct connection between the closed loop characteristics such as phase margin (𝜙!), 

overshoot (𝑂𝑆), and crossover frequency (𝜔!), and the properties of the open loop 

system such as damping ratio and natural frequency can be formulated by [20] 

𝜙! = 𝑡𝑎𝑛!!
2𝜉

4𝜉! + 1− 2𝜉!
, (1.2) 

𝑂𝑆 = exp(
𝜋𝜉
1− 𝜉!

), (1.3) 

and 

𝜔! = 𝜔! 4𝜉! + 1− 2𝜉!. (1.4) 
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During the controller design process in the frequency domain, the relationships in 

Eqs. (1.2) to (1.4), can be utilized to impose required gain and phase characteristics on 

the frequency response of the open loop system such that the closed loop system meet the 

pre-specified time domain characteristics. 

Although the performance specifications in Eqs. (1.2) to (1.4) have proved to work 

well, more detailed performance measures (such as output performance and actuator 

saturation) are needed for the design of modern higher performance feedback systems. 

Enforcing these time domain performance requirements in the frequency domain requires 

a new level of complexity in the control design methodologies and will be discussed later 

in Chapter 4. 

 

1.2 Problem Statement  

The class of systems considered in this dissertation is the linear SISO regulating 

systems. For regulating systems, with the reference input held constant (see Figure 1-1), 

only the feedback controller is needed. Consider the block diagram of this type of system 

shown in Figure 1-3. 
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Figure 1-3 Block Diagram of a Regulating System. 
 

For a system shown in Figure 1-3, the typical performance objectives are to maintain 

the regulated output variable 𝑦(𝑡) and the controlled output 𝑢(𝑡) with a pre-specified 

tolerances about their fixed set points despite the size of the external disturbance. 

The objective is to design a nonlinear controller to improve the closed loop regulating 

performance of the system described in Figure 1-3, beyond what is achievable by a linear 

controller for a predicted level of disturbance step size. The nonlinear controller will be 

appended to the linear controller that is designed for the predicted level of disturbance 

step size. The nonlinear feedback controller must be able to satisfy performance 

objectives for a given value of the disturbance step size, 𝛾, that is greater than the 

predicted level, 𝛾∗ for the designed linear controller. 

The time domain performance specifications will be translated in terms of upper and 

lower amplitude bounds on the open loop system (feedback controller 𝐺!(𝑝) in series 

combination with the plant dynamics 𝐺!(𝑝) in Figure 1-3) in the Nichols chart. This 
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enables designing a controller in the frequency domain through the use of performance 

weights in 𝐻! controller synthesis method. 

The main focus of this dissertation is aimed at designing a nonlinear controller for a 

linear regulating system to improve the closed loop performance. The proposed approach 

is within the frequency domain and includes time domain performance specifications. 

The proposed solution is an extension of the classical linear robust control methodologies 

(𝑄𝐹𝑇, 𝐻!).  

The proposed nonlinear controller synthesis methodology imposes required gain and 

phase distortions on the frequency response of the linear open loop transfer function to 

achieve higher closed loop performances. These gain and phase distortions will be treated 

as the SIDF information. To identify the nonlinear controller from its SIFD 

representation, an inverse SIDF algorithm is utilized. For this, a computational solution 

for the inverse SIDF problem is developed that estimates an isolated explicit (static) 

nonlinearity from its gain and phase distortions information. The formulation of the 

inverse SIDF and the synthesis of the nonlinear controller comprise the main content of 

this dissertation.  

 

1.3 Organization of the Dissertation 

The proposed controller design in this dissertation is separated into two major 

sections. First, the extension of the frequency response analysis for nonlinear systems is 

introduced. This is covered in Chapter 2 and Chapter 3. More specifically, Chapter 2 

introduces describing function (DF) methodology and its application in the analysis of 
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nonlinear systems. It explains the process of characterizing nonlinear systems with the 

notion of the frequency response. Chapter 3 presents a numerical method to solve the 

inverse SIDF problem and it motivates the benefit of using it for nonlinear controller 

design.  

In the second section of this dissertation, the methodology of designing controller for 

the class of linear regulating systems is presented. Chapter 4 serves to motivate and 

describe the linear controller design technique in the frequency domain. Transforming the 

time domain specifications in to the frequency domain is discussed, followed by the 

linear controller design procedure. In Chapter 5, the nonlinear frequency based controller 

synthesis methodology is proposed. It presents the utilization of the developed inverse 

SIDF algorithm in designing a nonlinear controller to improve the closed loop 

performance. 

In Chapter 6, the stability analysis of the designed nonlinear feedback systems in the 

sense of bounded-input-bounded-output (BIBO) is addressed. Conclusions and 

contributions are presented in Chapter 7. 
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Chapter 2. Describing Function Method  

 

The frequency response analysis of linear feedback systems is a well-established 

methodology. The utility of linear frequency response methods was extended to nonlinear 

systems in late 1940s and early 1950s [21-26]. This method has been formulated as the 

describing function (DF) method. This chapter serves to provide a brief overview of the 

DF method for analysis of nonlinear systems.  

 

2.1 Introduction to Describing Function Method 

Describing function is a quasi-linearization of the nonlinear system that approximates 

the nonlinear function with a linear representation. DF minimizes the mean square error 

between the nonlinear system response and its linear description. The DF characterization 

of a nonlinear system has been developed for specific input signals such as harmonic 

excitation, random input signal, Gaussian input, and biased inputs [9-11, 27]. The most 

deployed DF in the literature is the Sinusoidal Input Describing Function (SIDF), which 

is defined as the fundamental response of a nonlinear system at steady state for a single 

sinusoidal input [10]. SIDF characterizations produce descriptive gain and phase 

distortions of a nonlinear system that are function of the input amplitude, 𝐴, and 

frequency, 𝜔.  
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A typical application of the SIDF in a feedback loop is shown in Figure 2-1, where 

the plant nonlinearity, 𝑃[𝑢 𝑡 ], is replaced by a SIDF representation, 

𝑃 𝐴 𝑢 𝑡 ,𝜔 𝑢 𝑡 . 

 

Figure 2-1 Application of the SIDF in a Feedback Loop. 
 

The generalized SIDF parallels transfer function ideas in linear systems. In fact, SIDF 

is an approximation of the nonlinear system by linear time invariant transfer functions. 

However, unlike linear systems, the characteristics of these representative transfer 

functions depend on the amplitude and frequency of the input signal. In the following 

section, the formulation for computing describing function is presented. 
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2.2 Computation of Describing Function  

The development of the DF is based on the estimation of a linear filter, 𝑤(𝑡), that 

approximates a nonlinear differential equation functional, 𝑛[𝑥 𝑡 ], for a particular input 

wave, 𝑥(𝑡), such that the mean square of the error signal, 𝑒(𝑡), is minimized (Figure 2-2) 

[1, 9]. The procedure for calculating the optimal filter is presented below. This derivation 

closely follows the derivation of the unified theory of describing function in [9] with the 

modification for a single input signal. 

 

Figure 2-2 Describing Function Representation. 
 

The DF is defined as the selection of an optimal filter, 𝑤 𝑡  that minimizes 

𝑒! 𝑡 = (𝑦 𝑡 − 𝑦(𝑡))! = 𝑦 𝑡 ! − 2𝑦 𝑡 𝑦(𝑡)+ 𝑦 𝑡 !, (2.1) 

where 

𝑒 𝑡 = 𝑦 𝑡 − 𝑦(𝑡), (2.2) 
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𝑦 𝑡 = 𝑤 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏
!

!!
, (2.3) 

and 𝑣(𝑡) denotes the expected value of a given signal 𝑣 𝑡  defined as, 

𝑣(𝑡) = 𝑣(𝑡)𝑝!𝑑𝑣
!
!! , in which 𝑝! is the probability density of 𝑣(𝑡). The expected value 

of a signal is a measure of its mean value.  

To find 𝑤 𝑡 , consider expanding all terms in Eq. (2.1), 

𝑦 𝑡 ! = 𝑤 𝜏! 𝑥 𝑡 − 𝜏! 𝑑𝜏!
!

!
𝑤 𝜏! 𝑥 𝑡 − 𝜏! 𝑑𝜏!

!

!

= 𝑤 𝜏! 𝑤 𝜏! 𝑥 𝑡 − 𝜏! 𝑥 𝑡 − 𝜏! 𝑑𝜏!𝑑𝜏!
!

!

!

!
, 

(2.4) 

and 

𝑦 𝑡 ! = 𝑤 𝜏! 𝑤 𝜏! 𝑥 𝑡 − 𝜏! 𝑥 𝑡 − 𝜏! 𝑑𝜏!𝑑𝜏!
!

!

!

!

= 𝑤 𝜏! 𝑤 𝜏! 𝜙(𝜏! − 𝜏!)𝑑𝜏!𝑑𝜏!
!

!

!

!
, 

(2.5) 

where 𝜙(𝜏! − 𝜏!) ≜ 𝑥 𝑡 − 𝜏! 𝑥 𝑡 − 𝜏! . Following same procedure, the followings can 

be obtained. 

𝑦 𝑡 𝑦(𝑡) = 𝑤 𝜏 𝑦 𝑡 𝑥 𝑡 − 𝜏 𝑑𝜏
!

!
 (2.6) 

and 
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𝑦 𝑡 𝑦(𝑡) = 𝑤 𝜏 𝑦 𝑡 𝑥 𝑡 − 𝜏 𝑑𝜏
!

!
. (2.7) 

Substituting Eqs. (2.5) and (2.7) into Eq. (2.1) yields 

𝑒! 𝑡 = 𝑤 𝜏! 𝑤 𝜏! 𝜙(𝜏! − 𝜏!)𝑑𝜏!𝑑𝜏!
!

!

!

!
− 2 𝑤 𝜏 𝑦 𝑡 𝑥 𝑡 − 𝜏 𝑑𝜏

!

!

+ 𝑦 𝑡 !. 
(2.8) 

Next step is to find the necessary condition for the optimal set of filters. To minimize 

the error function, 𝑒! 𝑡  must be stationary with respect to variations in 𝑤 𝑡 . To 

formulate this requirement, 𝑤 𝑡  is expressed by 

𝑤 𝑡 = 𝑤! 𝑡 + 𝛿𝑤(𝑡), (2.9) 

where 𝑤! 𝑡  is the optimal filter, and 𝛿𝑤(𝑡) is an arbitrary (but physically realizable) 

variation of the optimal filter. Using similar notation for the error function, the expanded 

square error function can be written as 

𝑒! 𝑡 = 𝑒!!(𝑡)+ 𝛿𝑒! 𝑡 + 𝛿!𝑒! 𝑡 . (2.10) 

Using Eq. (2.8), the firs term in the right hand side of Eq. (2.10) can be written as  

𝑒!!(𝑡) = 𝑤! 𝜏! 𝑤! 𝜏! 𝜙(𝜏! − 𝜏!)𝑑𝜏!𝑑𝜏!
!

!

!

!
− 2 𝑤! 𝜏 𝑦 𝑡 𝑥 𝑡 − 𝜏 𝑑𝜏

!

!

+ 𝑦 𝑡 !. 
(2.11) 

Additionally, the second term in the right hand side of Eq. (2.10) is given by 
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𝛿𝑒! 𝑡 = 𝑤! 𝜏! 𝛿𝑤 𝜏! + 𝑤! 𝜏! 𝛿𝑤 𝜏! 𝜙(𝜏! − 𝜏!)𝑑𝜏!𝑑𝜏!
!

!

!

!

− 2 𝛿𝑤 𝜏 𝑦 𝑡 𝑥 𝑡 − 𝜏 𝑑𝜏
!

!
. 

(2.12) 

Assuming 𝜙 𝜏! − 𝜏! = 𝜙(𝜏! − 𝜏!), Eq. (2.12) is reduced to 

𝛿𝑒! 𝑡 = 2 𝛿𝑤 𝜏! 𝑤! 𝜏! 𝜙(𝜏! − 𝜏!)𝑑𝜏!
!

!
− 𝑦 𝑡 𝑥 𝑡 − 𝜏! 𝑑𝜏!

!

!
. (2.13) 

Moreover, the third term in the right hand side of Eq. (2.10) is given by  

𝛿!𝑒! 𝑡 = 𝛿𝑤 𝜏! 𝛿𝑤 𝜏! 𝜙(𝜏! − 𝜏!)𝑑𝜏!𝑑𝜏!
!

!

!

!
. (2.14) 

Based on Eq. (2.14), 𝛿!𝑒! 𝑡  is not a function of the optimal filter,  𝑤! 𝑡 , and is 

positive; therefore, it cannot be “designed” to reduce the error. Hence, the square error in 

Eq. (2.10) can only be reduced by means of Eq. (2.13), i.e., by setting 𝛿𝑒! 𝑡 = 0. This 

yields  

𝑤! 𝜏! 𝜙(𝜏! − 𝜏!)𝑑𝜏!
!

!
= 𝑦 𝑡 𝑥 𝑡 − 𝜏! . (2.15) 

Therefore, to minimize the error function, Eq. (2.15) must be satisfied. This equation 

can be solved for different input signals. In the following section, the formulation for 

sinusoidal input signal is presented which yields to the formulation of SIDF. 
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2.2.1 Computation of Sinusoidal Input Describing Function  

To find the SIDF, the input signal is set to 𝑥 𝑡 = 𝐴 sin(𝜔𝑡) in Eq. (2.15). For this 

harmonic input, 𝜙(𝜏) is evaluated as [9] 

𝜙 𝜏 =
𝜔
2𝜋 𝐴! sin 𝜔𝑡 sin 𝜔𝑡 + 𝜔𝜏 𝑑𝑡

!
!

!!
!

=
𝐴!

2 cos 𝜔𝜏 . (2.16) 

Consequently the expression for  𝜙(𝜏! − 𝜏!) is given by 

𝜙 𝜏! − 𝜏! =
𝐴!

2    cos 𝜔𝜏! cos 𝜔𝜏! + sin 𝜔𝜏! sin 𝜔𝜏! . (2.17) 

For the harmonic input, the right hand side of Eq. (2.15) can be written as 

𝑦 𝑡 𝑥 𝑡 − 𝜏! = 𝐴 cos(𝜔𝜏!)𝑦 𝑡 sın 𝜔𝑡 − 𝐴 sin(𝜔𝜏!)𝑦 𝑡 cos 𝜔𝑡 . (2.18) 

Substituting Eqs. (2.17) and (2.18) into Eq. (2.15) produces two equations 

𝐴
2 𝑤! 𝜏! cos 𝜔𝜏! 𝑑𝜏!

!

!
= 𝑦 𝑡 sın 𝜔𝑡    (2.19) 

and 

𝐴
2 𝑤! 𝜏! sin 𝜔𝜏! 𝑑𝜏!

!

!
= −𝑦 𝑡 cos 𝜔𝑡 . 

(2.20) 

The optimal filter, 𝑤 𝑡 , must simultaneously satisfy Eqs. (2.19) and (2.20). One 

possible solution given in [9] is 
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𝑤 𝜏! =
2
𝐴 𝑦 𝑡 𝑠𝚤𝑛 𝜔𝑡 𝛿 𝜏! +

2
𝜔𝐴 𝑦 𝑡 𝑐𝑜𝑠 𝜔𝑡 𝛿 𝜏! , (2.21) 

where 𝛿 .  and 𝛿 .  are the so-called Dirac Delta and Doublet functions, respectively. 

The transfer function representations of Eq. (2.21) is given by  

𝑊 𝑠 = !
!
𝑦 𝑡 𝑠𝚤𝑛 𝜔𝑡 + !

!
𝑦 𝑡 𝑐𝑜𝑠 𝜔𝑡 𝑠 .  (2.22) 

It is to be noted that Eq. (2.21) is not the only solution for Eqs. (2.19) and (2.20). 

However, the transfer function representation of any other solution has also the 

characteristics of a Proportional plus Derivative (PD) path, as Eq. (2.22) does [9].  

An alternative form of Eq. (2.22) can be considered as a complex gain, which distorts 

the input signal. This can be obtained by setting 𝑠 = 𝑗𝜔 in Eq. (2.22) that yields to 

𝑊 𝑗𝜔 = !
!
𝑦 𝑡 𝑠𝚤𝑛 𝜔𝑡 + 𝑗  𝑦 𝑡 𝑐𝑜𝑠 𝜔𝑡 .  (2.23) 

Additionally, the SIDF can be obtained by considering the Fourier transformation of Eq. 

(2.21) as 

𝑁 𝐴,𝜔 =
𝐶′ 𝐴,𝜔 + 𝑗𝑆′(𝐴,𝜔)

𝐴   , (2.24) 

where 

𝐶′ 𝐴,𝜔 =
1
𝜋 𝑦 𝐴 sin(𝜔𝑡) sin(𝜔𝑡)𝑑(𝜔𝑡)

!!

!
   (2.25) 

and 
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𝑆′(𝐴,𝜔) =
1
𝜋 𝑦 𝐴 sin 𝜔𝑡 cos 𝜔𝑡 𝑑 𝜔𝑡

!!

!
. (2.26) 

Collectively, Eqs. (2.24) to (2.26) can be written as  

𝑁 𝐴,𝜔 =
𝑗
𝜋  𝐴    𝑦 𝐴 sin(𝜔𝑡)   𝑒!!(!")𝑑(𝜔𝑡)

!!

!
. (2.27) 

The SIDF representation by Eq. (2.27) is valid provided that 𝑦 𝑡  is periodic and its 

derivative is piecewise smooth on the periodic interval 0 ≤ 𝜔𝑡 ≤ 2𝜋. 

For system with nonlinearities, if 𝑦 𝑡  is known, the SIDF can be directly calculated 

using integral equations in Eq. (2.27). It is to be noted that, this SIDF representation 

implies the gain and phase distortions (per Eqs. (2.25) and (2.26), respectively) of the 

fundamental output of the periodic response 𝑦 𝑡 , due to the nonlinearity subject to a 

harmonic input. 

If the nonlinearity is single-valued (memoryless), then its SIDF representation is 

associated with only gain distortions, i.e., 𝑆′ 𝑗𝜔 = 0. In the case of a double-valued 

nonlinearity (hysteresis), on the other hand, the SIDF representation is associated with 

both gain and phase distortions.  

For an explicit (static) nonlinearity, the nonlinear function depends only on the input 

signal, i.e., 𝑥 𝑡 , and its SIDF representation is only a function of the input signal 

amplitude. On the other hand, for an implicit (dynamic) nonlinearity, the nonlinear 
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function depends on the input signal as well as its derivatives, and its SIDF representation 

is function of both amplitude and frequency of the input signal. 

 

2.3 Applications of Describing Function 

The DF method has many important applications in the analysis and design of 

nonlinear feedback systems. They are powerful tool for the investigation of possible 

existence and stability of the limit cycles in the nonlinear systems [28-30]. To illustrate 

this, consider a closed loop system with a single nonlinear element denoted by 𝑁. 𝐿. and a 

linear dynamic denoted by 𝐺(𝑝) shown in Figure 2-3. 

 

Figure 2-3 General Block Diagram of a Feedback System with Nonlinear Element in the Loop. 
 

Let 𝑒!"(𝑡) = 𝐴 sin 𝜔𝑡  and the SIDF representation of the nonlinear element be 

𝑁 𝐴,𝜔 , then the feedback equation for the block diagram of Figure 2-3 can be written 

as [11] 

𝑁 𝐴,𝜔 𝐺 𝑗𝜔 = −1. (2.28) 

Equation (2.28) provides a condition for the existence of the limit cycle for the closed 

loop system. In other word, if Eq. (2.28) holds, then the system oscillates. Moreover, if a 
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limit cycle exists, solving Eq. (2.28) gives both amplitude and frequency of the 

oscillations.  

Additionally, Eq. (2.28) can be used to investigate the stability of the oscillations. 

This can be viewed as the extended Nyquist criterion, meaning that, instead of 

considering the encirclements of the critical point (i.e., −1+ 𝑗0), the encirclements of 

!
! !,!

 must be examined. 

It is to be noted that, the reliability of conditions determined by Eq. (2.28) are 

contingent upon a clear (i.e., not tangential) intersection between  𝐺 𝑗𝜔  and !!
! !,!

 plots, 

due to the approximate nature of the SIDF. For a special class of systems, sufficient 

conditions are formulated in [31] under which the use of SIDF for examining the 

existence and stability of limit cycles are justified. 

 

2.4 Chapter Summary 

Presented in this chapter is an overview of the describing function method and its 

applications in the analysis of nonlinear systems. More specifically, the SIDF formulation 

is presented that represents the frequency response of a nonlinear system. It is shown that 

the SIDF representation of a nonlinear system can be considered as the gain and phase 

distortions in the response of the nonlinearity to the harmonic input signal. These gain 

and phase distortions will be utilized in Chapter 3 to present a numerical solution to the 

inverse SIDF problem that can identify an isolated static nonlinearity.   
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Chapter 3. Numerical Solution to the Inverse Sinusoidal 

Input Describing Function 

 

Beyond the SIDF pseudo-linearization presented in Chapter 2, is the inverse problem, 

i.e., recovering a nonlinear function from its gain and phase distortions information. The 

main focus of this chapter is to develop a numerical solution for the inverse SIDF to 

identify a non-parametric model for an explicit nonlinear function based on its gain and 

phase distortions. The proposed solution can be used in designing a nonlinear controller 

in a compensatory network to improve the closed loop performance of the system.  

 

3.1 Introduction   

The goal of inverse SIDF problem is the identification of a nonlinear function whose 

gain and phase distortions information is available. That is, if the gain and phase 

distortions are known, one can obtain the nonlinear function associated with the gain and 

phase distortions by using the developed inverse SIDF algorithm. The inverse SIDF 

solution developed in this chapter will be utilized in Chapter 5, to develop a methodology 

for synthesizing nonlinear controllers for regulating systems to improve their closed loop 

performance. 
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3.2 Overview of Inverse Describing Function  

Inverse describing functions have important applications in the analysis and design of 

systems with nonlinear elements [13-16, 32-27]. Several methods for estimation of 

nonlinear functions using inverse describing functions have been proposed. The simplest 

inverse SIDF method employs a linear interpolation technique for the estimation of the 

nonlinear function for an isolated explicit single-valued nonlinearity with the 

characteristic of a slope-bounded function defined as [10, 14]  

𝑎! ≤
𝑛 𝑥! 𝑡 + 𝜀 − 𝑛 𝑥! 𝑡

𝜀 ≤ 𝑎!,   (3.1) 

where 𝑛[𝑥 𝑡 ] denotes a nonlinear function, 𝑥 𝑡  is the input signal, 𝑎! and 𝑎! are finite 

real numbers, and 𝜀 is an arbitrary small number. 

Another method uses the gain distortions to recover a piecewise linear function [9, 

15, 34, 36]. The nonlinearities applicable for this inverse SIDF method include isolated 

explicit single-valued nonlinearities that have the characteristics of a gain-changing 

continuous function. The analytical SIDF used for this class of nonlinearities is 

𝑁 𝐴 =
4𝑀
𝜋𝐴 + 𝑚! −𝑚!!! 𝑓

𝑥!
𝐴

!!!

!!!

, (3.2) 

where  𝑓 !!
!

 is the so-called saturation function with unit limits and unit slope defined as 
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𝑓
𝑥!
𝐴 =

2
𝜋
sin!!

𝑥!
𝐴

+
𝑥!
𝐴
   1−

𝑥!
𝐴

!
        for  

𝑥!
𝐴
≤ 1

1                                                                                                                                for  
𝑥!
𝐴
> 1

,   (3.3) 

where 𝑚!, 𝑥! and 𝑀 are parameters of a piecewise continuous nonlinearity with 𝑛 

different segments (Figure 3-1L) [1, 9]. 

 

Figure 3-1 (L) Piecewise Continuous Nonlinearity and (R) Corresponding SIDF. 
 

To initiate the inversion process, the gain distortions, 𝑁(𝐴) are divided into equal 

discrete segments (Figure 3-1R). Then the SIDF in Eq. (3.2) is used to evaluate the 

resulting gain distortions at the discretized amplitudes of 𝐴 = !
!
, !!
!
,… to generate the set 

of equations 
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1 0 0 … 0

𝑓
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2
3 0 … 0

𝑓
2
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𝑓
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5
− 𝑓

2
5

1− 𝑓
4
5

… 0
⋮ ⋮ ⋮ … ⋮

𝑚!
𝑚!
𝑚!
𝑚!
⋮

=

𝑁
𝛿
2

𝑁
3𝛿
2

𝑁
5𝛿
2

𝑁
7𝛿
2
⋮

. (3.4) 

Using Least Square Estimation (LSE) method, Eq. (3.4) can be solved to obtain the 

parameters of the nonlinear piecewise function, 𝑦(𝑥) (Figure 3-1L). The accuracy of this 

approximation is contingent upon the selection of 𝛿. This method effectively estimates a 

piecewise nonlinearity provided the nonlinearity is a piecewise continuous function.  

Additional SIDF inversion algorithms have been suggested for other classes of 

nonlinearities such as polynomials. In the case of a polynomial function, the analytical 

formulation of the SIDF itself is a polynomial. Therefore, a LSE curve-fit method can be 

employed to the gain distortions to recover the nonlinear polynomial function [9]. 

Alternatively, inverse describing function method for multiple inputs and random inputs 

have also been developed. Determination of the inverse random describing function for a 

Gaussian input has been interpreted as the inverse Laplace transform. Same concepts 

have been extended to the case of multiple inputs, when the independent inputs are either 

random Gaussian input or signals with the probability density of a sinusoidal input  [38-

40]. These methods have been formulated for a class of odd-symmetric single-valued 

nonlinearities, thereby only gain distortions are considered. 
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In [41], an inverse SIDF algorithm is proposed for nonlinearities with and without 

memory. This algorithm employs a preconceived structure for the nonlinearity (e.g., 

memoryless or hysteresis, piecewise linear or polynomial) as well as an initial estimate 

for its parameters. The structure of the nonlinearity is selected from a catalogue of 

functions considered in the analysis. Based on the selected structure for the nonlinearity 

and initial estimate of its parameters, the proposed algorithm finds the “best” parameters 

for the nonlinearity by minimizing the squared error between the estimated and actual 

gain and phase distortions. This algorithm has been employed in [16, 32, 33, 35 and 37]. 

In general, the inverse SIDF solutions appearing in the open literature have one 

similarity; an assumed nonlinearity structure is required. Developing a more general 

algorithm to solve the inverse SIDF problem without a priori information at the 

nonlinearity would further advance the knowledge base. In this regard, a numerical 

algorithm to solve the inverse SIDF problem for explicit odd single-valued nonlinearities 

is presented in [13]. This algorithm only utilizes the SIDF gain distortions to estimate the 

nonlinearity by numerically solving its analytical inverse SIDF integrals. 

The main focus of this chapter is to develop a more general numerical solution for the 

inverse SIDF. The proposed computational method directly utilizes the gain and phase 

distortions and numerically recovers a non-parametric model of the nonlinearity. Unlike 

other methods, the structure of the nonlinearity is an output from the proposed method 

and will be identified from the non-parametric model, therefore it is not known a priori. 

The class of nonlinearities applicable to the proposed method is isolated explicit 

nonlinearities. 
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3.3 Analytic Solution to the Inverse SIDF 

In this section, an analytical approach upon the solution of the inverse SIDF for 

explicit nonlinearities is presented. This is done by transformation of SIDF in a form that 

the inverse SIDF problem will be presented in terms of Volterra integral equations [42, 

43]. 

The analytical solution to the inverse SIDF applies to explicit nonlinearities. Consider 

a class of nonlinear functions given by 

𝑦 = 𝑛 𝑥 , (3.5) 

where 𝑛 𝑥  has the most general form of an explicit nonlinear function including double-

valued nonlinearities, yet excludes the frequency dependency (i.e., implicit 

nonlinearities). In other words, 𝑛 𝑥  is a function of input signal 𝑥(𝑡), but not its 

derivatives. One such a function is shown in Figure 3-2. 

 

Figure 3-2 Example of an Explicit Double-valued Nonlinearity. 
 

y(x)

x

δx < 0

δx > 0
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If 𝑛(𝑥) is a double-valued function (Figure 3-2), it can be decomposed into two 

single-valued functions as 

𝑛 𝑥 = 𝑛! 𝑥       𝛿𝑥 < 0
𝑛! 𝑥       𝛿𝑥 > 0, (3.6) 

where 𝛿𝑥 is a small increment of the input signal. Provided the input to the nonlinear 

function is a harmonic wave 𝑥 𝑡 = 𝐴 sin 𝜔𝑡 = 𝐴 sin 𝛼 , 𝑦(𝑡) will be a periodic 

function with period 2𝜋. Its Fourier expansion is 

𝑦 𝑡 =
𝑎!
2 + 𝑎! cos 𝛼 + 𝑏! sin 𝛼 + 𝐻.𝑂.𝑇., (3.7) 

where 𝑎!, 𝑎! and 𝑏! are the Fourier coefficients, and 𝐻.𝑂.𝑇. represents the higher order 

terms that are neglected in the SIDF method [31]. This assumption is valid by 

considering the low-pass filter hypothesis. The SIDF is defined as the ratio of the 

fundamental harmonic output to the amplitude of the input [9] and can be written in terms 

of the Fourier coefficients 

𝑀 𝐴 =
𝑎!
2𝐴 =

1
2𝜋𝐴 𝑛 𝐴 sin 𝛼   𝑑𝛼

!!

!
, (3.8) 

𝐶 𝐴 =
𝑏!
𝐴 =

1
𝜋𝐴 𝑛 𝐴 sin 𝛼   sin 𝛼   𝑑𝛼

!!

!
, (3.9) 

and 

𝑆 𝐴 =
𝑎!
𝐴 =

1
𝜋𝐴 𝑛 𝐴 sin 𝛼   cos 𝛼   𝑑𝛼

!!

!
. 

(3.10) 
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The SIDF of the nonlinear function is given by Eqs. (3.8) to (3.10), where 𝑀(𝐴) is 

related to the offset term in the Fourier series expansion (which is considered zero in the 

SIDF formulation, i.e., it is not accounted for), 𝐶(𝐴) is the real part of the SIDF, and 

𝑆(𝐴) is the imaginary part of the SIDF. 

The inverse SIDF problem solves Eqs. (3.8) to (3.10) to recover the nonlinear 

function, 𝑛 𝑥 . In general, the solution is not trivial, owing to the double-valued nature of 

𝑛(𝑥). The procedure of solving Eqs. (3.8) to (3.10) is to determine 𝑛(𝑥) based on the 

method in [43-45]. 

Considering the sign of 𝛿𝑥 in different segments of interval 0 to 2𝜋, and using Eq. 

(3.6), Eqs. (3.8) to (3.10) can be decomposed as  

𝑀 𝐴 =
1
2𝜋𝐴 𝑛! 𝐴 sin 𝛼   𝑑𝛼

!
!

!
+ 𝑛! 𝐴 sin 𝛼   𝑑𝛼

!

!
!

+ 𝑛! 𝐴 sin 𝛼   𝑑𝛼
!!
!

!
+ 𝑛! 𝐴 sin 𝛼   𝑑𝛼

!!

!!
!

, 

(3.11) 

𝐶 𝐴 =
1
𝜋𝐴 𝑛! 𝐴 sin 𝛼 sin 𝛼 𝑑𝛼

!
!

!
+ 𝑛! 𝐴 sin 𝛼 sin 𝛼   𝑑𝛼

!

!
!

+ 𝑛! 𝐴 sin 𝛼 sin 𝛼   𝑑𝛼
!!
!

!
+ 𝑛! 𝐴 sin 𝛼 sin 𝛼   𝑑𝛼

!!

!!
!

, 

(3.12) 

and 
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𝑆 𝐴 =
1
𝜋𝐴 𝑛! 𝐴 sin 𝛼 cos 𝛼 𝑑𝛼

!
!

!
+ 𝑛! 𝐴 sin 𝛼 cos 𝛼   𝑑𝛼

!

!
!

+ 𝑛! 𝐴 sin 𝛼 cos 𝛼   𝑑𝛼
!!
!

!

+ 𝑛! 𝐴 sin 𝛼 cos 𝛼   𝑑𝛼
!!

!!
!

. 

(3.13) 

The single-valued functions 𝑛! 𝑥  and 𝑛! 𝑥 , can be written as the summation of odd 

and even functions  

𝑛! 𝑥 = 𝑝! 𝑥 + 𝑞! 𝑥  (3.14a) 

and 

𝑛! 𝑥 = 𝑝! 𝑥 + 𝑞! 𝑥 , (3.14b) 

where 𝑝! denotes an even function, i.e., 𝑝! −𝑥 = 𝑝!(𝑥) and 𝑞! denotes an odd function, 

i.e., 𝑞! −𝑥 = −𝑞!(𝑥) and 𝑞! 0 = 0. 

Substituting Eq. (3.14) in Eqs. (3.11) to (3.13), performing appropriate change of 

variables, and using the properties of odd, even, and trigonometric functions, all integrals 

in Eqs. (3.11) to (3.13) can be transformed to compact integrals with the same interval of 

0 to   !
!

.  
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In Eq. (3.13), consider 𝑆! 𝐴 = 𝑛! 𝐴 sin 𝛼 cos 𝛼 𝑑𝛼
!
!
! , 

𝑆! 𝐴 = 𝑛! 𝐴 sin 𝛼 cos 𝛼   𝑑𝛼!
!
!

, 𝑆! 𝐴 = 𝑛! 𝐴 sin 𝛼 cos 𝛼   𝑑𝛼
!!
!
! , and 

𝑆! 𝐴 = 𝑛! 𝐴 sin 𝛼 cos 𝛼   𝑑𝛼!!
!!
!

. 𝑆! 𝐴  is already in the interval of 0 to   !
!

 and can 

be expressed as 

𝑆! 𝐴 = 𝑝! 𝐴 sin 𝛼 +𝑞! 𝐴 sin 𝛼 cos 𝛼   𝑑𝛼
!
!

!
. (3.15) 

For 𝑆! 𝐴 , consider applying a change of variable as 𝛼 = 𝜋 − 𝛽 and using the properties 

of trigonometric functions of cos   (𝜋 − 𝛽) = −cos 𝛽  and sin   (𝜋 − 𝛽) = sin 𝛽 , and 

considering the properties of odd and even functions, 𝑆! 𝐴  can be written as 

𝑆! 𝐴 = −𝑝! 𝐴 sin 𝛼 −𝑞! 𝐴 sin 𝛼 cos 𝛼   𝑑𝛼
!
!

!
. (3.16) 

Similarly, for 𝑆! 𝐴 , consider applying a change of variable as 𝛼 = 𝜋 + 𝛽 and using the 

properties of trigonometric functions of cos   (𝜋 + 𝛽) = −cos 𝛽  and sin   (𝜋 + 𝛽) =

−sin    𝛽 , and considering the properties of odd and even function, 𝑆! 𝐴  can be written 

as 

𝑆! 𝐴 = −𝑝! 𝐴 sin 𝛼 +𝑞! 𝐴 sin 𝛼 cos 𝛼   𝑑𝛼
!
!

!
. (3.17) 

Finally, for 𝑆! 𝐴 , consider applying a change of variable as 𝛼 = 2𝜋 − 𝛽 and using the 

properties of trigonometric functions of cos   (2𝜋 − 𝛽) = cos 𝛽  and sin   (2𝜋 − 𝛽) =
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−sin 𝛽 , and considering the properties of odd and even function, 𝑆! 𝐴  can be written 

as 

𝑆! 𝐴 = 𝑝! 𝐴 sin 𝛼 −𝑞! 𝐴 sin 𝛼 cos 𝛼   𝑑𝛼
!
!

!
. (3.18) 

Using Eqs. (3-15) to (3-18) in Eq. (3-13),  𝑆 𝐴  is reduced to  

𝑆 𝐴 =
−2
𝜋𝐴 𝑃 𝐴 sin 𝛼 cos 𝛼   𝑑𝛼

!
!

!
. (3.19) 

Using the exact same procedures for Eqs. (3-11) and (3-12), 𝑀 𝐴  and 𝐶 𝐴  can also 

be reduced to  

𝑀 𝐴 =
1
𝜋𝐴 𝑃∗ 𝐴 sin 𝛼 𝑑𝛼

!
!

!
 (3.20) 

and 

𝐶 𝐴 =
2
𝜋𝐴 𝑄 𝐴 sin 𝛼 sin 𝛼   𝑑𝛼

!
!

!
, (3.21) 

where in Eqs. (3.19) to (3-21) 

𝑃∗(𝑥) = 𝑝!(𝑥)+ 𝑝!(𝑥), (3.22a) 

𝑃(𝑥) = 𝑝!(𝑥)− 𝑝!(𝑥), (3.22b) 

and 
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𝑄 𝑥 = 𝑞! 𝑥 + 𝑞! 𝑥 . (3.22c) 

Note that 𝑄(𝑥) is an odd function and 𝑃(𝑥) and 𝑃∗(𝑥) are even functions. 

By returning to the original input variable, i.e., 𝑥, Eqs. (3.19) to (3.21) can be written 

as 

𝑀 𝐴 =
1
𝜋𝐴

𝑃∗ 𝑥
𝐴! − 𝑥!

  𝑑𝑥
!

!
, (3.23) 

𝐶 𝐴 =
2
𝜋𝐴!

𝑥  𝑄 𝑥
𝐴! − 𝑥!

  𝑑𝑥
!

!
, (3.24) 

and 

𝑆 𝐴 =
−2
𝜋𝐴! 𝑃 𝑥 𝑑𝑥

!

!
. (3.25) 

The sets of equations in Eqs. (3.8) to (3.10) have been transformed into sets of equations 

in Eqs. (3.23) to (3.25), in which 𝑃∗ 𝑥 ,𝑄(𝑥) and 𝑃(𝑥) are all single-valued functions. 

To recover the inverse SIDF problem, the integral equations in Eqs. (3.23) to (3.25) 

must be evaluated. The solution of Eq. (3.25) for 𝑆 𝐴  is immediate while the other two 

equations are special forms of Volterra’s integral equation of the first kind (The details of 

the solutions are outlined in Appendix A). The solutions to Eqs. (3.23) to (3.25) are [44] 

𝑃∗ 𝑥 = 2
𝑑
𝑑𝑥

𝑧!𝑀 𝑧
𝑥! − 𝑧!

  𝑑𝑧
!

!
, (3.26) 
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𝑄 𝑥 =
1
𝑥
𝑑
𝑑𝑥

𝑧!𝐶 𝑧
𝑥! − 𝑧!

  𝑑𝑧
!

!
, (3.27) 

and 

𝑃 𝑥 =
−π
2

𝑑
𝑑𝑥 𝑥!𝑆(𝑥) . (3.28) 

The functional transformation given by Eqs. (3.23) to (3.25) and Eqs. (3.26) to (3.28) 

are not one-to-one, meaning that the solution for inverse SIDF is not unique. This is 

immediate since the SIDF is an approximate measure of the nonlinearity [9]. A solution 

to 𝑄 𝑥  in Eq. (3.27) is developed in [13]. Presented in the following section is the 

numerical solution of Eqs. (3.26) to (3.28) to identify the nonlinear function 𝑛 𝑥 . 

 

3.4 Numerical Solution to the Inverse SIDF 

Given the analytical expressions for SIDF, 𝑀  (𝐴), 𝐶  (𝐴), and 𝑆  (𝐴), Eqs. (3.26) to 

(3.28) can be directly solved to obtain 𝑃∗ 𝑥 , 𝑄(𝑥), and 𝑃 𝑥 , respectively. However, in 

the present case, the values of 𝑀  (𝐴), 𝐶  (𝐴), and 𝑆  (𝐴) are available in discrete sets. 

Therefore a numerical approach is developed. This section presents the numerical 

solution to the inverse SIDF problem and addresses the computational difficulties. 

 
3.4.1 Numerical Solution for 𝑸(𝒙) 

In solving Eqs. (3.26) and (3.27), the integrands approaches infinity at the upper 

bound limit. This causes some difficulties to solve these equations. To resolve this 

problem, a graphical integration method known as method of cursors is used. 
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3.4.1.1 Method of Cursors 

The method of cursors is a graphical integration approach, in which the numerical 

solution of an integral in the form of 

𝐼! = ℎ 𝑧   𝑑 𝐴!(𝑧)
!!!

!!!
, (3.29) 

is given in [11, 46-48] as 

𝐼! ≅
𝐴!
𝜂 ℎ 𝑧!

!

!!!

, (3.30) 

where 𝐴! is the total change in 𝐴!(𝑧) between 𝑧 = 0 and 𝑧 = 𝜃 (Figure 3-3), 𝜂 is the 

number of equal points into which 𝐴! is divided, and 𝑧! are values of 𝑧 at the midpoints 

of the intervals. 
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Figure 3-3 Illustration of the Method of Cursor. 
 

Applying the method of cursors to the inverse SIDF to solve   𝑄 𝑥  requires some 

transformations. Applying integration-by-parts and Leibniz integral rules to Eq. (3.27), 

gives, the following (details are outlined in Appendix B) 

𝑑
𝑑𝑥

𝑧!𝐶 𝑧
𝑥! − 𝑧!

  𝑑𝑧
!

!
= 𝑥

1
𝑥! − 𝑧!

  𝑑 𝑧!𝐶 𝑧
!

!
.   (3.31) 

Substituting Eq. (3.31) into Eq. (3.27) yields  

𝑄 𝑥 =
𝑑 𝑧!𝐶 𝑧
𝑥! − 𝑧!

  
!

!
.     (3.32) 

Since 𝑄 𝑥  must be solved at each values of 𝑥, i.e., 𝑥 = 𝑥!, Eq. (3.32) can be written as 

As(z)

0

A
θ

z=θ

z3
z2

z1

z=0

(η-1)A
θ
/η

2A
θ
/η

A
θ
/η

z
η -1

z
η
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𝑄 𝑥! =
𝑑 𝑧!𝑔 𝑧

𝑥!! − 𝑧!

!!

!
  .   (3.33) 

Comparing Eqs. (3.29) and (3.30) with Eq. (3.33) and employing method of cursors, 

𝑄 𝑥!  can be estimated. Defining 𝐴!(𝑧) ≜ 𝑧!𝐶 𝑧  and ℎ(𝑧) ≜ !

!!
!!!!

, the 𝑄 𝑥!  

estimation is 

𝑄 𝑥! ≅
𝐴!
𝜂 ℎ 𝑧!

!

!!!

.   (3.34) 

Equation (3.34) is solved for all values of 𝑥! in the range of the amplitude of the input 

signal. 

 
3.4.2 Numerical Solution for 𝑷∗(𝒙) 

Through additional transformations, the method of cursor can also be utilized to solve 

𝑃∗ 𝑥 . Applying integration-by-parts and Leibniz integral rules to Eq. (3.26) gives the 

following (see Appendix B) 

𝑑
𝑑𝑥

𝑧!𝑀 𝑧
𝑥! − 𝑧!

  𝑑𝑧
!

!
= 𝑥

1
𝑥! − 𝑧!

  𝑑 𝑧𝑀 𝑧
!

!
.   (3.35) 

Substituting Eq. (3.35) into Eq. (3.26) yields  

𝑃∗ 𝑥 = 2𝑥
𝑑 𝑧𝑀 𝑧
𝑥! − 𝑧!

  
!

!
. (3.36) 
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Since 𝑃∗ 𝑥  must be solved at each values of 𝑥, i.e., 𝑥 = 𝑥!, Eq. (3.36) can be written as 

𝑃∗ 𝑥! = 2𝑥!
𝑑 𝑧𝑀 𝑧

𝑥!! − 𝑧!
.

!!

!
 (3.37) 

Comparing Eqs. (3.29) and (3.30) with Eq. (3.37) and again employing method of cursors, 

𝑃∗ 𝑥!  can be estimated. Defining 𝐴!(∙) ≜ 𝑧𝑀 𝑧  and ℎ(∙) ≜ !

!!
!!!!

, the 𝑃∗ 𝑥!  

estimation is 

𝑃∗ 𝑥! ≅ 2𝑥!
𝐴!
𝜂 ℎ 𝑧!

!

!!!

  .   (3.38) 

Equation (3.38) is similarly solved for all values of x! in the range of the amplitude of the 

input signal. 

 
3.4.3 Numerical Solution for 𝑷(𝒙) 

Equation (3.28) can be written as 

𝑃 𝑥 =
−𝜋
2 2𝑥𝑆 𝑥 + 𝑥!

𝑑𝑆(𝑥)
𝑑𝑥 . (3.39) 

Using a first-order forward difference approximation for the derivative term in Eq. (3.39) 

gives 

𝑑𝑆(𝑥)
𝑑𝑥 !!!!

=
𝑆 𝑥!!! − 𝑆(𝑥!)

𝑥!!! − 𝑥!
  . (3.40) 



41 

 

Substituting Eq. (3.40) into Eq. (3.39) for 𝑥 = 𝑥!, yeilds 

𝑃 𝑥! =
−𝜋
2 2𝑥!𝑆 𝑥! + 𝑥!!

𝑆 𝑥!!! − 𝑆(𝑥!)
𝑥!!! − 𝑥!

. (3.41) 

Equation (3.41) is solved for all values of 𝑥! in the range of the amplitude of the input 

signal. 

 
3.4.4 Recovering the Nonlinear Function 

In solving Eq. (3.22), there are three equations and four unknowns, therefore setting 

𝑞!(𝑥) = 𝑞!(𝑥) in Eq. (3.22) produces 

𝑞! 𝑥 = 𝑞! 𝑥 =
𝑄(𝑥)
2   , (3.42) 

𝑝! 𝑥 =
𝑃∗ 𝑥 + 𝑃 𝑥

2 , (3.43) 

and 

𝑝! 𝑥 =
𝑃∗ 𝑥 − 𝑃 𝑥

2   . 
(3.44) 

Substituting Eqs. (3.42) to (3.44) into Eq. (3.14) and using Eq. (3.6), the nonlinear 

function can be recovered as 

𝑦 𝑥 =

𝑄 𝑥 + 𝑃∗ 𝑥 + 𝑃 𝑥
2

          𝛿𝑥 < 0

𝑄(𝑥)+𝑃∗ 𝑥 − 𝑃 𝑥
2           𝛿𝑥 > 0

.     (3.45) 
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Equation (3.45) can be simplified if the nonlinearity is odd. For an odd function 

𝑀 𝐴 = 0 in see Eq. (3.8) and consequently 𝑃∗ 𝑥 = 0 in Eq. (3.26). Therefore, Eq. 

(3.45) reduces to  

𝑦 𝑥 =

𝑄 𝑥 + 𝑃 𝑥
2

          𝛿𝑥 < 0

𝑄(𝑥)− 𝑃 𝑥
2           𝛿𝑥 > 0

.     (3.46) 

 
3.4.5 Computational Issues 

To estimate the nonlinear function, 𝑛 𝑥 , from its gain and phase distortions, a 

computational code must be developed that solves Eqs. (3.34), (3.38) and (3.41) 

independently and then uses Eq. (3.45) to recover the non-parametric model of the 

nonlinearity. For this following issues must be considered. 

 
3.4.5.1. Resampling the Input Signal Amplitude Vector 

Eqs. (3.34), (3.38) and (3.41) have to be solved for the whole range of input signal 

amplitudes. Given a discrete set of gain and phase distortions, 𝑀(𝐴), 𝐶(𝐴) and 𝑆(𝐴), 

functions 𝑃∗(𝑥) ,𝑄(𝑥) and 𝑃(𝑥) have to be obtained for all values of 𝑥, between 𝐴!"# 

and 𝐴!"#, the lowest and highest values of input signal amplitude. Therefore, input 

signal amplitude vector, 𝐴, must be evenly resampled from 𝐴!"# to 𝐴!"# to include all 

values of 𝑥 in this range. The resampled input signal amplitude vector,  𝐴!, is defined as 

𝐴! =    𝐴!"#:𝛥:𝐴!"# , (3.47) 
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where 𝛥 is the discretization in 𝐴!. A measure for choosing the value of 𝛥 is the lowest 

increment in the original vector 𝐴. Additionally, to make the size of all vectors 

compatible, 𝑀(𝐴),𝐶(𝐴)  and  𝑆(𝐴), must also be resampled based on 𝐴!. The resampled 

vectors, i.e., 𝑀!(𝐴!),𝐶!(𝐴!) and 𝑆!(𝐴!) will be used for calculations of  𝑃∗(𝑥!), 𝑄(𝑥!) 

and 𝑃(𝑥!). 

 
3.4.5.2. Discretization in the Method of Cursors 

Another factor to consider is a measure for selecting 𝜂 in Eq. (3.30). In general, by 

increasing 𝜂 the output solution will have higher resolution. One possible value for 𝜂 is at 

least ten times of the dimension of 𝐴!, 𝑙, defined as 

𝑙 =   
𝐴!"# − 𝐴!"#

𝛥 + 1, (3.48) 

where .  is the floor function, the largest integer less than or equal to !!"#!!!"#
!

. 

 

3.5 Case Studies  

In this section, three case studies are presented to validate the proposed numerical 

solution. First, the proposed inverse SIDF algorithm is used to recover a hysteresis 

nonlinearity from its gain and phase distortions. In the second example, three piecewise 

continuous functions are recovered from the gain distortions of a nonlinear PID 

controller. The third case study investigates the application of the proposed inverse SIDF 

algorithm in estimation of asymmetric hysteresis nonlinearities.  
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3.5.1 Case Study 1: Double-valued Nonlinearity 

For the first example, identification of a common nonlinear function with memory is 

used. The schematic of this nonlinear function is shown in Figure 3-4. 

 

Figure 3-4 Schematics of the Hysteresis Nonlinearity. 
 

The analytical formulation for SIDF of this nonlinearity given in [44] is  

𝐶 𝐴 =

0 𝐴 ≤ 𝑎
2𝐷
𝜋𝐴! 𝐴! − 𝑎! 𝑎 < 𝐴 < 𝑏

2𝐷
𝜋𝐴! 𝐴! − 𝑎! + 𝐴! − 𝑏! 𝑏 ≤ 𝐴

   (3.49) 

and 

y(x)

x
a b

D

−a−b

−D
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𝑆 𝐴 =

0    𝐴 ≤ 𝑎
2𝐷
𝜋𝐴! 𝐴 − 𝑎 𝑎 < 𝐴 < 𝑏
2𝐷
𝜋𝐴! 𝑏 − 𝑎 𝑏 ≤ 𝐴

, (3.50) 

where 𝑀 𝐴 = 0, and 𝑎, 𝑏, and 𝐷 are the parameters illustrated in Figure 3-4. By 

arbitrarily choosing 𝑎 = 2, 𝑏 = 5, and 𝐷 = 2, the gain and phase distortions have been 

generated for the input amplitude range 0 <   𝐴 ≤ 8.  

The gain and phase distortions are then used in the proposed numerical solution for 

different values of 𝛥 and 𝜂, such that 𝛥! = 0.01 < 𝛥! = 0.05 and 𝜂! = 100  𝑙 > 𝜂! =

10  𝑙. The output solutions are illustrated in Figure 3-5 and Figure 3-6. 

 

Figure 3-5 Non-parametric Output Solution: 1st Selection of the Discretization Parameters. 
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Figure 3-6 Non-parametric Output Solution: 2nd Selection of the Discretization Parameters. 
 

From Figure 3-5 and Figure 3-6, the numerical solution has identified the nonlinearity 

correctly. The parameters associated with this nonlinearity (𝑎, 𝑏, and 𝐷 ) can also be 

measured from the non-parametric models. The estimated values for each of these 

parameters, as illustrated in Figure 3-5 and Figure 3-6 are 𝑎!"# = 2, 𝑏!"# = 5, and 

𝐷!"# = 2, which are consistent what was used in the analytical formula in Eqs. (3.49) and 

(3.50). It is to be noted that the peaks in Figure 3-5 and Figure 3-6 at 𝑥 = ±𝑎 = ±2 and 

𝑥 = ±𝑏 = ±5 are due to the discontinuities in the numerical solutions for different 

segments of input signal amplitude defined in Eqs. (3.49) and (3.50). 

Moreover, comparing Figure 3-5 to Figure 3-6, the effect of the values of 𝛥 and 𝜂 on 

the resolution of the identified nonlinearity can be observed. In general, regardless of the 

values of 𝛥 and 𝜂, the proposed numerical solution can identify the nonlinearity, 
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however, the resolution of the output model from the numerical solution and accuracy of 

the estimated parameters of the nonlinearity can be improved by proper adjustments in 

the values of 𝛥 and 𝜂. By decreasing 𝛥 and/or increasing 𝜂, the resolution of the output 

solution will improve. 

 
3.5.2 Case Study 2: Single-valued Nonlinearity 

The SIDF gain and phase distortions used for the second example is based on the 

results in [16]. In [16], the goal was to design a nonlinear PID controller for a nonlinear 

system. The nonlinearities in the plant consist of motor saturation and stiction. The 

controller synthesis parallels the procedure proposed in the [13-15]. The gain distortions 

for different gains of the nonlinear PID controller obtained in [16] are listed in Table 3. 1. 

Table 3. 1. SIDF Gain Distortions Information, from Ref. [16]. 
𝑒! 𝐾! 𝐾! 𝐾! 

0.0628 5.97 37.4 0.043 

0.0804 5.13 36.0 0.045 

0.1005 4.71 36.0 0.050 

0.1608 4.38 39.5 0.069 

0.3215 6.81 55.9 0.129 

0.6430 8.89 64.0 0.167 

1.2811 9.84 67.7 0.193 

2.5621 10.5 68.5 0.206 

 

To identify the nonlinearity in [16] associated with each of these nonlinear PID gains, 

it is assumed that all three nonlinear PID gains can be represented by a piecewise 



48 

 

continuous nonlinear function. An initial estimate for the parameters of such functions for 

each gain are determined, and based on this, the estimated gain distortions are developed. 

Next, the cost function defined as the squared error between the estimated gain 

distortions and the true values is minimized to obtain the actual values of the parameters 

of the nonlinear function. These parameters are listed in Table 3. 2 to Table 3. 4.	
  

To validate the proposed numerical solution, the information in Table 3. 1 is used to 

identify the nonlinearity of these PID gains. The SIDF distortions show no phase 

distortion, therefore 𝑆 𝐴 = 0. Each gain represents one distinct nonlinearity, i.e., 

𝐴,𝐶! 𝐴 = 𝑒! ,𝐾! , 𝐴,𝐶! 𝐴 = 𝑒! ,𝐾!  and 𝐴,𝐶! 𝐴 = 𝑒! ,𝐾! . The data from 

Table 3. 1 are used in the developed inverse SIDF algorithm with the following results 

for the parametric models 

𝐾! 𝑥 = 4.5147  𝑥 𝑥 ≤ 0.19
11.1676  𝑥 − 1.2641 𝑥 > 0.19, (3.51) 

𝐾! 𝑥 = 35.92  𝑥 𝑥 ≤ 0.125
70.32  𝑥 − 4.3 𝑥 > 0.125,   

(3.52) 

and 

𝐾! 𝑥 = 0.0449  𝑥 𝑥 ≤ 0.13
0.2171  𝑥 − 0.0224 𝑥 > 0.13.   

(3.53) 

The parametric models in Eqs. (3.51) to (3.53) are obtained from the non-parametric 

models from the output solutions. The non-parametric models for 𝐾!, 𝐾!, and 𝐾! gains 

are shown in Figure 3-7 to Figure 3-9. The solid-lines represent the output solutions from 

the developed algorithm, from which it can be concluded that each gain in the nonlinear 
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PID controller has the characteristics of a piecewise continuous function. This identified 

model for the nonlinearity is consistent with what was assumed in [16]. In this work, 

however, the structure of the nonlinear function is an output of the proposed numerical 

algorithm. Therefore, no prior information or assumption was needed to initiate the 

estimation process. 

 

Figure 3-7 Nonlinear Controller Gain from Proposed Numerical Solution, KP. 
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Figure 3-8 Nonlinear Controller Gain from Proposed Numerical Solution, KI. 

 

Figure 3-9 Nonlinear Controller Gain from Proposed Numerical Solution, KD. 

x
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

K I(x
)

0

5

10

15

20

25

30

35

Non-parametric Output Solution for KI

m2,est=70.32m1,est=35.92

 δest=0.125

Curve-fit before the Breakpoint δ: line with slope m1

Curve-fit after the Breakpoint δ: line with slope m2 

x
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

K D
(x

)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Non-parametric Output Solution for KD

 δest=0.13

m2,est=0.2171m1,est=0.0449

Curve-fit before the Breakpoint δ: line with slope m1

Curve-fit after the Breakpoint δ: line with slope m2 



51 

 

Employing a LSE method on the solid-line in Figure 3-7, Eq. (3.51) can be obtained. 

The dotted-line with the estimated slope, 𝑚!,!"# = 4.5147 is the segment of Eq. (3.51) 

before the estimated breakpoint, 𝛿!"# = 0.19. Similarly, the dashed-line with the 

estimated slope, 𝑚!,!"# = 11.1676 is the segment of Eq. (3.51) after the estimated 

breakpoint.  

Similarly, the parameters of 𝐾! and 𝐾! are estimated, as depicted in Figure 3-8 and 

Figure 3-9. The resulting information is listed in Table 3. 2 to Table 3. 4, where each 

parameter has been compared against its corresponding value obtained in [16] and their 

percentage differences are also listed. From the data in Table 3. 2 to Table 3. 4, the values 

for each parameter of each gain obtained from the proposed numerical solution match 

their corresponding values that were proposed in [16]. A comparison for frequency 

domain and time domain representations of 𝐾!, 𝐾!, and 𝐾! gain are shown in Figure 3-10 

to Figure 3-12. 

Table 3. 2. Comparison for Breakpoint. 

 
Breakpoint value: 𝛿 

This work From [16] % Difference 

𝐾! 0.19 0.189 0.5277 

𝐾! 0.125 0.126 0.7968 

𝐾! 0.13 0.132 1.5267 
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Table 3. 3. Comparison for Slope Before Breakpoint. 

 
Slope Before Breakpoint: 𝑚! 

This work From [16] % Difference 

𝐾! 4.5147 5.10 12.18 

𝐾! 35.92 36.77 2.3387 

𝐾! 0.0449 0.047 4.5702 

Table 3. 4. Comparison for Slope After Breakpoint. 

 
Slope After Breakpoint: 𝑚! 

This work From [16] % Difference 

𝐾! 11.1676 11.16 0.0681 

𝐾! 70.32 72.81 3.4794 

𝐾! 0.2171 0.215 0.972 

 

Figure 3-10 Comparison for Estimation of KP Gain: Ref. [16] vs. this work. 
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Figure 3-11 Comparison for Estimation of KI Gain: Ref. [16] vs. this work. 

 

Figure 3-12 Comparison for Estimation of KD Gain: Ref. [16] vs. this work. 
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3.5.3 Case Study 3: Limitations of the Algorithm 

In this case study, identification of asymmetric double-valued nonlinearities is 

investigated. Applications of SIDF for asymmetric nonlinearities are more complicated 

compared to symmetrical nonlinearities, owing to one or both of the followings:  

(i.) There is a bias term present in the nonlinearity output. The output bias term is not 

included in the formulation of SIDF [9]. In the case of a biased single-valued 

nonlinearity, the bias term issue can be resolved by a curve-fit in the gain distortions in 

the vicinity of 𝐴 ≅ 0 [9]. However, this is not applicable to the double-valued 

nonlinearities. If the asymmetric double-valued nonlinearity was known, it could be 

shifted along its input-output axis to the point at which the harmonic input results in an 

unbiased output [9]. However, in the application of the inverse SIDF, the nonlinearity is 

not known. Moreover, the solution of inverse SIDF is not unique, owing to the 

approximate nature of SIDF method. Therefore, the output solutions from the numerical 

inverse SIDF algorithm are expected to be an incomplete representation of an asymmetric 

double-valued nonlinearity with the bias term. 

(ii.) Nonlinearity output is defined in an asymmetric range of operation of the input 

signal. In this case 𝑛!(𝑥) and 𝑛!(𝑥) in Eq. (3.6), are not defined over the same range of 

input signal amplitude. Therefore, while recovering the nonlinearity from inverse SIDF 

solution, Eq. (3.45) must be modified to account for the unsymmetrical ranges of 

operation of 𝑛!(𝑥) and 𝑛!(𝑥). 
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To illustrate these cases, consider two asymmetric hysteresis nonlinearities shown in 

Figure 3-13. The diagram shown in Figure 3-13L is asymmetric due to the bias term in 

the output nonlinearity. For the diagram shown in Figure 3-13R the nonlinearity is 

asymmetric, besides the presence of the output bias term, 𝑛!(𝑥) (for 𝛿𝑥 < 0) and 𝑛!(𝑥) 

(for 𝛿𝑥 > 0) in Eq. (3.6) are not defined in the same range of input signal amplitude. 

 

Figure 3-13 Schematics of Asymmetric Double-Valued Nonlinearities: (L) with Biased Output, and 
(R) with both Asymmetric Range of Input Amplitude and Biased Output. 

 

To show the output models from the proposed numerical inverse SIDF for these two 

nonlinearities, consider their SIDF analytical formulation given in [9]. For the static 

nonlinearity shown in Figure 3-13L, 

𝐶 𝐴 = 𝑚,      𝑆 𝐴 =
−4𝐷
𝜋𝐴 ,     (3.54) 

where 𝑚 and 𝐷 are the parameters illustrated in Figure 3-13L. Additionally, for the 

system shown in Figure 3-13R, 
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for  𝐴 >
𝑏
2 :      𝐶 𝐴 =

1
2 1+ 𝑓 1−

𝑏
𝐴 , 𝑆 𝐴 =

−1
𝜋

2𝑏
𝐴 −

𝑏
𝐴

!

,     (3.55) 

where 𝑓(∙) is the saturation function, and 𝑏 is the parameter illustrated in Figure 3-13R. 

Note that 𝑀 𝐴  that is related to the output bias term is not accounted for in Eqs. 

(3.54) and (3.55) and is considered to be zero in both. By arbitrarily choosing 𝑚 = 1, 

𝐷 = 4 in Eq. (3.54) the gain and phase distortions have been generated for the input 

amplitude range 0 <   𝐴 ≤ 10. Additionally, by selecting 𝑏 = 4 in Eq. (3.55) the gain and 

phase distortions have been generated for the input amplitude range !
!
< 2.5 ≤   𝐴 ≤ 10. 

The generated gain and phase distortions are then used in the proposed numerical 

solution. The output solutions are shown in Figure 3-14 and Figure 3-15. 

 

Figure 3-14 Non-parametric Output Solution for the 1st Asymmetric Hysteresis Nonlinearity. 

x
0 1 2 3 4 5 6 7 8 9 10

y(
x)

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14
15

Non-parametric Output Model

δ x<0
δ x>0

Dest=4 mest=1



57 

 

From Figure 3-14, the numerical solution has partially identified the hysteresis loop 

for the first asymmetric double-valued nonlinearity. From this non-parametric output 

model, the parameters associated with the nonlinearity (𝐷 and 𝑚) can be estimated. The 

estimated values for each of these parameters, as illustrated in Figure 3-14, are 𝐷!"# = 4 

and 𝑚!"# = 1, which are consistent with what was used in the analytical formula in Eq. 

(3.54). The second part of the hysteresis loop can be estimated by extrapolation of the 

output model in Figure 3-14. It is to be noted that the values of 𝑦(𝑥) shown in Figure 

3-14 around 𝑥 ≅ 0 are due to the singularity of the analytical SIDF in Eq. (3.54) around 

𝐴 ≅ 0. 

 

Figure 3-15 Non-parametric Output Solution for the 2nd Asymmetric Hysteresis Nonlinearity. 
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Shown in the top plot of Figure 3-15, is the output solution from the numerical 

inverse SIDF algorithm for the second asymmetric hysteresis nonlinearity considered in 

Eq. (3.55). From this, the identified non-parametric model is not consistent with Figure 

3-15R. This inconsistency is due to the asymmetric range of the input signal amplitude 

for different segments of this nonlinearity that is not accounted for in the proposed 

inverse SIDF solution. From Figure 3-13R, the range of input signal amplitude for 𝑛!(𝑥) 

(for 𝛿𝑥 < 0) and 𝑛!(𝑥) (for 𝛿𝑥 > 0) are different by the value of 𝑏. Considering this 

asymmetric range for 𝑥, Eq. (3.45) can be modified to recover the nonlinearity. The result 

of employing this modification is shown in the bottom plot of Figure 3-15, from which 

the parameters associated with the nonlinearity (𝑏 and 𝑘) can be estimated. The estimated 

values for each of these parameters, as illustrated in Figure 3-15, are 𝑏!"# = 4 and 

𝑘!"# = 1, which are consistent with what was used in the analytical formula in Eq. (3.55).  

Additionally, the second part of the hysteresis loop can be estimated by extrapolation of 

the modified output model in the bottom plot of Figure 3-15. 

It is to be noted that the original output solution (shown in the top plot of Figure 3-15) 

is similar to the schematics shown in Figure 3-13L. Therefore, one possibility is to 

interpret the output solution in terms of Eq. (3.54). This is one example on the non-

uniqueness of the inverse SIDF solution. In other words, although Eqs. (3.54) and (3.55) 

are different, the interpretation of the inverse SIDF shown in the top plot of Figure 3-15 

can be either in terms of Eq. (3.54) shown in Figure 3-13L or by using above-mentioned 

modifications in terms of Eq. (3.55) shown in Figure 3-13R. 
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3.5.4 Section Summary 

As illustrated in these examples, the proposed numerical solution estimates a non-

parametric model for explicit nonlinear functions based on the gain and phase distortions 

information. Moreover, by employing LSE method, the parameters of the non-parametric 

model can be numerically identified from the output of the numerical solution; and 

therefore, one can defines the nonlinear function associated with the gain and phase 

distortions. The limitation of the proposed numerical solution is also discussed. This 

limitation is related to the identification of asymmetric double-valued nonlinearities, in 

which the inverse SIDF solutions is an incomplete representation of the nonlinearity. 

 

3.6 Chapter Summary  

A method for numerically solving the inverse SIDF problem is developed. The 

method is based on an analytical solution of the inverse SIDF problem. The proposed 

numerical solution can identify a broad class of static (explicit) nonlinearities with or 

without memory based merely on their gain and phase distortions. More specifically, 

numerical solutions are developed that extend the solution of inverse SIDF to the double-

valued and not necessarily odd nonlinear functions. The algorithm is computationally 

programmed and identifies a non-parametric model of the nonlinearity, from which a 

parametric model can be recovered by employing LSE method. Selection of the 

discretization parameters (𝛥, 𝜂) in the algorithm and their effect on the resolution of the 

solution has been investigated. The proposed numerical solution has been utilized to 

identify nonlinearities in three illustrative examples. From these examples, the 
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effectiveness and limitations of the algorithm are discussed. A major advantage of the 

proposed numerical solution over previous methods in the area of inverse SIDF problem 

is that, the numerical solution developed in this work does not require a priori knowledge 

or information of the structure of the nonlinearity to initiate the identification process.  

  



61 

 

Chapter 4. Frequency Based Linear Controller Design for 

Regulating Systems 

 

Presented in this chapter is the methodology of designing linear controllers for linear 

regulating systems subject to time domain constraints. The controller design procedure is 

executed in the frequency domain; hence the time domain performance constraints are 

translated in to the frequency domain tolerances. These frequency domain tolerances will 

be utilized in Chapter 5 to formulate a nonlinear controller design methodology for the 

same class of systems. The basis of the methods presented in Chapter 4 and Chapter 5 is 

the loop shaping approach that is an extension of the Quantitative Feedback Theory 

(QFT) methodology [49-53].  

 

4.1 Overview of Quantitative Feedback Theory 

Quantitative Feedback Theory (QFT) is a well-known classical robust control 

methodology and analysis framework. QFT is formulated in the frequency domain and 

was originally developed for Single Input Single Output (SISO) and Linear Time 

Invariant (LTI) systems [54-57]. The applications of QFT has since been extended to 

systematic feedback controller design approaches for systems subject to (i.) uncertainties, 

(ii.) time delays, (iii.) restricted controller bandwidth, (iv.) sensor noise, (v.) disturbances, 

(vi.) rate and magnitude saturation of the actuator, and, (vii.) system nonlinearities. The 
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first six items have been extensively studied [58-64]. Integration of the nonlinearities in 

the QFT formulation is still an open research area, which is the focus of Chapter 5. 

In QFT, the time domain performance constraints are translated to the frequency 

domain characteristic that can be directly imposed on the frequency response of the open 

loop to ensure closed loop performance requirements. Some of these basic translations 

are presented in Chapter 1. Other constraints on the closed loop performance of a 

feedback system subject to a disturbance can also be directly enforced on the closed loop 

frequency response [65]. The enforcement of these performance specifications can also 

be extended to include rate and output actuator saturation [66]. The details on this will be 

discussed later in the following sections.  

The design process in QFT is transparent that results in a clear understanding of the 

trade-offs that are necessary to maintain certain level of closed loop performance. Owing 

to the frequency-by-frequency basis of the controller design process in QFT, a loop 

shaping approach for controller design can be developed [57]. This loop shaping process 

is done on the Nichols chart and is based on analyzing the gain and phase properties of 

the open loop transfer function.  

The advantage of using Nichols charts is that the desired closed loop properties of the 

system can be directly mapped to the open loop properties of the system. This allows a 

direct design of the closed loop properties (such as output constraints) while specifying 

properties of the controller (such as controller order or bandwidth). Frequency domain 

controller design makes the analysis of the non-minimum phase and delayed systems 

easier. Other implementation issues, such as sensor noise amplification, can be easily 
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addressed in the frequency domain by adjusting the bandwidth of the open loop transfer 

function. 

 
4.1.1 Nichols Chart 

Nichols chart makes a connection between open loop and the closed loop transfer 

functions. In the Nichols chart, the properties of the closed loop transfer function can be 

directly obtained from the open loop frequency response. The controller design in QFT is 

performed on the open loop transfer function, therefore; the closed loop information can 

be interpreted from the Nichols chart [2]. 

Let 𝐿(𝑠) be the open loop transfer function. Hence, the closed loop transfer function 

can be expressed as 

𝑇 𝑠 =
𝐿(𝑠)
1+ 𝐿𝑠). (4.1) 

The open loop information for a constant closed loop magnitude can be obtained by 

evaluating the magnitude of Eq. (4.1), as 

𝑇 𝑗𝜔 =
𝑋 + 𝑗𝑌

1+ 𝑋 + 𝑗𝑌 = 𝑀, (4.2) 

where 𝑀 is a constant, and 𝑋,𝑌 are defined as 

𝐿(𝑗𝜔) = 𝑋! + 𝑌! (4.3) 

and 
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∡𝐿 𝑗𝜔 = tan!!
𝑌
𝑋. 

(4.4) 

Using Eqs. (4.3) and (4.4), Eq. (4.2) can be reduced to  

𝑋 +
𝑀!

𝑀! − 1

!

+ 𝑌! =
𝑀!

𝑀! − 1 !. (4.5) 

Additionally, the constant closed loop phase is defined as  

∡𝑇 𝑗𝜔 = 𝑁 = ∡𝐿 𝑗𝜔 − ∡ 1+ 𝐿 𝑗𝜔 = tan!!
𝑌
𝑋 − tan

!! 𝑌
1+ 𝑋, 

(4.6) 

where 𝑁 is a constant.  

Using Eqs. (4.3) and (4.4), Eq. (4.6) can be reduced to  

𝑋 +
1
2

!

+ 𝑌 −
1

2 tan𝑁

!

=
tan!𝑁 + 1
4 tan!𝑁 . (4.7) 

Constant closed loop magnitude of Eq. (4.5) and constant closed loop phase of Eq. 

(4.7) are equations of circles whose centers and radii are function of constants 𝑀 and 𝑁. 

These circles develop constant closed loop gain and phase contours in the open loop gain/ 

phase plane. This creates the Nichols chart, which provides a direct translation between 

open loop and closed loop frequency domain properties. This means, for a given closed 

loop magnitude of 𝑀 or a given closed loop phase of 𝑁, the gain and phase of the open 

loop transfer function can be directly calculated from the Nicholas chart. The standard 

units for gain and phase on the Nichols chart are decibel (𝑑𝐵) and degree (°), 

respectively. 



65 

 

4.2 Problem Statement  

Consider the SISO linear regulating systems shown in Figure 4-1. 

 

Figure 4-1 Block Diagram of a Regulating System. 
 

In Figure 4-1, 𝑝 denotes the derivative operator,  𝛼 is a compact set representing 

uncertainty in the system that belongs to the parameter space for the plant uncertainty  Ω, 

𝑦 𝛼, 𝑡  denotes the output variation about a desired set point, 𝑢(𝑡) is the controlled 

output, and 𝑑 𝑡  is the external step disturbance of size 𝛾. Plant and disturbance 

dynamics, 𝐺! 𝛼,𝑝  and  𝐺! 𝛼,𝑝 , are LTI, minimum phase, and 𝐑𝐇𝟐 (class of strictly 

proper and stable transfer functions with real valued coefficients ). 

To ensure finite gains for the controller, performance constraints for system must be 

defined. The output performance specification is defined as an allowable tolerance about 

a desired operating point 𝑧!(𝑡) as  
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𝑧 𝑡 − 𝑧!(𝑡) = 𝑦 𝛼, 𝑡 ≤ 𝛽      ∀𝑡 > 0. (4.8) 

Additionally, the actuator saturation constraint is defined as an allowable tolerance about 

the nominal control effort 𝑔!(𝑡) as 

𝑔 𝑡 − 𝑔!(𝑡) = 𝑢 𝑡 ≤ Γ      ∀𝑡 > 0. (4.9) 

The closed loop transfer functions for the system shown in Figure 4-1 are 

𝑇! 𝑠,𝛼 =
𝐺!(𝑠,𝛼)

1+ 𝐺! 𝑠 𝐺!(𝑠,𝛼)
 (4.10) 

and 

𝑇! 𝑠,𝛼 =
−𝐺!(𝑠,𝛼)𝐺! 𝑠
1+ 𝐺! 𝑠 𝐺!(𝑠,𝛼)

. (4.11) 

The objective is to design a linear controller in the frequency domain, for the class of 

systems shown in Figure 4-1 such that the closed loop system represented in Eqs. (4.10) 

and (4.11) maintains system performance requirements in Eqs. (4.8) and (4.9) for a 

predicted level of the disturbance step size. 

 

4.3 Performance Based Linear Controller Design 

The performance specifications in Eqs. (4.8) and (4.9) can be enforced through 

frequency domain amplitude inequalities. These inequalities develop upper and lower 

amplitude bounds on the open loop plant, 𝐿 𝑠,𝛼 = 𝐺! 𝑠 𝐺!(𝑠,𝛼). To formulate these 

bounds, consider the following theorem and lemma. 
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Theorem: The step response of a stable, minimum phase transfer function, whose impulse 

response is non-negative, is monotonic [67]. 

Proof: Let the impulse response of a stable, minimum phase transfer function be denoted 

as ℎ(𝑡). Then the corresponding step response 𝑦(𝑡) with zero initial conditions can be 

written as [67] 

𝑦 𝑡 = ℎ 𝑡 − 𝜏 𝑑𝜏
!

!
. (4.12) 

Since ℎ(𝑡) ≥ 0, then 

𝑦 𝑡! ≥ 𝑦 𝑡!     for  𝑡! ≥ 𝑡!. (4.13) 

Equation (4.13) implies that 𝑦 𝑡  monotonically increases until it reaches its steady state 

value, i.e., 𝑦!. Therefore the following can be concluded, 

𝑦 𝑡 ≤ 𝑦!    ∀𝑡 > 0.     (4.14) 

Q.E.D. 

Additionally, the following lemma can be directly inferred from this theorem. 

Lemma: Consider a signal 𝑦(𝑡) whose Laplace transform is defined as [68] 

𝑌 𝑠 = 𝐻 𝑠
𝛾
𝑠, (4.15) 

where 𝐻 𝑠 ∈ 𝐑𝐇𝟐 and 𝐻 𝑠  has a finite bandwidth. If the impulse response of 𝐻 𝑠  is 

of one sign and the initial conditions are zero, then 
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𝑦(𝑡) ≤ 𝛾Λ 𝐻 𝑗𝜔 !        ∀𝑡 > 0, (4.16) 

where . ! is the frequency domain 𝐻! norm and Λ is a scaling constant justifying the 

time to frequency domain transformation and is a function of the closed loop transfer 

function. 

In the following sections, this lemma will be used to translate the time domain 

performance specifications in Eqs. (4.8) and (4.9) to the frequency domain amplitude 

inequalities.  

 
4.3.1 Developing Upper Bounds from the Constraints on the Actuator Effort  

The upper amplitude bounds will be obtained from the actuator effort constraints. To 

develop the upper amplitude bounds, consider the transfer function in Eq. (4.11). To use 

the Theorem in previous section, 𝑇! 𝑠,𝛼  must have an impulse response of one sign. 

Since 𝐺! 𝑠,𝛼  and 𝐺! 𝑠,𝛼  are minimum phase and stable, this impulse response 

condition is valid. Using the Lemma in previous section, the following can be concluded 

[65, 68] 

𝑢(𝑡) ≤ 𝛾Λ! 𝑇! 𝑗𝜔 !, (4.17) 

where Λ! is a scaling constant justifying the time to frequency domain transformation 

and is a function of the closed loop transfer function  𝑇! 𝑠 , and 𝑇! 𝑗𝜔 ! is the 

frequency domain 𝐻! norm of 𝑇! 𝑠 ,  
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𝑇! 𝑗𝜔 !   =
𝐺!(𝑗𝜔,𝛼)𝐺! 𝑗𝜔

1+ 𝐺! 𝑠𝑗𝜔 𝐺!(𝑗𝜔,𝛼) !
. (4.18) 

Next step, if the following inequality holds, 

𝛾
𝐺!(𝑗𝜔,𝛼)𝐺! 𝑗𝜔

1+ 𝐺! 𝑗𝜔 𝐺!(𝑗𝜔,𝛼)
≤ Γ        ∀𝜔    &  𝛼 ∈ Ω, (4.19) 

then Eq. (4.9) is satisfied. Consider the rearrangement in Eq. (4.19) as  

𝐿(𝑗𝜔,𝛼)
1+ 𝐿(𝑗𝜔,𝛼) ≤ 𝑀(𝑗𝜔,𝛼)         ∀𝜔    &  𝛼 ∈ Ω, (4.20) 

where 𝐿 𝑗𝜔,𝛼 = 𝐺! 𝑗𝜔 𝐺!(𝑗𝜔,𝛼), and  

𝑀(𝑗𝜔,𝛼) =
Γ  𝐺!(𝑗𝜔,𝛼)
𝛾Λ!  𝐺!(𝑗𝜔,𝛼)

. (4.21) 

The inequality in Eq. (4.20) defines an “upper” bound on the closed loop transfer 

function magnitude, i.e.,   !(!",!)
!!!(!",!)

, for any given frequency. This upper amplitude 

bound corresponds to an M-circle on the Nichols chart with magnitude of 𝑀(𝑗𝜔! ,𝛼!) . 

Therefore, inequality in Eq. (4.20) can be satisfied when 𝐿(𝑗𝜔! ,𝛼!)  is not contained 

within the M-circle with magnitude of 𝑀(𝑗𝜔! ,𝛼!) . Based on the Eq. (4.21), these upper 

bounds are function of different parameters such as frequency, disturbance size, and 

system parameter 𝛼!. 

It is to be noted that since Λ! is a function of the closed loop transfer function, i.e., 

𝑇! 𝑠 , it cannot be determined prior to the controller design. For the sake of the design 
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process, Λ! will be embedded in to 𝛾 and it can be set to be equal to one (i.e., Λ! = 1 in 

Eq. (4.21)).  

Shown in Figure 4-2 is an example of the upper bound at a given 𝜔 = 𝜔! and 𝛼 =

𝛼!. If 𝐿(𝑗𝜔! ,𝛼!)  falls in the area below the upper bound (shown with down-ward 

arrows in Figure 4-2), then the actuator effort constraint, in Eq. (4.9) is satisfied for 

𝜔 = 𝜔! and 𝛼 = 𝛼!. 

 

 Figure 4-2 Example of an Upper Amplitude Bound. 
 
4.3.2 Developing Lower Bounds from the Constraints on the Output Performance 

With the similar approach, the lower amplitude bounds can be obtained from the 

output performance constraints. To develop the lower amplitude bounds, consider the 
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transfer function in Eq. (4.10). Similar to  𝑇! 𝑠,𝛼 , since 𝐺! 𝑠,𝛼  and 𝐺! 𝑠,𝛼  are 

minimum phase and stable, impulse response condition for 𝑇! 𝑠,𝛼  is valid and therefore 

the Theorem in previous section is applicable. Using the Lemma in previous section, the 

following can be concluded [65, 68] 

𝑦(𝑡) ≤ 𝛾Λ! 𝑇! 𝑗𝜔 !
, (4.22) 

where Λ! is a scaling constant justifying the time to frequency domain transformation 

and is a function of the closed loop transfer function  𝑇! 𝑠 , and 𝑇! 𝑗𝜔 !
 is the 

frequency domain 𝐻! norm of 𝑇! 𝑠 ,  

𝑇! 𝑗𝜔 !
  =

𝐺!(𝑗𝜔,𝛼)
1+ 𝐺! 𝑠𝑗𝜔 𝐺!(𝑗𝜔,𝛼) !

. (4.23) 

Next step, if the following inequality holds,  

𝛾
𝐺!(𝑗𝜔,𝛼)

1+ 𝐺! 𝑗𝜔 𝐺!(𝑗𝜔,𝛼)
≤ 𝛽        ∀𝜔    &  𝛼 ∈ Ω, (4.24) 

then Eq. (4.8) is satisfied. Consider the rearrangement in Eq. (4.24) as  

1+ 𝐿(𝑗𝜔,𝛼) ≥ 𝑚(𝑗𝜔,𝛼)         ∀𝜔    &  𝛼 ∈ Ω, (4.25) 

where  

𝑚(𝑗𝜔,𝛼) =
𝛾Λ!  𝐺!(𝑗𝜔,𝛼)

𝛽   . (4.26) 

An alternative form of Eq. (4.25) is 
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𝑙(𝑗𝜔,𝛼)
1+ 𝑙(𝑗𝜔,𝛼) ≤

1
𝑚(𝑗𝜔,𝛼)         ∀𝜔    &  𝛼 ∈ Ω, (4.27) 

where 𝑙 𝑗𝜔,𝛼 = !
!(!",!)

. 

The inequality in Eq. (4.27) defines an upper bound on the inverted closed loop 

transfer function magnitude, i.e., !(!",!)
!!!(!",!)

, for any given frequency. This upper 

amplitude bound corresponds to an M-circle on the Nichols chart with magnitude of 

!
!(!!!,!!)

. Since 𝑙 𝑗𝜔,𝛼 = !
!(!",!)

, inverting this M-circle on the Nichols chart creates a 

“lower” bound on the closed loop transfer function magnitude, i.e.,   !(!",!)
!!!(!",!)

, for any 

given frequency. Therefore, inequality in Eq. (4.27) can be satisfied when 𝐿(𝑗𝜔! ,𝛼!)  is 

not contained within the inverted M-circle of magnitude !
!(!!!,!!)

. Based on the Eq. 

(4.26), these lower bounds are function of different parameters such as frequency, 

disturbance size, and system parameter 𝛼!.  

It is to be noted that since Λ! is a function of the closed loop transfer function, i.e., 

𝑇! 𝑠 , it cannot be determined prior to the controller design. For the sake of the design 

process, Λ! will be embedded in to 𝛾 and it can be set to be equal to one (i.e., Λ! = 1 in 

Eq. (4.26)).  

Shown in Figure 4-3 is an example of the lower bound at a given 𝜔 = 𝜔! and 𝛼 =

𝛼!. If 𝐿(𝑗𝜔! ,𝛼!)  falls in the area above the lower bound (shown with upward arrows in 
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Figure 4-3), then the output performance constraint, as in Eq. (4.8) is satisfied for 

𝜔 = 𝜔! and 𝛼 = 𝛼!. 

 

 Figure 4-3 Example of a Lower Amplitude Bound. 
 
4.3.3 Developing Acceptable Design Regions 

The upper and lower amplitude bounds defined is Eqs. (4.21) and (4.26) develop an 

acceptable design region for the frequency response of the open loop transfer function. 

This acceptable design region can be obtained by considering the intersection of areas 

shown in Figure 4-2 and Figure 4-3, as shown with the hatched areas in Figure 4-4.  
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 Figure 4-4 Example of the Acceptable Design Region. 
 

Through the controller design process, to meet the performance requirements in Eqs. 

(4.8) and (4.9), the frequency response of 𝐿(𝑠) must be contained in this “safe” design 

region. The gain and phase characteristics of the open loop transfer function in this 

design region are confined by Eqs. (4.20) and (4.25). 

Remark: In the case on an uncertain system, the upper and lower amplitude bounds must 

be determined ∀𝛼 ∈ Ω, at each particular frequency, i.e., 𝜔 = 𝜔!. These amplitude 

bounds are used to form “composite” upper and lower amplitude bounds on the nominal 

transfer function, 𝐿! 𝑗𝜔! = 𝐺! 𝑗𝜔! 𝐺!!(𝑗𝜔!), where 𝐺!!(𝑗𝜔!) is the nominal plant 

transfer function, i.e.,  𝐺!! 𝑗𝜔! = 𝐺!(𝑗𝜔! ,𝛼 = 𝛼!). The acceptable design region at 

each frequency will also be developed based on the composite bounds. To satisfy the 
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performance requirements in Eqs. (4.8) and (4.9), the frequency response of 𝐿!(𝑠) must 

be contained in the composite acceptable design region [68]. 

 
4.3.4 Performance Level Prediction 

To obtain the acceptable design region for 𝐿(𝑠), as described in the previous section, 

Eqs. (4.21) and (4.26) must be used for 𝜔 = [0,∞). For a given system dynamics, i.e., 

known 𝐺!(𝑠) and 𝐺!(𝑠), to fully define the lower and upper amplitude bounds, the size 

of the step disturbance, 𝛾 must be determined prior to controller design. In this section, a 

method is presented that allows the designer to predict the allowable size of the step 

disturbance prior to the linear controller design.  

For any given frequency, an increase in the size of the step disturbance yields to a 

smaller acceptable design region. The inverse relationship between disturbance size and 

the size of the design region can be utilized to predict the allowable size of the step 

disturbance. For this, a value for the phase angle of the point at which the upper and 

lower bounds intersect will be chosen [68, 69]. This choice imposes special gain and 

phase conditions on the open loop transfer function such that a linear controller is 

achievable.  

In [69], it is assumed that the phase is 𝜑 = 0° at the intersection point of the lower 

and upper amplitude bounds. This leads to a very difficult gain and phase conditions that 

usually cannot be met by a linear controller. Therefore, the predicted allowable 

disturbance size will not be achievable by a linear controller. In [68], on the other hand, 

the phase at the intersection point is chosen as 𝜑 = −90°, that results in a −20  !"!"# rate of 
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change for the amplitude of the open loop transfer function at the intersection. Given 

𝜑 = −90° for the phase at the intersection point and using Eqs. (4.21) and (4.26), the 

allowable disturbance step size can be determined. It is to be noted that the predicted 

level of disturbance step size,  𝛾∗ is a function of frequency, thereby defined as 

𝛾∗ = min 𝛾           ∀𝜔 ∈ [0,∞)  &  𝛼 ∈ Ω.   (4.28) 

The phasor representation of the open loop transfer function is 

𝐿 𝑗𝜔 = 𝐿(𝑗𝜔) 𝑒!∡! !" . (4.29) 

For 𝜑 = −90° and using Euler’s formula in Eq. (4.29), at the intersection point the 

following can be written 

𝐿 𝑗𝜔 = −𝑗 𝐿 𝑗𝜔 . (4.30) 

Substituting Eq. (4.30) into Eqs. (4.20) and (4.25) yields 

𝐿 𝑗𝜔 !

1+ 𝐿 𝑗𝜔 ! ≤ 𝑀(𝑗𝜔) ! (4.31) 

and 

𝐿 𝑗𝜔 ! ≥ 𝑚 𝑗𝜔 ! − 1. (4.32) 

Using Eqs. (4.21) and (4.26) and after math simplifications, Eqs. (4.31) and (4.32) can be 

written as  
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𝐿 𝑗𝜔 ! ≤
Γ! 𝐺! 𝑗𝜔 !

𝛾! 𝐺! 𝑗𝜔 ! − Γ! 𝐺! 𝑗𝜔 ! (4.33) 

and 

𝐿 𝑗𝜔 ! ≥
𝛾! 𝐺! 𝑗𝜔 ! − 𝛽!

𝛽! . 
(4.34) 

Considering the magnitude of the open loop transfer function at the intersection point in 

Eqs. (4.33) and (4.34), equating the right hand side of the inequalities in Eqs. (4.33) and 

(4.34) yields 

𝛾 =
Γ! 𝐺! 𝑗𝜔 ! + 𝛽!

𝐺! 𝑗𝜔 . (4.35) 

Therefore, the predicted level of the disturbance step size that can be achieved via a 

linear controller, i.e.,  𝛾∗, can be obtained from Eq. (4.28) and using Eq. (4.35). 

 

4.4. Synthesis of Linear Regulating Controllers  

To design a linear controller through the 𝐻!controller design approach for the system 

shown in Figure 4-1, consider the performance constraint defined by 

𝑊!(𝑗𝜔)
1

1+ 𝐿(𝑗𝜔) !
< 1, (4.36) 

and the robust stability constraint defined by 
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𝑊!(𝑗𝜔)
𝐿(𝑗𝜔)

1+ 𝐿(𝑗𝜔) !
< 1, (4.37) 

where 𝑊!(𝑠) and 𝑊!(𝑠) are the performance weights, . ! is the frequency domain 𝐻! 

norm, and 𝐿(𝑠) is the open loop transfer function, i.e., 𝐿 𝑠 = 𝐺! 𝑠 𝐺!(𝑠) [65, 70]. 

Equations (4.36) and (4.37) collectively construct the mixed sensitivity 𝐻! 

optimization problem. In other words, the necessary and sufficient condition for the 

robust performance of the regulating system shown in Figure 4-1 can be formulated as 

[71] 

𝑊!(𝑗𝜔)
1

1+ 𝐿(𝑗𝜔) + 𝑊!(𝑗𝜔)
𝐿(𝑗𝜔)

1+ 𝐿(𝑗𝜔) !
< 1. (4.38) 

There are different methods for defining the performance weights, 𝑊!(𝑠) and 𝑊!(𝑠) 

[71]. In [65], a method for selection of these performance weights is proposed that 

ensures enforcing Eqs. (4.8) and (4.9) by a 𝐻!controller synthesis for a system shown in 

Figure 4-1. For a system without uncertainty, these performance weights are [65] 

𝑊! 𝑠 =
𝛾  𝐺!(𝑠)
𝛽  (4.39) 

and 

𝑊! 𝑠 =
𝛾  𝐺!(𝑠)
Γ  𝐺!(𝑠)

. (4.40) 
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Comparing Eqs. (4.39) and (4.40) with Eqs. (4.26) and (4.21), respectively, these 

performance weights functions can be represented by the upper and lower magnitude 

bounds developed in earlier sections, i.e., 𝑊! 𝑠 = 𝑚 and 𝑊! 𝑠 = !
!

.  

Using Eqs. (4.39) and (4.40), a linear controller can be designed by minimizing Eq. 

(4.38) through a 𝐻!controller synthesis. The resulting controller, 𝐺!!(𝑠), maintains the 

closed loop system performance requirements in Eqs. (4.8) and (4.9) for the predicted 

level of disturbance step size 𝛾 = 𝛾∗. 

 
4.4.1 Maximizing the Disturbance Size  

To improve the closed loop performance beyond the predicted level of disturbance 

step size, 𝛾∗, the problem of the maximization of the allowable step disturbance via a 

linear controller through the 𝐻!controller synthesis is considered. For this, the trade-off 

between the performance constraints and the largest allowable disturbance step size must 

be defined. To formulates this trade-off, the inequality in Eq. (4.38) can be modified as 

𝑘!𝑊!(𝑗𝜔)
1

1+ 𝐿(𝑗𝜔) + 𝑘!  𝑊!(𝑗𝜔)
𝐿(𝑗𝜔)

1+ 𝐿(𝑗𝜔) !
< 1, (4.41) 

where 𝑘! and 𝑘! are positive scalars.  

To minimize Eq. (4.41), first, convex design sets must be defined for 𝑘! and 𝑘!. 

Then, using Eqs. (4.39) and (4.40) and by selecting values of 𝑘! and 𝑘!, time domain 

tolerances in Eqs. (4.8) and (4.9) can be enforced in the frequency domain via a 

controller. For the case of a linear controller, the actual allowable disturbance step size, 
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𝛾!, for the given values of 𝑘! and 𝑘! can be obtained by scaling the closed loop responses 

due to a unit step disturbance, as [65]  

𝛾! = min
𝛽

𝑦!(𝑡) !
,

Γ
𝑢!(𝑡) !

, (4.42) 

where 𝑦!(𝑡) and 𝑢!(𝑡) are the system output and controlled output due to a unit 

disturbance step size. 

Next, to find the maximum allowable disturbance step size via a linear controller,  𝛾∗, 

Eq. (4.41) must be minimized by globally searching over all possible values of 𝑘! and 𝑘!. 

In other words, for each pair of 𝑘! and 𝑘!, a linear controller will be designed through a 

𝐻!controller synthesis by minimizing Eq. (4.41). Then, 𝛾! will be obtained from Eq. 

(4.42), and finally 𝛾∗ will be defined as 

𝛾∗ = max 𝛾!     ∀𝑘!, 𝑘!. (4.43) 

It is to be noted that an initial guess for the disturbance step size for starting the 

optimization of Eq. (4.41) is needed. The predicted level of the disturbance step size, 𝛾∗, 

obtained using Eqs. (4.28) and (4.35) can serve for this initial guess. In fact, 𝛾∗ is 

considered as the lower bound for the allowable disturbance step size via a linear 

controller, i.e., 𝛾 ≥ 𝛾∗. 

Let the linear controller for 𝛾∗  be 𝐺!!(𝑠), that is designed through 𝐻! controller 

synthesis approach. Also, let the values of 𝑘! and 𝑘! corresponding to 𝛾∗ be denoted by 

𝑘! and 𝑘!. By implementing 𝐺!!(𝑠) in the feedback loop, the closed loop is able to 
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maintain system performance constraints in Eqs. (4.8) and (4.9) for the disturbance step 

size of 𝛾∗. 

For a known dynamic system, 𝑘! and 𝑘! will be found in an iterative process. This 

means, there is no analytical formulation to estimate 𝑘! and 𝑘! prior to the controller 

design, and they must be obtained in a case-by-case basis. In general, the local maximum 

values of 𝛾! can happen in multiple directions of the gradients of 𝑘! and 𝑘!. In fact, in 

some cases, the solutions of 𝑘! and 𝑘! for a 𝛾∗ are not unique. Consequently, 𝛾∗ must 

also be obtained in a case-by-case basis by an iterative process. 

 

4.5. Case Study 

In this section, an illustrative example is utilized to demonstrate the procedure of 

designing linear controllers for a regulating system based on the formulation presented in 

this chapter. The objectives are (i.) to predict the allowable disturbance step size prior to 

controller design and (ii.) design a linear controller for the predicted level of disturbance 

size. For this, the idle speed control of a V-6 fuel injected engine is considered. The block 

diagram of the system can be considered as shown Figure 4-1. The plant and disturbance 

dynamics are described by [72] 

𝐺! 𝑠 =
15.9(𝑠 + 3)

𝑠! + 2.2𝑠 + 5.62 (4.44) 

and 
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𝐺! 𝑠 =
19.1(𝑠 + 3)

𝑠! + 2.2𝑠 + 5.62. 
(4.45) 

The system is subject to a step external disturbance torque with the magnitude of 

𝑑 𝑡 = 𝛾  𝑁.𝑚 delivered by onboard accessories, an output tolerance of 𝑦 𝑡 ≤

20  𝑟𝑝𝑚, and a control effort constraint of 𝑢(𝑡) ≤ 20° of spark advance.  

 
4.5.1 Synthesizing a Linear Controller for 𝜸 = 𝜸∗ 

For this example problem the performance constraints described in Eqs. (4.8) and 

(4.9) are Γ = 20° and 𝛽 = 20  𝑟𝑝𝑚. To obtain the predicted level of disturbance size 

achievable via a linear controller, the solution of Eq. (4.28) using Eq. (4.35) is 

considered. The graphical representation of Eq. (4.35) for this case study is shown in 

Figure 4-5.  

 

 Figure 4-5 Prediction of the Level of Regulating Performance. 
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From Figure 4-5, the predicted level of disturbance size achievable via a linear 

controller is identified as 𝛾∗ = 16.7  𝑁.𝑚, which is the minimum of 𝛾 for all frequencies. 

This predicted level of disturbance size guarantees the existence of a linear controller that 

can maintain the system performance constrains of 𝑦 𝑡 ≤ 20  𝑟𝑝𝑚 and 𝑢(𝑡) ≤ 20°. 

This level of step disturbance is in the vicinity of 𝜔 = 2  !"#!"# . This yields in tightest 

acceptable design region for 𝜔 = 2  !"#!"#  and it surrounding frequencies.  

Next step is to design a linear controller for 𝛾 = 𝛾∗. Using Eqs. (4.44) and (4.45) in 

Eqs. (4.39) and (4.40), the performance weights for 𝐻! controller design for 𝛾 = 𝛾∗ are 

W! 𝑠 =
16.7×19.1

20
𝑠 + 3

s! + 2.2𝑠 + 5.62   
(4.46) 

and 

W! 𝑠 =
16.7×19.1
20×15.9 . 

(4.47) 

Due to the similar dynamics of plant and disturbance, the upper bound from Eq. (4.21) 

and 𝑊!(𝑠) from Eq. (4.40) remain the same as frequency changes. However, the lower 

bound from Eq. (4.26) and 𝑊!(𝑠) from Eq. (4.39) change by frequency. 

Using the performance weights in Eqs. (4.46) and (4.47), a linear controller is 

designed for 𝛾 = 𝛾∗ through 𝐻! controller synthesis method. The resulting linear 

controller is [65]  
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𝐺!! 𝑠 =
0.9223( 𝑠

1.334+ 1)
𝑠
3+ 1

𝑠
500+ 1

!. (4.48) 

With the controller in Eq. (4.48), the feedback system is capable of maintaining the 

performance specifications of 𝑦 𝑡 ≤ 20  𝑟𝑝𝑚 and 𝑢(𝑡) ≤ 20° for the predicted level 

of step disturbance 𝛾∗ = 16.7  𝑁𝑚. Shown in Figure 4-6 is the closed loop output 

response and actuator effort. In this example problem, the time domain performance 

specifications are directly enforced in the frequency domain by use of the proposed 

performance weights through 𝐻! controller synthesis. 

 

Figure 4-6 Closed Loop Responses for 𝜸 = 𝟏𝟔.𝟕. 
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4.5.2 Synthesizing a Linear Controller for 𝜸 = 𝜸∗ 

The minimization of the inequality in Eq. (4.41) is considered for the case study to 

obtain the maximum allowable disturbance step size via a linear controller,  𝛾∗, and 

design a linear controller, 𝐺!! 𝑠 , for this level of step disturbance. The performance 

weights obtained in Eqs. (4.46) and (4.47) are used in Eq. (4.41), that yields  

𝑘!
19.1𝛾  (𝑗𝜔 + 3)

20 𝑗𝜔 ! + 2.2𝑗𝜔 + 5.62
1

1+ 𝐿(𝑗𝜔) + 𝑘!
19.1𝛾
15.9×20

𝐿(𝑗𝜔)
1+ 𝐿(𝑗𝜔) !

< 1. (4.49) 

To start minimization of Eq. (4.49), 𝛾∗ = 16.7  𝑁.𝑚 obtained in the previous section 

is considered as the initial guess. Convex design spaces for 𝑘! and 𝑘! are considered as 

0 < 𝑘! ≤ 1 and 0 < 𝑘! ≤ 10. The selection of these design sets is based on the existence 

of a stabilizing linear controller. For this example, it was found that no stabilizing linear 

controller exists for 𝑘! ≥ 1.05 and all value of 𝑘!. 

For each selected pair of 𝑘! and 𝑘!, by minimizing Eq. (4.41), a linear controller is 

designed using 𝐻! controller synthesis approach. Then, the corresponding value of 𝛾! is 

obtained using Eq. (4.42). Finally, using Eq. (4.43) 𝛾∗ is found. The resulting values from 

this iterative process are 𝛾∗ = 17.4  𝑁.𝑚, 𝑘! = 0.5, and 𝑘! = 0.969. Additionally, the 

designed linear controller from 𝐻!synthesis is 

𝐺!! 𝑠 =
0.9278 𝑠

1.66+ 1
𝑠

3.03+ 1
𝑠

1.53  10! + 1
. (4.50) 
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With the controller in Eq. (4.50), the feedback system is capable of maintaining the 

performance specifications of 𝑦 𝑡 ≤ 20  𝑟𝑝𝑚 and 𝑢(𝑡) ≤ 20° the maximum 

allowable disturbance step size via a linear controller 𝛾∗ = 17.4  𝑁.𝑚. Shown in Figure 

4-7 is the closed loop output response and actuator effort.  

 

Figure 4-7 Closed Loop Responses for 𝜸 = 𝟏𝟕.𝟒. 
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achievable by a linear controller,  𝛾∗, prior to the controller design is also presented. The 

method presented in this chapter, guarantees the existence of a linear controller for the 

predicted level of disturbance step size through 𝐻! controller synthesis.  

Additionally, a method of maximizing the disturbance size achievable by a linear 

controller is proposed. This is done by scaling the performance weights in the 𝐻! 

controller synthesis. The maximum disturbance size achievable by a linear controller, 𝛾∗, 

will be obtained in an iterative process and the resulting linear controller will be 

synthesize via 𝐻! controller design approach.  

To illustrate the linear controller design techniques, the idle speed control of a V-6 

fuel injected engine model subject to an external torque load disturbance is considered. 

For this case study, the predicted level of disturbance step size, 𝛾∗, and the maximum 

disturbance size achievable by a linear controller, 𝛾∗, are found and the linear controllers 

are designed through 𝐻! controller synthesis that maintains system performance 

specifications. 
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Chapter 5. Nonlinear Controller Synthesis for Regulating 

Systems using Inverse SIDF Approach 

 

Presented in this chapter is a methodology to incorporate the nonlinearities in the 

formulation of QFT and thereby extend its application. More specifically, a nonlinear 

controller design methodology is developed that improves the closed loop performance of 

linear regulating systems subject to time domain constraints beyond what is achievable 

by a linear controller. The proposed nonlinear controllers are synthesized around a linear 

controller. The proposed methodology translates an increase (from what is achievable by 

the linear controller) in the disturbance step size to the frequency domain distortions and 

imposes required gain and phase distortions on the frequency response of the linear open 

loop transfer function. The performance bounds developed in Chapter 4 are used to 

define the gain and phase distortions (in the sense of SIDF) due to the nonlinearity, and 

the inverse SIDF algorithm developed in Chapter 3 is utilized to design an isolated 

explicit nonlinear controller that the imposed gain and phase distortions are representing.  

 

5.1 Motivation for Nonlinear Control  

From the developed acceptable design regions in Chapter 4, the gain and phase 

characteristics of the open loop transfer functions are restricted within the acceptable 

design regions. The size of the acceptable design regions is depended on frequency, 𝜔 

and disturbance step size, 𝛾. In particular, as the disturbance step size, 𝛾, increases, the 
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allowable design region contracts. This inverse relationship is shown for an illustrative 

example in the gain/ phase plane in Figure 5-1 and the complex plane in Figure 5-2. 

Therefore, the corresponding allowable gain and phase characteristics of the open loop 

transfer function are further restricted as 𝛾 increases. 

 

 Figure 5-1 Acceptable Design Region Size vs. Disturbance Size: Gain/ Phase Plane. 
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 Figure 5-2 Acceptable Design Region Size vs. Disturbance Size: Complex Plane. 
 

On the other hand, the gain and phase characteristics of a linear transfer function are 

confined by the so-called Bode gain/phase relationship. For a linear stable, minimum 

phase system, this relationship can be written as [73]  

∡𝐿 𝑗𝜔! =
1
𝜋

𝑑 ln 𝐿(𝑗𝜔)

𝑑 ln 𝜔𝜔!

coth
ln 𝜔𝜔!
2

!

!!

  𝑑 ln
𝜔
𝜔!

, (5.1a) 

or for a constant slope, it can be approximated as 

∡𝐿 𝑗𝜔! ≅ 90°×
1
20
𝑑 𝐿 𝑗𝜔!

𝑑𝜔 . (5.1b) 
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Equation (5.1) implies that the phase characteristics of linear systems cannot be 

independently specified from their gain characteristics. 

The coupling between the gain and phase characteristics of a linear system due to 

Bode gain/phase relationship and the inverse relationship between the acceptable design 

region size and 𝛾, directly impose a limitation of the maximum allowable disturbance 

step size, 𝛾, for linear control systems. In general, increasing the allowable disturbance 

step size imposes frequency characteristics that are often very difficult or even impossible 

to meet with linear controller. In particular, an increase in the disturbance step size, while 

holding time domain performance constraints constant, requires a phase lead while 

simultaneously requiring a decrease in gain. A linear controller comprised of complex 

poles and zeros can achieve these frequency characteristics. However, these gain and 

phase modifications occur over a very narrow frequency band. Consequently, the design 

region at surrounding frequencies may require additional compensation, which results in 

increasing controller order [1]. 

There are many cases in which the frequency domain specifications imposed by the 

time domain performance requirements violate the Bode gain/phase relationship. In these 

cases, a linear controller does not exist and nonlinear controllers are desirable. 

 

5.2 Background 

Nonlinear controllers, in essence, are not confined by the Bode gain/phase 

relationship. This results in more flexibility in designing controllers for higher closed 

loop performance requirements. Presented in this chapter is a new methodology to design 
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nonlinear controllers for linear regulating systems to improve their closed loop 

performance by utilizing inverse SIDF algorithm. First, a brief review of the previous 

developed methodologies is presented. 

Different methods of designing nonlinear controllers for linear regulating systems to 

improve their closed loop performance have been previously proposed. In [19], a 

controller design technique is proposed that utilizes actuator saturation to meet output 

performance specification for linear regulating systems. The proposed nonlinear 

controller saturates for large disturbances while it operates linearly for smaller 

disturbance sizes. In that case, the gain distortions (in the sense of SIDF) of the nonlinear 

element are obtained by using analytical SIDF formulation of the nonlinear element. This 

could be done since the structure of the nonlinearity (saturation element) was 

preconceived. 

A Volterra series representation is used in [1, 8, 17, 18] to design a nonlinear 

controller in the frequency domain for regulating systems subject to time domain 

constraints. The use of Volterra series limits the class of nonlinear controllers to the 

continuous functions. Their proposed strategy involves two steps: (i.) designing a linear 

controller that balances the trade-off between output performance and required actuation, 

and (ii.) augmenting the linear controller with an odd cubic polynomial. For that, the 

SIDF calculation is automated by the use of Volterra series. This enables imposing 

necessary gain and phase distortions to the linear system to assure that time domain 

constraints are satisfied. The coefficients of the nonlinear term are calibrated such that the 

gain and phase distortions meet the frequency domain tolerances.  
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Developed in this chapter is a novel nonlinear controller design methodology. The 

controller design is conducted in frequency domain. The unique aspect of this work is 

that the structure of the nonlinear controller is not known a priori and will be identified 

using the inverse SIDF algorithm developed in Chapter 3. Another advantage of this 

methodology is that the nonlinear controller is not necessarily continuous or single 

valued. This extends the utility of the proposed methodology by including the 

applications of hysteresis nonlinear controllers in the feedback systems. The required 

gain and phase distortions due to the nonlinearity will be obtained by utilizing the 

performance bounds developed in Chapter 4 to impose required gain and phase 

distortions on the linear open loop frequency response to assure that the frequency 

domain constraints are satisfied. 

 

5.3 Synthesis of Nonlinear Controllers 

Consider the linear regulating system shown in Figure 5-3, with the closed loop 

performance constraints as  

𝑦 𝑡 ≤ 𝛽  and   𝑢 𝑡 ≤ Γ      ∀𝑡 > 0. (5.2) 
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 Figure 5-3 Block Diagram of a Regulating System. 
 

In Chapter 4, it was shown that the time domain constraints in Eq. (5.2) can be 

translated to the frequency domain characteristics of the open loop transfer function as 

𝐿(𝑗𝜔)
1+ 𝐿(𝑗𝜔) ≤

Γ  𝐺!(𝑗𝜔)
𝛾  𝐺!(𝑗𝜔)

        ∀𝜔 (5.3) 

and  

1+ 𝐿(𝑗𝜔) ≥
𝛾  𝐺! 𝑗𝜔

β         ∀𝜔. (5.4) 

Let assume that for the system shown in Figure 5-3, a linear controller,  𝐺!(𝑠), is 

designed through 𝐻! controller synthesis approach in Chapter 4, for a given level of 

disturbance step size 𝛾!. Therefore, the closed loop system maintains the time domain 

constraints in Eq. (5.2) for the level of step disturbance of 𝛾!. The resulting linear open 

loop transfer function is   𝐿 𝑠 = 𝐺! 𝑠 𝐺!(𝑠). In other words, the frequency response of 

the open loop transfer function will be inside the acceptable design regions for 𝛾!.  
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Now, consider an increase in the disturbance step size from 𝛾! to 𝛾 > 𝛾!. For this 

increased level of disturbance step size the frequency response of 𝐿(𝑠) falls outside the 

acceptable design regions of the increased level of 𝛾 for some discrete sets of 

frequencies. Consequently, the time domain constraints in Eq. (5.2) will be violated at 

these discrete sets of frequencies. This means that the linear controller 𝐺!(𝑠) is not able 

to maintain the performance constraints for 𝛾 > 𝛾!. A methodology is proposed that 

synthesize a nonlinear controller that imposes required gain and phase distortions to the 

frequency response of 𝐿(𝑠) at the discrete sets of frequencies to move them inside their 

corresponding acceptable design regions. The linear controller, 𝐺!(𝑠) designed for 𝛾! 

will be augmented by the designed nonlinear controller and the resulting nonlinear 

feedback system will maintain the system performance requirements in Eq. (5.2) for 

𝛾 > 𝛾!. 

 
5.3.1 Defining the Discrete Sets of Frequencies  

Using the inequality in Eq. (5.3), the set of frequencies in which the frequency 

response of the open loop transfer function violates the upper bound constraint for 𝛾 > 𝛾! 

is defined as 

Ψ = 𝜔
𝐿(𝑗𝜔)

1+ 𝐿(𝑗𝜔) >
Γ  𝐺!(𝑗𝜔)
𝛾  𝐺!(𝑗𝜔)

   . (5.5) 

The number of elements in Ψ is 𝜅. Similarly, using the inequality in Eq. (5.4), the set of 

frequencies in which the frequency response of the open loop transfer function violates 

the lower bound constraint for 𝛾 > 𝛾! is defined as 
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Θ = 𝜔   1+ 𝐿(𝑗𝜔) <
𝛾  𝐺!(𝑗𝜔)

β   . (5.6) 

The number of elements in Θ is 𝜁. The nonlinear control law will be defined for the 

frequency sets defined in inequalities in Eqs. (5.5) and (5.6). 

 
5.3.2 Defining Nonlinear Control Laws 

The proposed nonlinear controller synthesis methodology augments the linear 

controller,  𝐺!(𝑠), with a nonlinear controller,  𝒩, such that the frequency response of the 

modified open loop transfer function is contained in the acceptable design regions for 

𝛾 > 𝛾!. Therefore, the modified open loop system can be defined as 

𝐿 𝐴, 𝑗𝜔 = 𝑁 𝐴 𝐺! 𝑗𝜔 𝐺! 𝑗𝜔 , (5.7) 

where 𝑁(𝐴) is the gain and phase distortions due to the explicit nonlinear controller in 

the sense of SIDF, i.e., 𝑁(𝐴) = 𝜌!𝑒!!!, and 𝐴 is the amplitude of the input signal to the 

nonlinearity in the feedback loop. In other words, the nonlinear controller move the out of 

bound points (i.e., 𝜔 ∈ Ψ ∪ Θ) into their corresponding acceptable design regions, and 

operates linearly when 𝜔  does not belong to Ψ or Θ. This can be formulated as 

for  𝜔 ∈ Ψ:  Κ! = 𝑁(𝐴)
𝐿(𝐴, 𝑗𝜔!)

1+ 𝐿(𝑗𝐴,𝜔!)
=

Γ  𝐺!(𝑗𝜔!)
𝛾  𝐺!(𝑗𝜔!)

   ,   (5.8) 

where 𝑖 = 1: 𝜅, and 
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for  𝜔 ∈ Θ:  Ζ! = 𝑁 𝐴 1+ 𝐿 𝐴, 𝑗𝜔! =
𝛾  𝐺! 𝑗𝜔!

β      , (5.9) 

where 𝑖 = 1: 𝜁. 

Since the gain and phase distortions of the nonlinear controller (in the sense of SIDF) 

are dependent on the amplitude of the input signal to the nonlinearity in the feedback 

loop, they cannot be directly obtained from gain/phase or complex planes information 

related to 𝐿(𝑗𝜔). In other words, by considering the effect of the amplitude of the input 

signal to the nonlinearity on the SIDF gain and phase distortions, from Eqs. (5.8) and 

(5.9), first 𝐿(𝐴, 𝑗𝜔) must be obtained from the frequency response of 𝐿(𝑗𝜔) and then 

𝑁(𝐴) must be extracted from 𝐿(𝐴, 𝑗𝜔). In General, there are three options to impose 

required gain and phase distortions on 𝐿(𝑗𝜔) to obtain 𝐿(𝐴, 𝑗𝜔). In the following, these 

options are discussed. 

 
5.3.2.1 Option 1: Imposing Both Gain and Phase Distortions 

The first option to consider is imposing both gain and phase distortions to bring the 

out of bound points in to their acceptable design regions. This can be better explained in 

the gain/phase plane. For this, consider an arbitrary example shown in Figure 5-4. In this 

example the frequency response of the open loop transfer function (shown as a point 

labeled by 0) is outside the acceptable design region. Defining control law for the first 

option means to impose enough gain and phase distortions to relocate the point shown in 

Figure 5-4 from location labeled as 0 (for 𝐿(𝑗𝜔)) to the location labeled as 1 (for 

𝐿(𝐴, 𝑗𝜔)). 
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Figure 5-4 Illustration of Different Options to Define Nonlinear Controller Law. 
 
5.3.2.2 Option 2: Imposing Only Gain Distortions 

The second option is imposing only gain distortions (i.e., holding the phase 

characteristics constant) to bring the out of bound points in to the acceptable design 

regions. Defining control law for the second option means to impose enough gain 

distortions to relocate the point shown in Figure 5-4 from location labeled as 0 (for 

𝐿(𝑗𝜔)) to the location labeled as 2 (for 𝐿(𝐴, 𝑗𝜔)). 

 
5.3.2.3 Option 3: Imposing Only Phase Distortions 

The third option is imposing only phase distortions (i.e., holding the gain 

characteristics constant) to bring the out of bound points in to the acceptable design 
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distortions to relocate the point shown in Figure 5-4 from location labeled as 0 (for 

𝐿(𝑗𝜔)) to the location labeled as 3 (for 𝐿(𝐴, 𝑗𝜔)). 

 
5.3.2.4 Discussion on Different Options 

Comparing these three different options shown in Figure 5-4, in this specific 

illustrative example, the first option results in the minimum control action and the third 

option results in the largest control action among all three options, which is not desirable. 

In general implementing nonlinear control laws described in the second option are easier, 

because they are associated with achieving only gain distortions (i.e., single-valued 

nonlinearities). On the other hand, there are cases in which defining the control law in 

one or more of the options described above are not possible. One example is shown in 

Figure 5-5. 

 

 Figure 5-5 Special Case for Designing Nonlinear Control Law. 
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In this example the frequency response of the open loop transfer function is out of 

bound by violating the upper amplitude bound constraint. From Figure 5-5, the out of 

bound point cannot be relocated into the acceptable design region by the second or third 

options. This means, the first option is the only way to define the nonlinear control law. 

Therefore, the selection between these three options must be done in a case-by-case basis. 

The basis for the method proposed in this chapter is the classical QFT and loop 

shaping methodologies that allows frequency-by-frequency controller synthesis. 

Therefore, in the proposed nonlinear controller synthesis methodology, the control action 

choice can change from one frequency range to another. 

 
5.3.3 Isolation of the Nonlinearity 

Next step is to isolate the gain and phase distortions due to the nonlinearity, i.e., 

𝑁(𝐴), from the obtained gain and phase distortions for 𝐿(𝐴, 𝑗𝜔). This must be done in 

the feedback loop to account for the dependency of the amplitude of the input signal to 

the nonlinearity,  𝐴, and SIDF gain and phase distortions of the nonlinear 

controller,  𝑁(𝐴). For this, a method of calculating 𝐴 in the feedback loop is proposed that 

is outlined in the following section.  

 
5.3.3.1 Calculations of the Amplitude of the Input Signal to the Nonlinearity in the 

Feedback Loop 

One important challenge is to calculate the amplitude of the input signal to the 

nonlinearity in the feedback loop. As discussed in Chapter 2, the gain and phase 

distortions of a nonlinear function (in the notion of the SIDF) is dependent on the input 



101 

 

signal amplitude. If the structure of the nonlinear element was known, the input signal 

amplitude could be determined by relating it to the characteristics of the nonlinear 

element via its SIDF analytical representation [19]. In the current application, however, 

the structure of the nonlinearity is not known and will be determined by utilizing the 

inverse SIDF algorithm developed in Chapter 3. Proposed in this section, is the method of 

calculating the input signal amplitude that is employed in the proposed methodology. 

The formulation presented in this section, is for a general block diagram shown in 

Figure 5-6. This derivation parallels the derivation of the amplitude of the input signal to 

a nonlinear element in the closed loop system in [9]. 

 

Figure 5-6 Block Diagram of the General Nonlinear Control Regulating Feedback System. 
 

To justify the use of the inverse SIDF algorithm developed in Chapter 3, let 𝑑(𝑡) in 

Figure 5-6 be a simple harmonic excitation, 

𝑑 𝑡 = 𝑀! sin𝜔𝑡. (5.10) 
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Assuming the input to the nonlinear element (𝑁(𝑥) in Figure 5-6) is also a sinusoid wave 

with amplitude 𝐴 and frequency 𝜔 (𝑥 𝑡 = 𝐴 sin 𝜔𝑡 ), and because of the presence of 

the nonlinearity in the loop, all the transfer functions relating different signals to one 

another, are function of  𝐴 and 𝜔. To find 𝐴, consider the transfer function relating 𝑑(𝑡) to 

𝑥(𝑡) as 

𝑋
𝐷 𝑗𝜔,𝐴 =

−𝐺! 𝑗𝜔 𝐺! 𝑗𝜔 𝐺! 𝑗𝜔
1+ 𝐺! 𝑗𝜔 𝐺! 𝑗𝜔 𝐺! 𝑗𝜔 𝑁(𝐴,𝜔). 

(5.11) 

The absolute magnitude of the transfer function in Eq. (5.11) is written as  

𝑋
𝐷 𝑗𝜔,𝐴 =

𝐴
𝑀!
. (5.12) 

Consider the following definitions for components of the feedback loop in Figure 5-6 

𝐺! 𝑗𝜔 = 𝜌!𝑒!!! ,𝐺! 𝑗𝜔 = 𝜌!𝑒!!! ,𝐺! 𝑗𝜔 = 𝜌!𝑒!!! ,

𝐺! 𝑗𝜔 = 𝜌!𝑒!!! , and    𝑁 𝐴,𝜔 = 𝜌!𝑒!!! , 
(5.13) 

where 𝜌!,𝜌!,𝜌!,𝜌! and 𝜃!,𝜃!,𝜃!,𝜃! are functions of 𝜔, while 𝜌! and 𝜃! are functions 

of both 𝐴 and 𝜔. Using definitions provided in Eq. (5.13) in Eq. (5.11) yields 

𝑋
𝐷 𝑗𝜔,𝐴 =

𝜌!𝜌!𝜌!𝑒!(!!!!!!!!)

1+ 𝜌!𝜌!𝜌!𝜌!𝑒!(!!!!!!!!!!!)
. (5.14) 

Using Eq. (5.14) in Eq. (5.12) yields 
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𝐴
𝑀!

=
𝜌!𝜌!𝜌!𝑒!(!!!!!!!!)

1+ 𝜌!𝜌!𝜌!𝜌!𝑒!(!!!!!!!!!!!)
. (5.15) 

Defining 𝜌 ≜ 𝜌!𝜌!𝜌!, 𝜌 ≜ 𝜌!𝜌!𝜌!, and 𝜃 ≜ 𝜃! + 𝜃! + 𝜃!, and using Euler’s formula, 

Eq. (5.15) is simplified to 

𝐴
𝑀!

=
𝜌

1+ 𝜌𝜌! cos 𝜃 + 𝜃! ! + 𝜌!𝜌!! sin! 𝜃 + 𝜃!
  . (5.16) 

Applying math simplifications on Eq. (5.16) produces 

𝐴
𝑀!

=
𝜌

1+ 𝜌!𝜌!! + 2𝜌𝜌! cos 𝜃 + 𝜃!
  . (5.17) 

An alternative representation of Eq. (5.17) is 

𝐴𝜌! = −
𝐴
𝜌 cos 𝜃 + 𝜃! ±

1
𝜌 𝜌!𝑀!

! − 𝐴! sin! 𝜃 + 𝜃! . (5.18) 

The left hand side of Eq. (5.18) is the amplitude of the nonlinearity output 

fundamental. Eq. (5.18) can be used to obtain a numerical solution of 𝐴. In other words, 

at a particular frequency, each side of Eq. (5.18) is only dependent on 𝐴. Therefore, by 

changing 𝐴 iteratively, one can find the value at which left and right hand sides of Eq. 

(5.18) intersect. This will be considered as the solution for 𝐴. 

It is to be noted that in the development of Eq. (5.18), a general form of feedback 

loop is considered. In the case of using a different feedback system such as one that is 
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shown in Figure 5-3, appropriate modifications must be applied. It means, since in the 

system in Figure 5-3 𝐺! 𝑠 = 1, then in Eqs. (5.13) through (5.18) 𝜌! = 1,𝜃! = 0. 

 
5.3.3.2 Transforming Data to the Gain and Phase Distortions of the Nonlinearity 

To illustrate how Eq. (5.18) is utilized to extract   𝑁(𝐴) from 𝐿(𝐴, 𝑗𝜔), consider the 

block diagram shown in Figure 5-7. The blocks inside the box labeled with 1 represent 

the linear open loop system, in which the linear controller 𝐺!  is designed for 𝛾!. This 

linear open loop transfer function can maintain system performance requirements in Eq. 

(5.2) for the disturbance step size of 𝛾!. 

The blocks inside the dashed-line box labeled with 2 represent the nonlinear open 

loop system (i.e., 𝐿(𝐴, 𝑗𝜔)), in which the linear controller 𝐺!  in tandem with the 

nonlinear controller 𝒩 (to be determined) is capable of maintaining system performance 

requirements for a given disturbance step size 𝛾 > 𝛾!. 

 

 Figure 5-7 Converting the Obtained Data to the Gain and Phase Distortions of the Nonlinearity. 
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To extract the gain and phase distortions of the nonlinearity from the modified open 

loop frequency response, the frequency response of the nonlinearity must be isolated. In 

essence, the SIDF can be written as the ratio of the phasor representation of output signal 

(the signal shown with the arrow labeled with 4 in in Figure 5-7) to the phasor 

representation of input signal (the signal shown with the arrow labeled with 3 in Figure 

5-7) [9].  

If the input signal amplitude of 𝐿(𝑗𝜔) and 𝐿 𝐴! , 𝑗𝜔  are denoted by 𝐴! and 𝐴!, 

respectively, then the SIDF gain and phase distortions due to the nonlinearity can be 

obtained by 

𝑁 𝐴 =
𝐿(𝐴! , 𝑗𝜔)𝐴!
𝐿(𝑗𝜔)𝐴!

  , (5.19) 

where 𝐴! and 𝐴! are obtained with the  repeated use of Eq. (5.18).  

 
5.3.4 Identification of the Nonlinear Controller 

The phasor representation of the SIDF gain and phase distortions obtained from Eq. 

(5.19), 𝑁 𝐴 , can be written as  

𝑁 𝐴 = 𝜌!𝑒!!!   = 𝐶 𝐴 + 𝑗𝑆 𝐴 , (5.20) 

where 𝐶 𝐴 = 𝜌! cos𝜃!, 𝑆 𝐴 = 𝜌! sin𝜃!, and 𝐴 is obtained from Eq. (5.18). 

Considering SIDF representation in Eq. (5.20), the inverse SIDF algorithm developed 

in Chapter 3 can be utilized to recover an isolated static (explicit) nonlinearity that the 

obtained gains and phase distortions are corresponded to. The outcome of this step is a 
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non-parametric representation of the nonlinearity. The characteristics of the nonlinearity 

can be identified from the non-parametric solution by Least Square Estimation (LSE) 

method. This identified nonlinear function can be implemented in the feedback loop in 

tandem with 𝐺! . Doing so, the system is capable of maintaining performance 

requirements in Eq. (5.2) for the considered disturbance step size 𝛾 > 𝛾!. 

 

5.4 Case Study 

In this section, the same example that was studied in Chapter 4 is considered. The 

linear controller,  𝐺!!(𝑠), designed through 𝐻! controller synthesis approach for the 

predicted value of the disturbance step size, i.e.,  𝛾! = 𝛾∗ based on the methodology in 

Chapter 4 is considered as the starting points. From Chapter 4, the obtained value of 

𝛾∗ = 16.7  𝑁.𝑚 and the resulting linear controller is  

𝐺!! 𝑠 =
0.9223( 𝑠

1.334+ 1)
𝑠
3+ 1

𝑠
500+ 1

!.   (5.21) 

Next, a four percent increase in the step size disturbance from its predicted value for 

the designed linear controller is considered, i.e., 𝛾 = 1.04  𝛾∗. At this level, both 

performance constraints in Eq. (5.2) are violated. 

The objective in this section is to append the linear controller in Eq. (5.21) with a 

nonlinear controller, designed based on the proposed methodology, such that the 

modified nonlinear feedback loop can maintain the performance constraints of the system 

for 𝛾 = 1.04  𝛾∗. 
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5.4.1 Defining the Discrete Sets of Frequencies 

To define Ψ and Θ sets, first, the upper and lower amplitude bounds and their 

corresponding acceptable design regions at different frequencies for 𝛾 = 1.04  𝛾∗ must be 

obtained. Shown in Figure 5-8 and Figure 5-9 are the acceptable design regions in the 

gain/phase and complex planes, respectively. The unit of frequency is !"#
!"#

. 

 

 Figure 5-8 Selection of Discrete Frequency Sets in the Gain/phase Plane.  
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 Figure 5-9 Selection of Discrete Frequency Sets in the Complex Plane.  
 

In these figure, solid-lines and dashed-lines are the representations of lower bounds 

for 𝛾 = 1.04  𝛾∗. Additionally, the dotted-line is the representation of upper bound for 

𝛾 = 1.04  𝛾∗. As explained in Chapter 4, the dynamics of the disturbance are canceled by 

the dynamics of the linear plant, and therefore, the upper bound does not change as 

frequency changes. The acceptable design region is the area between the upper bound and 

lower bound, at each frequency. It is worth mentioning that, the tightest acceptable design 

region in Figure 5-8 and Figure 5-9 is at 𝜔 = 2!"#!"# , which is consistent with what was 

concluded in Chapter 4 for obtaining the predicted value of the disturbance step size for 

this example problem. 
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Additionally, shown with points in Figure 5-8 and Figure 5-9 are the frequency 

response of the linear transfer function 𝐿(𝑠) = 𝐺!! 𝑠 𝐺!(𝑠). If 𝐿(𝑗𝜔!) is not contained in 

the acceptable design region at 𝜔 = 𝜔!, then 𝜔! ∈ Ψ if Eq. (5.5) is satisfied, and 𝜔! ∈ Θ 

if Eq. (5.6) is satisfied. For this case study, from Figure 5-8 Ψ and Θ sets are defined as  

Ψ = 𝜔 0    !"#
!"#

≤ 𝜔 < 0.5  !"#
!"#
    (5.22) 

and 

Θ = 𝜔 3  !"#
!"#

≤ 𝜔 < 8  !"#
!"#
   . (5.23) 

The nonlinear control law will be defined for the frequency ranges defined in Eqs. (5.22) 

and (5.23). 

 
5.4.2 Defining Nonlinear Control Laws 

In this step based on Eqs. (5.8) and (5.9) the nonlinear control law will be defined. 

For this, as mentioned, three options are available. For the example studied here, it is 

found that for the frequencies defined in Eq. (5.22) first and third options are not helpful. 

In other words, for these points, imposing phase distortions does not move them toward 

their corresponding acceptable design regions. Therefore, for Eq. (5.22) the nonlinear 

control law is defined based on the second option, i.e., imposing only gain distortions. 

For the frequencies defined in Eq. (5.23), however, all three options are applicable. Here, 

first and second options are considered to define two nonlinear control laws for the 

frequencies defined in Eq. (5.23).  
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Hence, in the following, two nonlinear control laws are defined: (i.) Case 1 considers 

imposing only gain distortions on both Ψ and Θ defined in Eqs. (5.22) and (5.23), and 

(ii.) Case 2 imposes gain distortions on Ψ defined in Eq. (5.22) and both gain and phase 

distortions on Θ defined in Eq. (5.23). 

 
5.4.2.1 Nonlinear Control Law for Case 1 

The nonlinear controller for Case 1 will be designed to be in tandem with and before 

the linear controller, i.e., 𝐺!! 𝑠 , in the feedback loop. For this, to define  Κ based on Eq. 

(5.8), for frequency range defined in Eq. (5.22), there must be an increase in the gain 

characteristics of 𝐿(𝑗𝜔) to obtain 𝐿(𝐴, 𝑗𝜔). Additionally, to define Ζ based on Eq. (5.9) 

for frequency range defined in Eq. (5.23), the gain characteristics of 𝐿(𝑗𝜔) must decrease 

to obtain 𝐿(𝐴, 𝑗𝜔).The results are listed in Table C. 1 in Appendix C.  

 
5.4.2.2 Nonlinear Control Law for Case 2 

The nonlinear controller for Case 2 will be designed to be in tandem with and after 

the linear controller, i.e., 𝐺!! 𝑠 , in the feedback loop. In this case,  Κ is defined in the 

same way that was defined for Case 1. To define Ζ based on Eq. (5.9) for frequency range 

defined in Eq. (5.23), there should be a decrease in the gain characteristics of 𝐿(𝑗𝜔) and 

an increase in the phase characteristics of 𝐿(𝑗𝜔) to obtain 𝐿(𝐴, 𝑗𝜔). The results are listed 

in Table C. 2 in Appendix C.  
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5.4.3 Isolation of the Nonlinearity 

By utilizing Eqs. (5.18) and (5.19) in this step, the gain and phase distortions of the 

nonlinear controllers for Case 1 and Case 2 are extracted from the obtained data in Table 

C. 1 and Table C. 2, for 𝐿(𝐴, 𝑗𝜔). The sorted SIDF gain and phase distortions for both 

Case 1 and Case 2 are listed in Table C. 3 and Table C. 4 in Appendix C. Additionally, 

SIDF gain and phase distortions of the nonlinear controllers for Case 1 and Case 2 are 

shown in Figure 5-10 and Figure 5-11. 

 

 Figure 5-10 SIDF Gain and Phase Distortions of Nonlinear Controller in Case 1. 
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 Figure 5-11 SIDF Gain and Phase Distortions of Nonlinear Controller in Case 2. 
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 Figure 5-12 Isolated Explicit Nonlinear Controller from Inverse SIDF Algorithm for Case 1.  
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𝑓! 𝑥 =

𝑥 𝑥 ≤ 10.12
0.9007𝑥 + 1.0049 10.12 < 𝑥 ≤ 11.53

𝑥 − 0.14 11.53 < 𝑥 ≤ 17.48
1.1984𝑥 − 3.608 17.48 < 𝑥

.   (5.24) 

The properties of the identified parameters in Figure 5-12 are consistent with the 

definition of the nonlinear control law in Table C. 1. For example, for the frequencies 

defined in Eq. (5.22), an increase in the gain characteristics of the linear open loop 

transfer function was desired. This frequency range corresponds to the last section of the 

nonlinearity shown in Figure 5-12. In this section, the slope is 𝑚! = 1.1984, which 

causes an increase in the gain characteristics.  

 

 Figure 5-13 Isolated Explicit Nonlinear Controller from Inverse SIDF Algorithm for Case 2. 
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The control law for Case 2 was defined such that the resultant nonlinearity imposes 

only gain distortions for the discrete set of frequencies defined in Eq. (5.22) and imposes 

both gain and phase distortions for the discrete set of frequencies defined in Eq. (5.23). 

Therefore, the overall identified nonlinearity is double-valued. Shown with solid-line and 

dashed-line in Figure 5-13, is the non-parametric output solution of the inverse SIDF that 

the nonlinear control law in Case 2 corresponds to. The parameters of this isolated 

explicit nonlinear function can be identified from the non-parametric solution using LSE 

method, as shown by the dotted-lines for different segments in Figure 5-13. The 

identified parametric solution of the nonlinear controller obtained in Case 2 is  

𝑓! 𝑥 =

𝑥 𝑥 ≤ 10.24
1.5909𝑥 − 3.790 for  𝛿𝑥 < 0

7.6 for  𝛿𝑥 ≥ 0 10.24 < 𝑥 ≤ 11.56

𝑥 − 0.16 11.56 < 𝑥 ≤ 17.48
1.2235𝑥 − 4.0668 17.48 < 𝑥

.   (5.25) 

 
5.4.5 Implementation Results 

The closed loop responses for the nonlinear controllers designed are presented in this 

section. 𝐺!! in Eq. (5.21) is appended with the nonlinear controllers obtained in Eqs. 

(5.24) and (5.35) for Case 1 (before 𝐺!!)  and Case 2 (after 𝐺!!), respectively. Then the 

controller effort and system output responses of the closed loop system are obtained for 

𝛾 = 1.04  𝛾∗. The results are shown in Figure 5-14 to Figure 5-17.  
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 Figure 5-14 Output Performance for Case 1. 

 

 Figure 5-15 Actuator Effort for Case 1. 
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 Figure 5-16 Output Performance for Case 2. 

 

 Figure 5-17 Actuator Effort for Case 2 
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From these figures, adding the nonlinear controllers to the linear system has improved 

the performance of the system, such that it can maintain the performance requirements 

for a larger value of the disturbance step size (i.e., 𝛾! = 1.04𝛾∗ > 𝛾∗). 

 
5.4.6 Discussion on the Results 

The maximum allowable disturbance step size via a linear controller, i.e.,  𝛾∗, obtained 

in Chapter 4 is equivalent with almost four percent increase in the disturbance step size 

from the predicted value also obtained in Chapter 4, i.e.,  𝛾∗ ≅ 𝛾! = 1.04𝛾∗. Therefore, 

the comparison of the closed loop responses obtained from  𝐺!! in tandem with the 

nonlinear controllers for Case 1 and Case 2 with those obtained from 𝐺!! is considered in 

this section. In other words, the closed loop responses shown in Figure 5-14 to Figure 

5-17 are compared against using 𝐺!! obtained in Chapter 4 for 𝛾 = 𝛾∗ in the feedback 

loop. The results are shown in Figure 5-18 to Figure 5-21. 
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 Figure 5-18 Output Performance Comparison for Case 1 and GC2. 

 

 Figure 5-19 Actuator Effort Comparison for Case 1 and GC2. 
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 Figure 5-20 Output Performance Comparison for Case 2 and GC2. 

 

 Figure 5-21 Actuator Effort Comparison for Case 2 and GC2. 
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From these figures, relatively better closed loop performances are obtained by adding 

the nonlinear controllers in the feedback loop comparing to using 𝐺!!. The performance 

is considered in terms of the maximum output and actuator effort responses. In other 

words, 𝑦 𝑡 ! and 𝑢 𝑡 ! are smaller in the case of using 𝐺!! augmented by the 

nonlinear controllers than the case of using 𝐺!!. Additionally, as mentioned in Chapter 4, 

the procedure of designing 𝐺!! is an iterative process. Synthesizing the nonlinear 

controllers, on the other hand, is through an automated process that results in a more 

systematic approach of the controller design. 

Comparing Figure 5-18 to Figure 5-21 suggest that if the nonlinear controllers were 

built around 𝐺!! instead of 𝐺!!, higher closed loop performances would have been 

achieved. For this, the actual impact of time domain parameters 𝑘! and 𝑘! in the 

frequency domain (i.e., upper and lower bounds and more specifically Λ! and Λ! defined 

in Eqs. (4.17) and (4. 22)) must be determined. Unfortunately, there is no direct 

translation of 𝑘! and 𝑘! in the frequency domain due to the intrinsic incompatibilities 

between time and frequency domains. This can be an interesting subject for future 

research. 

Additionally, Figure 5-1 and/or Figure 5-2 suggests that for some level of 𝛾, 

eventually there will be no acceptable design regions for some restraining frequencies. 

This will be considered as the absolute maximum of disturbance step size, 𝛾!"#, 

regardless of the type of the controller in the feedback loop.  
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The restraining frequency for the particular example studied here, is 𝜔 = 2 !"#
!"#

 that 

has the tightest acceptable design region for all values of 𝛾, as shown in Figure 5-8 and 

Figure 5-9. The corresponding absolute maximum of 𝛾 for this example problem is found 

to be 𝛾!"# ≅ 1.08𝛾∗, at which there will be no acceptable design region for 𝜔 = 2 !"#
!"#

 

and its surrounding frequencies.  

A bang-bang controller can be designed for this level of 𝛾!"# [19, 68]. For this 

specific case study and using the proposed method, it is found that a nonlinear controller 

can be designed for up to around six percent increase in 𝛾∗.  

This limitation is due to the couple of factors. (i.) Approximations in the SIDF 

method as well as approximations in the formulations of amplitude of the input signal to 

the nonlinearity in the feedback loop: because of these approximations, a rigorous 

justification of using Eq. (5.18) for calculating the amplitude of the input signal to the 

nonlinearity in the case of a regulating system subject to a step disturbance cannot be 

developed. Moreover, the actual impact of the pseudo-linearization of the nonlinear 

element (that is determined from inverse SIDF algorithm) in the time domain is not 

known. Instead, applications of this technique will be used to test the proposed 

hypothesis on a case-by-case basis [19]. (ii.) Excluding the dynamics nonlinearities in the 

formulation of the inverse SIDF: the SIDF of dynamic (implicit) nonlinearities is a 

function of both amplitude and frequency of the input signal. In the computational 

method developed in Chapter 3 for the inverse SIDF, the dependency of the SIDF to the 

frequency of the input signal wave is not considered. Therefore, the method can only 
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identify static (explicit) nonlinearities. By formulating a more accurate approach for the 

calculation of the amplitude of the input signal to the nonlinearity as well as including 

dynamic (implicit) nonlinearities in the inverse SIDF algorithm, increase in the 

disturbance step size beyond six percent and up to 𝛾!"# would be achievable. This is also 

an interesting subject for future research.  

Nevertheless, the advantage of using the proposed methodology over a bang-bang 

controller is that, in the method presented here, the actuator response is proportional to 

the disturbance size. In the case of using a bang-bang controller, however, it will always 

lead to saturation, regardless of the value of step disturbance.  

 

5.5 Chapter Summary 

A nonlinear controller design methodology is developed for a class of SISO linear 

regulating systems subject to time domain constraints. The proposed design method is 

conducted in the frequency domain and improves the closed loop performance of the 

system by allowing for larger values of the disturbance step size. The proposed method 

imposes required gain and phase distortions on the frequency response of the linear open 

loop to ensure that system performance requirements are met. The obtained gain and 

phase distortions are used in the inverse SIDF algorithm developed in Chapter 3 to 

estimate an isolated static (explicit) nonlinear controller. An illustrative example is used 

to demonstrate the application of the proposed nonlinear controller design method. For 

this, a linear controller designed for the predicted level of disturbance step size, 𝛾∗ is 

appended by two nonlinear controllers designed based on the proposed methodology by 
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considering four percent increase in 𝛾∗. The nonlinear feedback systems are capable of 

maintaining the time domain constraints for the increased level of disturbance step size.  



125 

 

Chapter 6. Stability Analysis of the Nonlinear Feedback 

Control Systems in the Frequency Domain 

 

The final step for the validation of any feedback control system is its stability 

assessment. The focus of this chapter is to outline a stability assessment tool for nonlinear 

feedback systems subject to external inputs. The presented method is based on the 

functional analysis. The stability of the nonlinear feedback systems designed in Chapter 5 

is discussed based on the presented method in this chapter. 

 

6.1 Introduction  

The stability analysis of nonlinear feedback systems has been of a great interest in the 

literature and different methods have been formulated [10, 74-76]. Unlike linear systems, 

the methods developed for evaluating the stability of nonlinear feedback systems often 

provide sufficient (and not necessary) conditions. These methods usually are formulated 

for very general conditions and very few assumptions on the open loop elements are 

made, therefore they often produce conservative results. The aim of this section is to 

provide a brief introduction of the most useful methods for stability analysis of the 

nonlinear feedback system. 

The traditional approach to stability assessment involves the Lyapunov method [77]. 

This method is very valuable, since it can provide stability conditions for many practical 

nonlinear systems. Moreover, the Lyapunov method is the basis for obtaining most of the 
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frequency domain stability analysis methods, including the original contribution by 

Popov [78]. 

Lyapunov method is formulated in the time-domain and is based on the state space 

representation of the system, i.e., 𝑥 = 𝑓(𝑥), where 𝑥 is the space vector and 𝑓(𝑥) is a 

nonlinear function of states. The method involves of finding a candidate Lyapunov 

function, 𝑉(𝑥) such that  𝑉(𝑥) ≥ 0 and 𝑉 0 = 0 [74, 77]. The Lyapunov function can be 

considered as the energy representation of the system. Unfortunately, there is no general 

approach for finding the Lyapunov function for nonlinear systems, due to the fact that the 

behavior of the nonlinear systems around their singular points changes very rapidly and 

unpredictably. Several methods are proposed for the selection of this function, such as the 

variable gradient method and Lur’e method [74]. Given a Lyapunov function, the 

stability can be assessed by examining the negativity of the derivative of the Lyapunov 

function, 𝑉 𝑥 = !"(!)
!"

. In other words, if 𝑉(𝑥) is considered as the energy representation 

of the system, the stability can be concluded if 𝑉 𝑥  is negative. 

Several methods have also been suggested for the stability analysis of the nonlinear 

feedback systems in the frequency domain. The original contribution in this regard is the 

Generalized Theorem of Popov [10, 74, 78], which is a very important and fundamental 

theorem, because it is the basis for other frequency domain methods. The Generalized 

Theorem of Popov is formulated for a basic system as shown in Figure 6-1, in which 𝑝 is 

the derivative operator [10, 74, 78].  
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 Figure 6-1 Basic Nonlinear Feedback Control System. 
 

The Generalized Theorem of Popov: Let the linear element in Figure 6-1 to be output 

stable, and the nonlinear element to lie in the sector 0,𝐾 . In order for the closed loop 

system to be both absolutely control and output asymptotic, it is sufficient that a real 

number 𝑞 exists such that for all 𝜔 ≥ 0 and an arbitrarily small 𝜈 > 0, 𝐺(𝑗𝜔) satisfies  

𝑅𝑒 (1+ 𝑗𝜔𝑞)𝐺 𝑗𝜔 +
1
𝐾   ≥ 𝜈 > 0. (6.1) 

Depending on the nature of the nonlinearity, there are some restrictions on 𝑞 and 𝐾: 

(i.) If the nonlinearity is memoryless and time-invariant, 

(i-a.) if 0 < 𝐾 < ∞, then −∞ < 𝑞 < ∞, and 

(i-b) if 𝐾 = ∞, then 0 ≤ 𝑞 < ∞, 

(ii.) If the nonlinearity is passive hysteresis, then 0 < 𝐾 < ∞, and −∞ < 𝑞 ≤ 0,  

(iii.) If the nonlinearity is active hysteresis, then 0 < 𝐾 ≤ ∞, and 0 ≤ 𝑞 < ∞,  

(iv.) For a general nonlinearity (time-varying, and possibly with hysteresis), 0 < 𝐾 ≤ ∞, 

and 𝑞 = 0.  
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Proof: See reference [74, 78]. 

The Generalized Theorem of Popov provides sufficient conditions for the closed loop 

stability by imposing certain requirements on the linear element of the feedback loop 

depending on the nature of the nonlinearity. Wide range of nonlinear elements, i.e., time-

varying and double-valued nonlinearities, are included in this theorem. However, based 

on this theorem, there is a trade-off between the requirements on the frequency response 

of the linear element and the nature of the nonlinearity.  

The generalized Popov theorem can be extended to different applications. For 

example, to evaluate the stability of feedback systems with unstable or non-

asymptotically stable linear plants, the pole-shifting method is formulated [10, 74]. In this 

method the original feedback system will be transformed by means of  

𝑢! 𝑡 = 𝑢 𝑡 − 𝑎  𝑒 𝑡 , (6.2) 

where  𝑢 𝑡  are 𝑒 𝑡  are depicted in Figure 6-1, and 𝑎 is a constant. If the original 

nonlinearity lies in sector 𝐾!,𝐾! , Eq. (6.2) causes the transformed nonlinearity to lie in 

𝐾! − 𝑎,𝐾! − 𝑎 . It can be shown that the linear plant will also be transformed to [10, 74]  

𝐺! 𝑝 =
𝐺(𝑝)

1+ 𝑎𝐺(𝑝). (6.3) 

From Eqs. (6.2) and (6.3), a sector can be found for the transformed nonlinearity such 

that the Popov theorem can be applicable for the transformed system. This can be used to 

treat the unstable or non-asymptotically stable linear plants.  



129 

 

An alternative approach for pole-shifting method is formulated as the Generalized 

Circle Theorem [10, 74]. In this method, for the system shown in Figure 6-1, it is 

assumed that the linear element will be output stable by applying a negative feedback 

through a constant feedback gain  𝑎. In order for the original feedback system to be 

absolutely control and output asymptotic for the nonlinearity that lies in sector 𝑎, 𝑏 , 

with 𝑎 < 𝑏, it is sufficient that there exists a real number 𝑞 such that for all 𝜔 ≥ 0 and an 

arbitrarily small 𝜈, 𝐺(𝑗𝜔) satisfies [10, 74]  

𝐺 𝑗𝜔 +
𝑏 + 𝑎 − 𝑗𝜔𝑞 𝑏 − 𝑎

2𝑎𝑏

!

−
𝑏 − 𝑎
2𝑎𝑏

!

1+ 𝑞!𝜔! ≥   𝜈 > 0      for
1
𝑎 >

1
𝑏 (6.4) 

and 

𝐺 𝑗𝜔 +
𝑏 + 𝑎 − 𝑗𝜔𝑞 𝑏 − 𝑎

2𝑎𝑏

!

−
𝑏 − 𝑎
2𝑎𝑏

!

1+ 𝑞!𝜔! ≤   −𝜈 < 0      for
1
𝑎 <

1
𝑏. 

(6.5) 

The restrictions on the ranges of 𝑞 and 𝑏 − 𝑎 are similar to those for the Generalized 

Popov theorem for 𝑞 and 𝐾, respectively. For the case of a stable linear plant, i.e., 𝑎 = 0, 

it can be shown that Eq. (6.1) and Eq. (6.4) / Eq. (6.5) are equivalent, if 𝐾 = 𝑏. 

Additionally, the zero-shifting method is introduced in an attempt to partially relax 

the trade-off between the restrictions on the linear element and those on the nonlinear 

element in the feedback loop [10, 74]. In this method the sector that the nonlinearity lies 

in will be manipulated such that the basic stability properties (e.g., poles location) of the 

linear element are not changed. In this method, for a nonlinearity that lies in the sector 

𝐾!,𝐾! , a transformation is defined as  
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𝑒! 𝑡 = 𝑒 𝑡 + 𝑐  𝑢 𝑡 . (6.6) 

The transformation in Eq. (6.6) causes the transformed nonlinearity to lie in !!
!!!!

, !!
!!!

. 

Moreover the linear plant will be transformed to 

𝐺! 𝑝 = 𝐺 𝑝 − 𝑐. (6.7) 

From Eq. (6.7), it can be concluded that although the basic stability properties of the 

linear plant are preserved, the transformed linear plant is not necessarily output stable. 

Therefore, using zero-shifting method, the output stability condition of the linear element 

in the Generalize Popov theorem can be waived [10, 74]. 

All of the methods presented above, are for nonlinear feedback systems without 

external input (in Figure 6-1 𝑟 𝑡 = 0). However, to evaluate the stability of nonlinear 

feedback systems designed in Chapter 5, stability analysis tools for nonlinear feedback 

system subject to non-zero external inputs are desirable. In the following section, this 

topic is discussed.  

 

6.2 Stability Formulation for the Nonlinear Feedback Systems Subject to 

Non-zero External Inputs 

The stability discussion presented in this section is based on the assessment of the 

input-output relationship. For a system to behave properly, the input-output must have 

two properties: (i.) Bounded inputs must produce bounded outputs (i.e., the stability in 
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the sense of Bounded Input Bounded Output: BIBO), and (ii.) Outputs must not be 

critically sensitive to small changes in inputs (e.g., changes caused by noise) [75, 76]. 

These two properties are the basis for stability criterion presented in this section. In 

other words, it is desirable to find conditions on the open loop relations that result in the 

closed loop stability. In particular, conditions are sought for the closed loop stability of 

the feedback systems with both linear and nonlinear elements, such as those designed in 

Chapter 5. 

 
6.2.1 Preliminaries 

Before presenting the main results needed for the stability analysis of the feedback 

systems designed in Chapter 5, several primary definitions are needed. This section 

presents these prerequisites [75, 76].  

Truncated Function: Let 𝑥 be any function mapping 𝑇 (time interval) into 𝑉 (range of 

input or output values), i.e.,  𝑥:𝑇 → 𝑉. Let 𝑡 be any point in 𝑇. Then the symbol 𝑥! 

denotes the truncated function, 𝑥!:𝑇 → 𝑉, which assumes the values 𝑥! 𝑡! = 𝑥(𝑡!) if 

𝑡! < 𝑡 and 𝑥! 𝑡! = 0 elsewhere.  

Normed Space: 𝐿!, where 𝑝 = 1,2,3… is the space consisting of those real and non-

negative 𝑥 for which 𝑥 𝑡 !𝑑𝑡!
!  is finite. In addition, for the case  𝑝 = 2, 𝐿! is an inner-

product space, where inner-product is defined as  

𝑥,𝑦 = 𝑥 𝑡 𝑦(𝑡)𝑑𝑡
!

!

. (6.8) 
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Extended Normed Linear Space: Assume 𝑋 is a normed linear space. The extension of 𝑋, 

denoted by 𝑋!, is defined as the space consisting of those functions whose truncations lie 

in 𝑋, that is  

𝑋! = 𝑥|𝑥:𝑇 → 𝑉, and  𝑥! ∈ 𝑋    ∀𝑡 ∈ 𝑇 . (6.9) 

𝑋! is also a linear space. An extended norm, 𝑥 !, is assigned to each 𝑥 ∈ 𝑋!   , such that 

𝑥 ! = 𝑥  if 𝑥 ∈ 𝑋, and 𝑥 ! = ∞, elsewhere. 

Relation: An operator 𝐿 is said to be a relation on 𝑋! if : (i.) the domain of 𝐿 is equal to 

𝑋!, and (ii.) 𝐿 is one-to-one. 

ℛ! Class: ℛ! is a class of relations on 𝐿!!, which holds the property of zero element (i.e., 

zero element belongs to the domain of the relation and its image is also zero). 

Gain and Incremental Gain: The gain of a relation 𝐿 in ℛ!, denoted by 𝑔(𝐿), is  

𝑔 𝐿 = sup
𝐿𝑥 !

𝑥!
, (6.10) 

where the supremum is taken over all possible input-output pairs, and over all possible 

truncations. These gains have the properties of norms. Additionally, the incremental gain 

of any 𝐿 in ℛ!, denoted by 𝑔 𝐿 , is  

𝑔 𝐿 = sup
𝐿𝑥 ! − 𝐿𝑦 !

𝑥! − 𝑦!
. (6.11) 

ℒ Class: ℒ is the class of operators on 𝐿!!, satisfying  
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𝐿𝑥 𝑡 = ℎ!𝑥 𝑡 + ℎ 𝑡 − 𝑡! 𝑥 𝑡! 𝑑𝑡!
!

!

, (6.12) 

where ℎ! is a real constant, and the impulse response ℎ is a function in 𝐿! (normed 

space) with the property that, for some 𝜎! < 0, ℎ 𝑡 exp(−𝜎!𝑡) is also in 𝐿!. Operators 

in ℒ are linear and time-invariant. 

Definitions Related to the Concept of Conicity: A relation 𝐿 in ℛ! is interior conic if 

there are real constants 𝑟 ≥ 0 and 𝑐 for which satisfy 

𝐿𝑥 ! − 𝑐𝑥! ≤ 𝑟 𝑥!           ∀𝑥 ∈ Do 𝐿   &  ∀𝑡 ∈ 𝑇. (6.13) 

Additionally, 𝐿 is exterior conic if the sign in inequality in Eq. (6.13) is reversed. 𝐿 is 

conic if it is exterior conic or interior conic. The constant 𝑐 is called the center parameter 

and 𝑟 is called the radius parameter of 𝐿. 

The conic relation 𝐿 is said to be inside the sector 𝑎, 𝑏 , if 𝑎 ≤   𝑏 and if it satisfies  

𝐿𝑥 ! − 𝑎𝑥! , 𝐿𝑥 ! − 𝑏𝑥! ≤ 0          ∀𝑥 ∈ Do 𝐿   &  ∀𝑡 ∈ 𝑇. (6.14) 

Additionally, 𝐿 is said to be outside the sector 𝑎, 𝑏 , if 𝑎 ≤   𝑏 and if the sign in the 

inequality in Eq. (6.14) is reversed. 

These definitions can be extended to incrementally conic relations as follow. A 

relation 𝐿 in ℛ! is incrementally interior conic if there are real constants 𝑟 ≥ 0 and 𝑐 for 

which satisfy 
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𝐿𝑥 − 𝐿𝑦 ! − 𝑐(𝑥 − 𝑦)! ≤ 𝑟 𝑥 − 𝑦 !           ∀𝑥,𝑦 ∈ Do 𝐿   &  ∀𝑡 ∈ 𝑇. (6.15) 

Additionally, 𝐿 is incrementally exterior conic if the sign of inequality in Eq. (6.15) is 

reversed. Moreover, an incrementally conic relation 𝐿 is incrementally inside the sector 

𝑎, 𝑏 , if 𝑎 ≤   𝑏 and if it satisfies 

𝐿𝑥 − 𝐿𝑦 ! − 𝑎(𝑥 − 𝑦)! , 𝐿𝑥 − 𝐿𝑦 ! − 𝑏(𝑥 − 𝑦)! ≤ 0          ∀𝑥,𝑦 ∈ Do 𝐿   &  ∀𝑡

∈ 𝑇. (6.16) 

Additionally, an incrementally conic relation 𝐿 is incrementally outside the sector 𝑎, 𝑏 , 

if 𝑎 ≤   𝑏 and the sign of inequality of Eq. (6.16) is reversed. 

If 𝐿 is incrementally interior (exterior) conic with center 𝑐 and radius 𝑟, then 𝐿 is 

incrementally inside (outside) the sector 𝑐 − 𝑟, 𝑐 + 𝑟 . On the other hand, if 𝐿 is 

incrementally inside (outside) the sector 𝑎, 𝑏 , then 𝐿 is incrementally interior (exterior) 

conic with center !!!
!

 and radius !!!
!

. 

Definitions Related to the Concept of Positivity: A relation 𝐿 in ℛ! is positive if it 

satisfies  

𝑥! , 𝐿𝑥 ! ≥ 0          ∀𝑥 ∈ Do 𝐿   &  ∀𝑡 ∈ 𝑇. (6.17) 

Additionally  𝐿 is incrementally positive if it satisfies 

(𝑥 − 𝑦)! , 𝐿𝑥 − 𝐿𝑦 ! ≥ 0          ∀𝑥,𝑦 ∈ Do 𝐿   &  ∀𝑡 ∈ 𝑇. (6.18) 
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Instantaneous Conditions: Conicity and positivity definitions can be extended to include 

the instantaneous conditions, as 

(i.) The relation 𝐿 is instantaneously inside the sector 𝑎, 𝑏 , if 𝑎 ≤   𝑏 and if it satisfies  

𝑎 ≤
𝐿𝑥 𝑡
𝑥 𝑡 ≤ 𝑏          𝑥 ∈ 𝐿!! , 𝑡 ≥ 0, 𝑥(𝑡) ≠ 0. (6.19) 

(ii.) The relation 𝐿 is instantaneously positive if it satisfies  

𝑥 𝑡 . 𝐿𝑥(𝑡) ≥ 0          𝑥 ∈ 𝐿!! , 𝑡 ≥ 0. (6.20) 

(iii.) The relation 𝐿 is instantaneously incrementally inside the sector 𝑎, 𝑏 , if 𝑎 ≤   𝑏 and 

if it satisfies  

𝑎 ≤
𝐿𝑥 𝑡 − 𝐿𝑦 𝑡
𝑥 𝑡 − 𝑦 𝑡 ≤ 𝑏          𝑥 ∈ 𝐿!! , 𝑡 ≥ 0, 𝑥 𝑡 − 𝑦(𝑡) ≠ 0. (6.21) 

(iv.) The relation 𝐿 is instantaneously incrementally positive if it satisfies  

𝑥 𝑡 − 𝑦(𝑡) . 𝐿𝑥 𝑡 − 𝐿𝑦(𝑡) ≥ 0          𝑥,𝑦 ∈ 𝐿!! , 𝑡 ≥ 0. (6.22) 

 
6.2.2 Main Theorems  

Consider the general feedback loop as shown in Figure 6-2. 
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 Figure 6-2 General Nonlinear Feedback Control System with External Inputs. 
 

In Figure 6-2 𝐿 represents a linear time-invariant relation, and 𝑁 represents a nonlinear 

relation that is not necessarily time-invariant. A single input, 𝑥, multiplied by two real 

constants, 𝑎! and 𝑎!, is added into the systems at two points. This is to consider a more 

general configuration. By setting either 𝑎! or 𝑎! to zero, a single input system can be 

obtained. Additionally, 𝑤! and 𝑤! in Figure 6-2 are fixed bias functions, and are used to 

account for initial conditions.  

The objective is to present the satiability conditions for the closed-loop system shown 

in Figure 6-2.  For this, the following theorems and lemmas have been formulated in [75, 

76]. 

 
6.2.2.1 Circle Conditions 

Suppose 𝑁 is a nonlinear relation, that could be memoryless or with memory, and is 

inside a sector 𝛿!, 𝛿! . Assume 𝛿! ≤ 𝛿!, 𝛿! > 0, 𝜀 ≥ 0 are real constants. 𝐿(𝑗𝜔) is said 

to satisfy the circle conditions for the sector 𝛿!, 𝛿! , with offset 𝜀, if the following 

conditions hold: 
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Case a: If 𝛿! > 0, then 

𝐿 𝑗𝜔 +
1
2

1
𝛿!
+
1
𝛿!

≥
1
2

1
𝛿!
−
1
𝛿!

+ 𝜀        ∀𝜔, (6.23) 

and the Nyquist diagram of 𝐿(𝑗𝜔) does not encircle the point !!
!

!
!!
+ !

!!
. 

Case b: If 𝛿! < 0, then 

𝐿 𝑗𝜔 +
1
2

1
𝛿!
+
1
𝛿!

≤
1
2

1
𝛿!
−
1
𝛿!

− 𝜀        ∀𝜔. (6.24) 

Case c: If 𝛿! = 0, then 

𝑅𝑒 𝐿 𝑗𝜔   ≥ −
1
𝛿!
+ 𝜀        ∀𝜔. (6.25) 

Conditions presented in cases a through c divide the complex plane into two regions. 

These regions shape either like a circular disk and its compliment or like two half planes 

(which can be viewed as a circular disk with the radius being infinity). One of these 

regions is called the “permissible” region and the other one is called the “critical” region.  

It can be shown that if 𝐿 𝑗𝜔  does not enter or encircle the critical region, then the 

closed loop is bounded. In addition, if 𝑁 is incrementally inside sector 𝛿!, 𝛿! , then the 

closed loop is continuous as well. These results can be formulated in a theorem as follow.  

 
6.2.2.2 Circle Theorem 

Suppose that 
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(i.) 𝑁 is a relation in ℛ!, and is (incrementally) inside the sector 𝛿! + 𝜏, 𝛿! − 𝜏 , where 

𝛿! > 0,  

(ii.) 𝐿 is an operator in ℒ, which satisfies the circle conditions for the sector 𝛿!, 𝛿!  with 

offset 𝜀, and  

(iii.) 𝜀 and 𝜏 are non-negative constants, at least one of which is greater than zero, 

then, the closed loop is 𝐿!-bounded (𝐿!-continous). 

Proof: See refernce [76]. 

The Circle Theorem can be considered as a generalization of the sufficient part of the 

Nyquist’s criterion, in which the critical region is replaced by the critical instability point, 

i.e., 0+ 𝑗(−1). From this theorem, for any given 𝑁, there are two critical regions, one 

for boundedness and one for continuity. Due to the stricter conditions imposed for the 

continuity, the critical region for the continuity is smaller than the critical region for the 

boundedness.  

 
6.2.2.3 Main Result: Corollary 1 

The Circle theorem is served as the generating theorem for the following results that 

is presented as a corollary to the Circle theorem by imposing additional requirements on 

𝑁.  

Corollary 1: Suppose that (i.) 𝑁 in ℛ!, and is instantaneously (incrementally) inside the 

sector 𝛿! + 𝜏, 𝛿! − 𝜏 , where 𝛿! > 0, and conditions (ii.) and (iii.) of the Circle theorem 

hold, then, the closed loop is 𝐿!-bounded (𝐿!-continous). 
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The nonlinearities considered in Corollary 1 include a wide range of functions, i.e., 

time-varying nonlinearity with or without memory. This results in producing a relatively 

large critical region. In other words, the stability assessment based on Corollary 1 is vey 

conservative.  

To reduce this conservativeness, one way is to make the critical region smaller and 

this can be achieved by imposing more limitations on 𝑁. In this regard, more corollaries 

are formulated such as Popov’s conditions and the Factorization method [76]. In these 

formulations, the requirements imposed on 𝑁 will limit the class of nonlinearities to the 

single-valued nonlinearities. Moreover, they only provide the boundedness (and not 

continuity) results for the closed loop system. Since the nonlinear controllers designed in 

Chapter 5 include both single-valued and double-valued nonlinearities, therefore the 

Popov’s conditions and the Factorization method are not desirable. Therefore, Corollary 

1 will be used to assess the stability of feedback systems presented in Chapter 5. In the 

next section, it will be shown how Corollary 1 can be utilized to evaluate the stability of 

the designed nonlinear feedback systems. 

 

6.3 Applications of Corollary 1  

From the results presented in Chapter 4 and Chapter 5, the open loop linear element 

in the feedback loop can be simplified as 

𝐿 𝑠 =
10.99𝑠! + 47.64𝑠 + 43.99

0.00134𝑠! + 0.3403𝑠! + 1.75𝑠! + 4.096𝑠 + 5.62. 
(6.26) 

The Nyquist plot of the linear open loop transfer function is shown in Figure 6-3. 
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Figure 6-3 Nyquist Diagram of the Linear Element in the Feedback Loop. 
 

In the following sections, the stability of the nonlinear feedback systems for the nonlinear 

controllers designed in Case 1 and Case 2 in Chapter 5 are evaluated. 

 
6.3.1 Stability of the Feedback System with the Nonlinear Controller in Case 1 

To evaluate the stability of the feedback system with the nonlinear controller in Case 

1, three conditions of the Corollary 1 must be checked: 

(i.) Consider 𝑓! 𝑥  shown in Figure 6-4. 
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 Figure 6-4 Nonlinearity in Case 1: (top) Boundedness Condition, (bottom) Continuity Condition. 
 

From Figure 6-4, it can be verified that 𝑓! 𝑥  belongs to ℛ!. Moreover, based on Eq. 

(6.19), it can be verified that 𝑓! 𝑥  is instantaneously inside 𝛿!! + 𝜏, 𝛿!! − 𝜏 , where 

𝛿!! = 0.9894, 𝛿!! = 1.019, and 𝜏 = 0. In other words 𝑓! 𝑥   is instantaneously inside 

0.9894,1.019 . Moreover, based on the definition in Eq. (6.21), 𝑓! 𝑥  is instantaneously 

incrementally 𝛿!! + 𝜏, 𝛿!! − 𝜏 , where 𝛿!! = 0.9007, 𝛿!! = 1.1984, and 𝜏 = 0. In 

other words 𝑓! 𝑥  is instantaneously incrementally inside 0.9007,1.1984 .  

(ii.) Consider 𝐿 in Eq. (6.26). Since 𝐿 is a linear and time-invariant transfer function, it 

obviously belongs to ℒ. Next step is to check if 𝐿 satisfies the circle conditions for the 

sectors 𝛿!! , 𝛿!!  and 𝛿!! , 𝛿!!  with offsets 𝜀! , 𝜀! ≥ 0 for boundedness and continuity, 

respectively. 
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 Since 𝛿!! = 0.9894 > 0 and 𝛿!! = 0.9007 > 0, therefore Eq. (6.23) must satisfy 

for positive constants 𝜀! and 𝜀!. In other words, for the boundedness 

𝐿 𝑗𝜔 + 0.9965 ≥ 0.0152+ 𝜀!        ∀𝜔, (6.27) 

must be satisfied, and for the continuity 

𝐿 𝑗𝜔 + 0.9723 ≥ 0.1379+ 𝜀!        ∀𝜔, (6.28) 

must be satisfied. For this, consider the graphical representation of the left hand side of 

Eqs. (6.27) and (6.28) as shown in Figure 6-5. 

 

 Figure 6-5 Graphical Representaion of the LHS of Eqs. (6.27) and (6.28). 
 

Form Figure 6-5, if 0.0152+ 𝜀! is set to be equal to 0.9018 then Eq. (6.27) is satisfied. 

This mean 𝜀! = 0.8866, which is a positive value. Moreover, if 0.1379+ 𝜀! is set to be 
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equal to 0.8779 then Eq. (6.28) is satisfied. This mean 𝜀! = 0.74, which is also a 

positive value. 

Additionally, the Nyquist diagram of 𝐿(𝑗𝜔) does not encircle the points !!
!

!
!!!

+

!
!!!

= −0.9965 and !!
!

!
!!!

+ !
!!!

= −0.9723, since as shown in Figure 6-3, these 

points are not contained in the Nyquist diagram of 𝐿(𝑗𝜔). Therefore, the second 

condition in Corollary 1 is satisfied for both continuity and boundedness 

From circle conditions, the critical region for boundedness and continuity can also be 

obtained. Since 𝛿!! and 𝛿!! are non-zero, the complex plane is divided into two regions, 

one is a circular disk (which is the critical region) and the other one is the compliment of 

the circular disk (which is the permissible region). The center and radius parameters for 

the critical boundedness disk are !!
!

!
!!!

+ !
!!!

 and !
!

!
!!!

− !
!!!

, respectively. The 

center and radius parameters for the critical continuity disk are !!
!

!
!!!

+ !
!!!

 and 

!
!

!
!!!

− !
!!!

, respectively. For the closed loop to be bounded and continuous, the 

Nyquist plot of  𝐿 𝑗𝜔  should not enter or encircle the critical regions for boundedness 

and continuity. This is shown in Figure 6-6 and Figure 6-7. 
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 Figure 6-6 Boundedness Disk and Critical Region for Case 1. 
 

In the top plot of Figure 6-6, the Nyquist plot of  𝐿 𝑗𝜔  and the critical boundedness 

disk are shown together. It can be seen that 𝐿 𝑗𝜔  does not enter or encircle the critical 

region. Since the disk is very small comparing to the Nyquist plot of  𝐿 𝑗𝜔 , to better 

visualize the critical region, the boundedness disk is shown separately in the bottom plot 

of Figure 6-6. The critical region is the shaded area inside the disk.  
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 Figure 6-7 Continuity Disk and Critical Region for Case 1. 
 

In the top plot of Figure 6-7, the Nyquist plot of  𝐿 𝑗𝜔  and the critical boundedness 

disk are shown together. It can be seen that 𝐿 𝑗𝜔  does not enter or encircle the critical 

region. Since the disk is very small comparing to the Nyquist plot of  𝐿 𝑗𝜔 , to better 

visualize the critical region, the boundedness disk is shown separately in the bottom plot 

of Figure 6-7. The critical region is the shaded area inside the disk. Moreover, shown in 

Figure 6-8 are the continuity and the boundedness disks together. The continuity disk has 

larger size than the boundedness disk; therefore the critical region for the continuity is 

also larger than the critical region for the boundedness. 
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 Figure 6-8 Comparison of Critical Regions for Boundedness and Continuity for Case 1. 
 

 (iii.) Since 𝜀! = 0.8866, 𝜀! = 0.74, and 𝜏 = 0 are all non-negative constants and 𝜀! and 

𝜀! are greater than zero, the last condition in Corollary is also satisfied. 

Form (i.), (ii.) and (iii.), and based on Corollary 1, it can be concluded that the closed 

loop is 𝐿!-bounded and also 𝐿!-continuous. This can also be interpreted as the BIBO 

stability criterion.  

 
6.3.2 Stability of the Feedback System with the Nonlinear Controller in Case 2 

To evaluate the stability of the feedback system with the nonlinear controller in Case 

2, three conditions of the Corollary 1 must be checked: 

(i.) Consider 𝑓!(𝑥) shown in Figure 6-9. 
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 Figure 6-9 Nonlinearity in Case 2: Boundedness Condition. 
 

From Figure 6-9, it can be verified that 𝑓!(𝑥) belongs to ℛ!. Moreover, from Eq. 

(6.19) it can be verified that 𝑓!(𝑥) is instantaneously inside 𝛿! + 𝜏, 𝛿! − 𝜏 , where 

𝛿! = 0.68, 𝛿! = 1.27, and 𝜏 = 0. In other words 𝑓!(𝑥) is instantaneously inside 

0.68,1.27 . However, since 𝑓!(𝑥) is double-valued, and based on the definition in Eq. 

(6.21), 𝑁 is not instantaneously incrementally inside any sectors. Therefore, no continuity 

conclusions can be drawn from Corollary 1 for this case. 

(ii.) As mentioned in previous section, 𝐿 belongs to ℒ. Next step is to check if 𝐿 satisfies 

the circle condition for the sector 𝛿!, 𝛿!  with offset 𝜀 ≥ 0. Since 𝛿! = 0.68 > 0, 

therefore Eq. (6.23) must satisfy for a positive constant 𝜀. In other words, for the 
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𝐿 𝑗𝜔 + 1.129 ≥ 0.3416+ 𝜀        ∀𝜔, (6.29) 

must be satisfied. For this, consider the graphical representation of the left hand side of 

Eq. (6.29) shown in Figure 6-10. 

 

 Figure 6-10 Graphical Representaion of the LHS of Eq. (6.29). 
 

Form Figure 6-10, if 0.3416+ 𝜀 is set to be equal to 1.0327, then Eq. (6.29) is satisfied. 

This mean 𝜀 = 0.6911, which is a positive value. 

Moreover, the Nyquist diagram of 𝐿(𝑗𝜔) does not encircle the point !!
!

!
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+ !

!!
=

−0.129, since as shown in Figure 6-3, this point is not contained in the Nyquist diagram 

of 𝐿(𝑗𝜔). Therefore, the second condition in Corollary 1 is satisfied. 
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From circle conditions, the critical region for the boundedness can also be obtained. 

Since 𝛿! is non-zero, the complex plane is divided into two regions, one is a circular disk 

(which is the critical region) and the other one is the compliment of the circular disk 

(which is the permissible region). The center and radius parameters for the critical 

boundedness disk are !!
!

!
!!
+ !

!!
 and !

!
!
!!
− !

!!
, respectively. For the closed loop to 

be bounded, the Nyquist plot of  𝐿 𝑗𝜔  should not enter or encircle the critical region. 

This is shown in Figure 6-11. 

 

 Figure 6-11 Boundedness Disk and Critical Region for Case 2. 
 

In the top plot of Figure 6-11, the Nyquist plot of  𝐿 𝑗𝜔  and the critical boundedness 

disk are shown together. It can be seen that 𝐿 𝑗𝜔  does not enter or encircle the critical 

region. Since the disk is very small comparing to the Nyquist plot of  𝐿 𝑗𝜔 , to better 
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visualize the critical region, the boundedness disk is shown separately in the bottom plot 

of Figure 6-11. The critical region is the shaded area inside the disk. As mentioned 

earlier, since the nonlinear element is double-valued and hence not incrementally in any 

sector, no continuity disk can be obtained in this case. 

(iii.) The last step is to check the third condition in Corollary 1. 𝜀 = 0.6911 and 𝜏 = 0 

are both non-negative constants and at-least one of them (𝜀) is greater than zero. 

Form (i.), (ii.) and (iii.), and based on Corollary 1, it can be concluded that the closed 

loop is 𝐿!-bounded. This can be interpreted as the BIBO stability criterion. However, as 

mentioned in (i.) no continuity conclusions can be made due to the double-valued nature 

of the nonlinearity in the feedback loop 

It should be noted that the selection of 𝜀 and 𝜏 as mentioned above are not unique. In 

other words, different values of these two parameters can result in the same conclusion 

for the boundedness of the closed loop system. But this does not mean that any values 

can end up with conclusion that the closed loop is 𝐿!-bounded. For example, by selecting 

a non-zero value for 𝜏, same conclusion can be made for 𝜀 = 0. Doing this, the values of 

𝛿! and 𝛿! must also be altered. More specifically, a smaller value for 𝛿! and a larger 

value for 𝛿! must be selected, to ensure that 𝑁 lies instantaneously inside the sector 

𝛿! + 𝜏, 𝛿! − 𝜏 . These modifications in 𝛿! and 𝛿! make the critical region relatively 

larger comparing to what was shown in Figure 6-11, which can end up with more 

conservative results. The values that are presented above are for the tightest critical 

regions, and thereby the least conservative results drawn from Corollary 1. 
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6.4 Chapter Summary 

Presented in this chapter is a theorem developed in [75, 76] that formulates sufficient 

conditions for the stability of the nonlinear feedback systems subject to external inputs. In 

particular, conditions on the open loop linear and nonlinear relations are found that result 

in the closed loop stability in the sense of BIBO. The results are used to evaluate the 

stability of nonlinear feedback systems designed in Chapter 5. For the feedback system 

with single-valued nonlinear controller, it is shown that the nonlinear feedback system 

satisfies sufficient conditions for both BIBO stability and continuity. For the second 

feedback system with double-valued nonlinear controller, on the other hand, only BIBO 

stability is concluded and no continuity conclusion can be made, due to the double-valued 

nature of the nonlinear controller. 
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Chapter 7. Conclusions and Future Works 

 

In this dissertation a novel nonlinear controller design methodology is proposed. This 

controller design is conducted in the frequency domain. The class of the systems 

considered is the SISO linear regulating systems subject to time domain constraints. The 

proposed nonlinear controller design methodology is aimed to improve the closed loop 

performance of the system by increasing the allowable disturbance step size beyond what 

is obtained by a linear controller for a given level of disturbance step size.  

The dissertation can be separated into two major sections. First, it is assumed that the 

gain and phase distortions of the nonlinear controller are known, and a discussion on the 

identification of the nonlinear controller to implement in the feedback loop is 

investigated. This is addressed in Chapters 2 and 3. The second part of the dissertation 

addresses a method for obtaining the required gain and phase distortions for the nonlinear 

controller that is covered in Chapters 4 and 5. A discussion to assess the stability of the 

closed loop nonlinear system is presented in Chapter 6. 

The identification of the nonlinear controller from its gain and phase distortions 

information is based on the sinusoidal input describing function (SIDF) method. The 

SIDF method is a quasi-linearization of the nonlinear system that effectively minimizes 

the mean square error between the nonlinear system response and its linear description. 

The formulation for the SIDF is presented in Chapter 2. It is shown that the SIDF 
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representation of a nonlinear system can be considered as the gain and phase distortions 

in the response of the nonlinearity to the harmonic input signal.  

An algorithm for identifying a nonlinear function from its gain and phase distortions 

information is developed in Chapter 3. This algorithm formulates a numerical solution to 

the inverse SIDF problem. Assuming that the gain and phase distortions of the nonlinear 

controller are known, a method for numerically solving the inverse SIDF problem is 

proposed that can identify an isolated static nonlinearity with or without memory. A 

major advantage of the developed algorithm is that, it does not require a priori 

knowledge or information of the class of the nonlinearity to initiate the identification 

process. The proposed solution provides a non-parametric representation of the static 

nonlinearity. The characteristics of the identified nonlinear function can be estimated 

from the non-parametric solution by LSE method. The proposed computational inverse 

SIDF algorithm is validated through different case studies in Chapter 3. 

To obtain the gain and phase distortions of the nonlinear controller, first the issue of 

translating the time domain specifications in to the frequency domain characteristics is 

addressed. It is shown in Chapter 4 that the time domain performance requirements of the 

class of system considered in this research can be formulated in terms of lower and upper 

amplitude bounds on the open loop transfer function in the frequency domain. These 

lower and upper amplitude bounds create an acceptable design region for the frequency 

response of the open loop transfer function. Based on the intersection point of the lower 

an upper amplitude bounds, a method for predicting the level of performance prior to the 

controller design is also discussed, therefore, a linear controller can be designed through 
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𝐻! controller design approach. Additionally, a method of maximizing the disturbance 

step size achievable via a linear controller through 𝐻! controller design approach is 

proposed in Chapter 4. 

The proposed nonlinear controller methodology in the frequency domain is 

formulated in Chapter 5. The design goal is to improve regulating performance beyond 

what is achievable by a linear control for a given level of disturbance step size. The 

controller design is executed by imposing required gain and phase distortions on the 

frequency response of linear open loop transfer function to enforce the time domain 

constraint. A method is proposed that translates the increase in the disturbance step size 

to the gain and phase distortions due to the nonlinearity. The inverse SIDF algorithm 

developed in Chapter 3 is employed to identify an isolated explicit nonlinearity that is 

associated with the obtained gain and phase distortions. 

The proposed deign technique is validated on the idle speed control of a V-6 fuel 

injected engine model subject to an external torque load disturbance. In Chapter 4, the 

allowable disturbance step size for this system is estimated and a linear controller is 

designed for this level of disturbance step size. In Chapter 5, a four percent increase in 

the step distance size is considered and a nonlinear controller is designed such that all the 

performance requirements of the system are satisfied for the resultant modified 

(augmented with nonlinear controller) feedback system.  

At the end, a discussion to assess the stability of the closed loop systems containing 

nonlinear elements, such as those designed in Chapter 5 is presented in Chapter 6. The 

stability assessment provides sufficient conditions for the BIBO stability of the nonlinear 
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feedback systems subject to nonzero external inputs. Similar to the proposed controller 

design methodology, the discussed stability analysis tool is in the frequency domain and 

it provides closed loop stability guarantees using the Circle theorem. 

 

7.1 Contributions 

The major outcome of this work is a novel approach for designing nonlinear 

controllers in the frequency domain for SISO linear regulating systems subject to time 

domain constraints. The following achievements are accomplished: 

• Inverse Sinusoidal Input Describing Function Algorithm: A computational inverse 

SIDF algorithm to identify (estimate) the nonlinear functions based on their gain 

and phase distortions information is developed that identifies an isolated static 

nonlinearity in the range of the amplitude of the input signal. The output solution is 

a non-parametric model of the nonlinearity, from which a parametric model can be 

obtained via LSE method. 

• Disturbance Step Size Maximization through 𝐻!: By introducing two scalars in the 

weighting functions in the mixed sensitivity 𝐻! optimization problem, an iterative 

process in proposed by which the disturbance step size achievable by linear 

controllers can be maximized. 

• Defining the SIDF Gain and Phase Distortions of the Nonlinear Controller: A 

method of obtaining the gain and phase distortions of the nonlinear controller is 

formulated with the goal to improve the closed loop performance for a regulating 

system subject to time domain constraints. For this, three different options for 
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defining nonlinear control laws are formulated. The nonlinear controller designed 

will be augmented to an already designed linear controller to increase the capability 

of the closed loop system for handling larger external disturbances. From the 

proposed methodology, both single-valued and double-valued nonlinear controllers 

can be designed. One main advantage of the proposed technique is that the structure 

of the nonlinear controller is not preconceived and will be determined by the 

developed inverse SIDF solution. 

• Amplitude Calculations: To use the inverse SIDF algorithm to identify the 

nonlinear controller, the amplitude of the input signal must be obtained. For 

nonlinear functions, this amplitude is depended on the SIDF representation of the 

nonlinearity. The calculation of this amplitude becomes more complicated in the 

feedback loop. A method to overcome this challenge is formulated in this 

dissertation. 

• Performance Improvement via Nonlinear Control: To illustrate the proposed 

methodology, the idle speed control of a V-6 fuel injected engine model subject to 

an external torque load disturbance is considered. It is shown that for the linear 

feedback system, nonlinear controllers can be designed such that the augmented 

closed loop system can maintain system performance requirements for larger values 

of step disturbance. Two nonlinear controllers (single-valued and double-valued) 

are designed for the example problem considered. 

• Stability Analysis: The sufficient conditions for the linear and nonlinear elements in 

the feedback loop that result in the BIBO stability and continuity of the closed loop 

are presented in the form of a theorem and a corollary. From this, the BIBO stability 
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of the designed nonlinear feedback systems is concluded. It is shown that the 

continuity results cannot be made for the systems with double-valued nonlinearities, 

since this class of nonlinearities does not incrementally instantaneously belong to 

any sectors. 

 

7.2 Recommendations for Future Works 

From the results presented in Chapter 4 and Chapter 5, if the nonlinear controllers 

were built around 𝐺!! instead of 𝐺!!, higher closed loop performances would have been 

achieved. For this, the actual impact of the time domain parameters 𝑘! and 𝑘! in the 

frequency domain (i.e., upper and lower bounds) must be determined. In other words, the 

relationship between 𝑘!, 𝑘! and Λ!, Λ! defined in Eqs. (4.17) and (4. 22) must be 

specified in order to impose required gain and phase distortions on the linear open loop 

transfer function. In fact, introducing 𝑘! and 𝑘! in the performance weighting functions 

in 𝐻! mixed sensitivity optimization problem can be viewed as relaxing the assumption 

of setting Λ! and Λ! to one, as discussed in Chapter 4. Unfortunately, the actual 

relationship between these pairs of parameters are not clear, due to the intrinsic 

incompatibilities between time and frequency domains. Without this relationship, the 

values of Λ! and Λ! cannot be obtained 𝑘! and 𝑘!, hence the gain and phase distortion 

cannot be defined. Formulating this relationship is an interesting subject for future 

research. 

The formulation presented in Chapter 3 considers a numerical solution for inverse 

SIDF problem for static (explicit) nonlinearities. Extensions of this approach for 
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dynamics (implicit) nonlinearities further extend inverse SIDF applications. A dynamic 

nonlinearity can be represented by  

𝑦 = 𝑦 𝑥, 𝑥, 𝑥,… . (7.1) 

From Eq. (7.1), it can be inferred that the describing function of a dynamic nonlinearity is 

a function of both frequency and amplitude of the input signal (𝑥(𝑡)). Consequently, the 

coefficients of the Fourier expansion of the nonlinear function response to the harmonic 

input are also function of both amplitude (𝐴) and frequency (𝜔) of the input signal. This 

makes the modified integral transformations from presented in Chapter 3 more 

complicated. One possible approach to formulate a numerical solution for inverse SIDF 

problem for dynamic nonlinearities is to generate gain-phase plots for varying input 

amplitudes and consider the input frequency as a free parameter. This could be a research 

area of considerable interest.  

The application of the proposed nonlinear control design methodology can be 

extended to uncertain systems. This can be achieved by modifying the formulations 

presented in Chapter 5 such that they account for the parametric uncertainty in the system 

dynamics. If a compact set of parametric uncertainties in the system are represented by 

𝛼 ∈ Ω, then the upper and lower amplitude bounds define in Chapter 4 must be 

determined for all values of 𝛼 ∈ Ω at any given frequency. These bounds can be used to 

form a composite upper and lower amplitude bounds on the nominal open loop transfer 

function,  𝐿! 𝑗𝜔! = 𝐺! 𝑗𝜔! 𝐺!!(𝑗𝜔!), where 𝐺!!(𝑗𝜔!) is the nominal plant transfer 

function, i.e.,  𝐺!! 𝑗𝜔! = 𝐺!(𝑗𝜔! ,𝛼 = 𝛼!). This can be accomplished by some 
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modifications in the gain and phase of the upper and lower bounds. The gain 

modification can be written as [68] 

𝐺!! 𝑗𝜔
𝐺!(𝑗𝜔! ,𝛼!)

, (7.2) 

and the phase modification can be expressed by 

∠
𝐺!! 𝑗𝜔

𝐺!(𝑗𝜔! ,𝛼!)
. (7.3) 

The composite upper and lower bounds can be developed by modifying the 

formulations presented in Chapter 4 using Eqs. (7.2) and (7.3). The acceptable design 

region at each frequency will also be developed based on these composite bounds. To 

satisfy the performance requirements, the nominal open loop transfer function, 𝐿!(𝑠), 

must be contained in the acceptable composite design region [68]. Consequently, the 

nonlinear control law as presented in Chapter 5, must be defined such that the frequency 

response of the modified nominal open loop transfer function is contained in the 

composite acceptable design region. 

The method for calculating the amplitude of the input signal to the nonlinearity in the 

feedback loop, as described in Chapter 5, can be improved. Due to the approximation 

nature of the SIDF method and because of the assumptions made in calculating the 

amplitude of the input signal to the nonlinearity, it was observed that in some cases the 

formulation for the amplitude derivation in the feedback loop fails to work. For example, 

if the disturbance step size is larger than a threshold and the objective is to define the 
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nonlinear control law for options one or three (i.e., cases involving phase distortions), 

then the resultant gain and phase distortions of the nonlinear controller will not have a 

monotonous trend, which is physically infeasible. Therefore it is important to investigate 

a more exact way to obtain the amplitude of the input signal to the nonlinearity in the 

feedback loop.  
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Appendix A.  

Solution of 𝑸(𝒙): Volterra’s Integral Equation of the 1st Kind 

 

Presented in this appendix are the details on the derivation of Eq. (3.27) from Eq. 

(3.24). For this, first consider Eq. (3.24) as follow 
 

𝐶 𝐴 =
2
𝜋𝐴!

𝑥𝑄(𝑥)
𝐴! − 𝑥!

𝑑𝑥
!

!
. (A.1) 

Equation (A.1) can be rearranged as 

𝜋𝐴!

2 𝐶 𝐴 =
𝑥𝑄(𝑥)
𝐴! − 𝑥!

𝑑𝑥
!

!
. (A.2) 

Next step is to multiply both sides of Eq. (A.2) by 𝐻 𝐴, 𝜉  and integrate both sides with 

respect to 𝐴. This results in 

𝜋𝐴!

2 𝐶 𝐴
!

!
𝐻 𝐴, 𝜉 𝑑𝐴 = 𝑑𝐴

!

!

𝑥𝑄(𝑥)
𝐴! − 𝑥!

𝐻 𝐴, 𝜉 𝑑𝑥
!

!
. (A.3) 

The order of the integrals in the right hand side of Eq. (A.3) can be changed. This yields 

𝜋𝐴!

2 𝐶 𝐴
!

!
𝐻 𝐴, 𝜉 𝑑𝐴 = 𝑥𝑄 𝑥 𝑑𝑥

!

!

𝐻 𝐴, 𝜉
𝐴! − 𝑥!

𝑑𝐴
!

!
. (A.4) 
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Equation (A.4) can be simplified, if 𝐻 𝐴, 𝜉  is selected such that 𝐼 = ! !,!
!!!!!

𝑑𝐴!
!  

becomes a constant value. For this consider the change of variables as 𝐴! = 𝑦 (that 

results in 𝑑𝐴 = !"
!   !

) and 𝑥! = 𝜂. Using these in 𝐼 as define above, produces  

𝐼 =
1
2

𝐻 𝑦, 𝜉
𝑦

𝑑𝑦
𝑦 − 𝜂

!!

!
  . (A.5) 

Next, let define 𝐺(𝑦, 𝜉) ≜ ! !,!
!

 and apply the change of variables 𝑡 = !!!
!!!!

 (that results 

in 𝑑𝑡 = !"
!!!!

) and 1− 𝑡 = !!!!
!!!!

 in Eq. (A.5). This yields to 

𝐼 =
1
2 𝐺(𝑦, 𝜉)𝑡

!!
! 1− 𝑡

!!
!

𝑑𝑡

𝜉! − 𝑦
!!
!

!

!
. (A.6) 

In Eq. (A.6), if 𝐺 𝑦, 𝜉  is set to be equal to 𝜉! − 𝑦
!!
! , then 𝐼 will be reduced to 

𝐼 =
1
2 𝑡

!!
! 1− 𝑡

!!
! 𝑑𝑡

!

!
. (A.7) 

Equation (A.7) can be solved by considering the definition of the Beta function. This 

functions is defined as 

𝐵 𝑥,𝑦 = 𝑡!!! 1− 𝑡 !!!𝑑𝑡
!

!
=

𝑥 − 1 ! 𝑦 − 1 !
𝑥 + 𝑦 − 1 !     for  Re 𝑥 ,Re 𝑦 > 0. (A.8) 

Using Eq. (A.8) in Eq. (A.7) results in 
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𝐼 = 𝐵
1
2 ,
1
2 =

1
2

−1
2 ! −12 !

0 ! =
1
2 𝜋 𝜋 =

𝜋
2. 

(A.9) 

Now, returning to the original variables yields  

𝐻 𝐴, 𝜉 = 𝐴 𝜉! − 𝐴!
!!
! . (A.10) 

Next, substituting Eq. (A.10) in to Eq. (A.4) results in 

𝜋𝐴!

2
𝐶 𝐴

𝜉! − 𝐴!
!
!

!

!
𝑑𝐴 =

𝜋
2 𝑥𝑄 𝑥 𝑑𝑥

!

!
. (A.11) 

Equation (A.11) can be rearranged as  

𝐴!𝐶 𝐴

𝜉! − 𝐴!
!
!

!

!
𝑑𝐴 = 𝑥𝑄 𝑥 𝑑𝑥

!

!
. (A.12) 

Finally, taking derivative of both sides of Eq. (A.12) with respect to 𝑥, results in the 

solution of 𝑄 𝑥  as  

𝑄 𝑥 =
1
𝑥
𝑑
𝑑𝑥

𝐴!𝐶 𝐴

𝜉! − 𝐴!
!
!

!

!
𝑑𝐴. (A.13) 

QED. 

It is to be noted that Eq. (3.26) can be obtained from Eq. (3.23) by following the same 

procedure. 
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Appendix B.  

Derivation of Equation (3.31) 

 

Presented in this appendix are the details on the derivation of Eq. (3.31). First 

consider the followings: 

Primer: Integration by Parts: In mathematical analysis, the integration by parts is used to 

transform one form of integral to another form, which is easier to analyze [79]. Let 𝑢 and 

𝑣 be functions of 𝑥, i.e., 𝑢 = 𝑢(𝑥) and 𝑣 = 𝑣(𝑥), then  

𝑢
!!

!!
𝑑𝑣 = 𝑢𝑣 !!

!! − 𝑣
!!

!!
𝑑𝑢, (B.1) 

where 𝑥! and 𝑥! are two arbitrary end points for integration. 

Primer: Leibniz Integral Rule: In mathematical analysis, the Leibniz integral rule is used 

for differentiation under integration [79]. Let 𝑓(𝑥,𝑦) be a function such that !"(!,!)
!"

 exists 

and is continuous, then 

𝑑
𝑑𝑦   𝑓(𝑥,𝑦)𝑑𝑥

!(!)

!(!)
=   

𝜕𝑓(𝑥,𝑦)
𝜕𝑦 𝑑𝑥

!(!)

!(!)
+ 𝑓 𝑏 𝑦 ,𝑦

𝑑𝑏
𝑑𝑦 − 𝑓 𝑎 𝑦 ,𝑦

𝑑𝑎
𝑑𝑦, (B.2) 

where 𝑎 and 𝑏 are functions of 𝑦. 
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Derivation of Eq. (3.31): Consider the integral in the left hand of side of Eq. (3.31). 

Using integration by parts, this integral can be written as 

𝑧!𝐶 𝑧
𝑥! − 𝑧!

  𝑑𝑧
!

!
= −𝐶 𝑧 𝑧! 𝑥! − 𝑧!

!

!
+ 𝑥! − 𝑧!  𝑑 𝑧!𝐶 𝑧

!

!
.   (B.3) 

The first term at the right hand side of Eq. (B.3) vanishes at both ends; therefore Eq. 

(B.3) reduces to 

𝑧!𝐶 𝑧
𝑥! − 𝑧!

  𝑑𝑧
!

!
= 𝑥! − 𝑧!  𝑑 𝑧!𝐶 𝑧

!

!
. (B.4) 

The next step is to utilize Leibniz integral rule to calculate the deravative of Eq. (B.4). 

This produces 

𝑑
𝑑𝑥 𝑥! − 𝑧!  𝑑 𝑧!𝐶 𝑧

!

!

=
𝑥

𝑥! − 𝑧!
  𝑑 𝑧!𝐶 𝑧

!

!
+ 𝑥! − 𝑥!  .1− 𝑥! − 0!. 0. 

(B.5) 

The second and third terms at the right hand side of Eq. (B.5) vanish. Moreover, 𝑥 

parameter in the first term at the right hand side of Eq. (B.5) can be moved outside the 

intergral, since it is not dependent on  𝑧. Therefore Eq. (B.5) can be simplified as 

𝑑
𝑑𝑥 𝑥! − 𝑧!  𝑑 𝑧!𝐶 𝑧

!

!
= 𝑥

𝑑 𝑧!𝐶 𝑧
𝑥! − 𝑧!

  
!

!
. (B.6) 

QED.  
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Appendix C.  

Numerical Data for the Nonlinear Controllers 

 

The numerical data for the nonlinear controllers designed in Chapter 5 are presented in 

this appendix. 

1. Definition of nonlinear control law for Case 1: The results are listed in Table C. 1. 

Table C. 1. Defining Nonlinear Control Law for Case 1. 

𝝎   𝒓𝒂𝒅
𝒔𝒆𝒄  𝑳   (𝒅𝑩) ∡𝑳  (°) 𝑳   (𝒅𝑩) ∡𝑳  (°) 

0 17.873085 0 17.9027 0 

0.5 18.660700 8.855616791 18.660700 8.855616791 

2 24.562354 -13.94886185 24.562354 -13.94886185 

3 23.287996 -51.77861006 23.287996 -51.77861006 

4 20.187304 -69.06950422 19.3066 -69.06950422 

5 17.681929 -76.50537921 16.8036 -76.50537921 

6 15.733216 -80.42513513 15.1572 -80.42513513 

7 14.15860 -82.84876087 14.0553 -82.84876087 

8 12.840305 -84.52362967 12.840305 -84.52362967 

9 11.706232 -85.77617733 11.706232 -85.77617733 

10 10.710438 -86.76856642 10.710438 -86.76856642 

12 9.0199333 -88.29196556 9.0199333 -88.29196556 
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2. Definition of nonlinear control law for Case 2: The results are listed in Table C. 2.  

Table C. 2. Defining Nonlinear Control Law for Case 2. 

𝝎   𝒓𝒂𝒅
𝒔𝒆𝒄  𝑳   (𝒅𝑩) ∡𝑳  (°) 𝑳   (𝒅𝑩) ∡𝑳  (°) 

0 17.87308544 0 17.9027 0 

0.25 18.07780338 4.905279259 18.09780338 4.905279259 

0.5 18.66070015 8.855616791 18.660700 8.855616791 

1 20.62398843 11.16362318 20.62398843 11.16362318 

1.5 22.94449392 3.609747956 22.94449392 3.609747956 

2 24.56235478 -13.94886185 24.56235478 -13.94886185 

3 23.2879963 -51.77861006 23.2879963 -51.77861006 

4 20.18730441 -69.06950422 19.45 -67 

5 17.68192962 -76.50537921 17.04 -75.32 

6 15.73321674 -80.42513513 15.385 -79.85 

7 14.15860429 -82.84876087 14.042 -82.697 

8 12.8403056 -84.52362967 12.8403056 -84.52362967 

9 11.7062326 -85.77617733 11.7062326 -85.77617733 

10 10.71043836 -86.76856642 10.71043836 -86.76856642 

12 9.019933305 -88.29196556 9.019933305 -88.29196556 

14 7.615068435 -89.46097648 7.615068435 -89.46097648 
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3. The SIDF gain and phase distortions of the nonlinear controller for Case 1: The 

results are listed in Table C. 3. 

Table C. 3. SIDF Gain and Phase Distortions for the Nonlinear Controller in Case 1. 

𝝎   𝒓𝒂𝒅
𝒔𝒆𝒄  𝑨 𝝆𝑵 = 𝑪(𝑨) 

100000 0 1 
10000 0.035 1 
1000 0.335 1 
100 3.575 1 
40 6.925 1 
20 8.85 1 
18 9.045 1 
16 9.24 1 
14 9.43 1 
12 9.63 1 
10 9.85 1 
9 9.975 1 
8 10.125 1 
7 10.315 0.999678676 
6 10.595 0.996539929 
5 10.965 0.995323474 
4 11.53 0.995665404 
3 12.455 1 
2 14.265 1 

1.5 15.69 1 
1 17.48 1 

0.5 19.25 1.000214862 
0.25 19.84 1.000152179 

0 20.05 1.000414079 
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4. The SIDF gain and phase distortions of the nonlinear controller for Case 2: The 

results are listed in Table C. 4. 

Table C. 4. SIDF Gain and Phase Distortions for the Nonlinear Controller in Case 2. 

𝝎   𝒓𝒂𝒅
𝒔𝒆𝒄  𝑨 𝝆𝑵 𝜽𝑵  (°) 𝑪(𝑨) 𝑺(𝑨) 

100000 0 1 0 1 0 
10000 0.035 1 0 1 0 
1000 0.335 1 0 1 0 
100 3.575 1 0 1 0 
40 6.925 1 0 1 0 
20 8.85 1 0 1 0 
18 9.045 1 0 1 0 
16 9.24 1 0 1 0 
14 9.43 1 0 1 0 
12 9.63 1 0 1 0 
10 9.85 1 0 1 0 
9 9.975 1 0 1 0 
8 10.125 1 0 1 0 

7.8 10.16 1 0 1 0 
7.6 10.195 1 0 1 0 
7.4 10.23 1 0 1 0 
7.2 10.27 1 0 1 0 
7 10.315 0.9991 0.1518 0.9991 0.0026 
6 10.58 0.9962 0.5751 0.9961 0.0099 
5 10.95 0.9943 1.18538 0.9941 0.0206 
4 11.525 0.9930 2.0695 0.9923 0.0359 

3.9 11.555 0.9925 0 0.9925 0 
3.8 11.635 0.9924 0 0.9924 0 
3.7 11.715 0.9923 0 0.9923 0 
3.5 11.895 0.9921 0 0.9921 0 
3.4 11.995 0.992 0 0.992 0 
3.3 12.1 0.9919 0 0.9919 0 
3.2 12.21 0.9918 0 0.9918 0 
3.1 12.33 0.9917 0 0.9917 0 
3 12.455 0.9916 0 0.9916 0 
2 14.265 0.9915 0 0.9915 0 

1.5 15.69 0.9914 0 0.9914 0 
1 17.48 0.9913 0 0.9913 0 

0.5 19.25 1.001 0 1.001 0 
0.25 19.84 1.002 0 1.002 0 

0 20.05 1.004 0 1.004 0 
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