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ABSTRACT 

Familial transmission of alcohol use disorders reflects genetic and environmental 

factors. For decades, studies in rodents demonstrated that paternal alcohol 

exposure produces cognitive and physiological abnormalities in offspring. The 

mechanisms of these effects may reflect epigenetic modifications transmitted 

through the male germ line. While mouse studies show that paternal alcohol 

exposure alters sensitivity to alcohol in offspring, no studies have examined whether 

paternal alcohol exposure impacts sensitivity to unconditioned and reinforcing 

effects of alcohol using genetically diverse rat strains. We exposed male Wistar rats 

to a chronic intermittent ethanol procedure (CIE) in alcohol vapor chambers (16 

h/day; 5 days/week; 6 weeks) or to air.  Eight weeks later, rats were mated with 

alcohol-naive females and separate groups of adult offspring (F1) were assessed on 

a range of alcohol-induced behaviors and operant alcohol self-administration. In 

Experiment 1, separate groups of alcohol- and control-sired offspring were 

intragastrically administered alcohol (1.5 g/kg) or water 30 min prior to testing for 

general locomotor activity (open field), anxiety-like behaviors (elevated plus maze 

[EPM]), and motor coordination (rotarod). We found that alcohol reduced locomotor 

activity in alcohol-sired male offspring but not alcohol-sired female or control-sired 

offspring. Alcohol-sired males showed less anxiety-like behavior on the EPM 

regardless of treatment. Alcohol-sired males were resistant but alcohol-sired females 

were more sensitive to alcohol-induced impairments in motor coordination relative to 

their respective controls. In Experiment 2, alcohol- and control-sired offspring were 
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trained to lever press for increasing alcohol concentrations (2.5%, 5%, & 10%, v/v). 

Tests were conducted under a progressive ratio (PR) schedule of reinforcement at 

5% and 10% alcohol. Extinction training was followed by reinstatement tests and 

reinitiation procedures. During acquisition training sessions, alcohol-sired offspring 

self-administered less alcohol (5% & 10%) relative to control-sired offspring. Under 

progressive ratio tests, alcohol-sired offspring self-administered less alcohol (5% & 

10%) relative to control-sired offspring. Alcohol-sired offspring displayed lower 

responding during extinction training and blunted relapse-like behavior during 

reinstatement. During reinitiation, alcohol-sired offspring self-administered less 

alcohol relative to control-sired offspring. In Experiment 3, global and brain-derived 

neurotrophic factor (Bdnf) DNA methylation levels were measured in sperm, the 

medial prefrontal cortex, and the nucleus accumbens of sires and adult offspring. 

Global methylation levels varied by tissue in alcohol sires compared to controls, but 

no changes were seen in offspring. Alcohol sires had lower Bdnf DNA methylation 

levels in the nucleus accumbens but higher methylation levels in the medial 

prefrontal cortex relative to control sires. Alcohol-sired offspring also had aberrant 

Bdnf DNA methylation levels in the nucleus accumbens that varied as a function of 

sex and CpG site. Overall, results indicate that paternal alcohol exposure prior to 

conception induces long-lasting behavioral and epigenetic effects that reflect an 

alcohol resistant phenotype in offspring. 
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CHAPTER ONE- INTRODUCTION 

Adapted from: Nieto, S.J. and Kosten T.A. (2019) Who’s your daddy? Behavioral 
and functional consequences of paternal alcohol exposure. International Journal of 
Developmental Neuroscience. doi: 10.1016/j.ijdevneu.2019.07.002. 
 

Substance use disorders 

Substance use disorders (SUDs) occur when the recurrent use of alcohol/drugs 

leads to clinical and functional impairments that are detrimental to a person's health, 

or the welfare of others (APA, 2013). According to the 2015 National Survey on Drug 

Use and Health, SUDs are highly prevalent in the United States with ~20 million 

adults meeting clinical criteria for a substance or alcohol use disorder. In addition, 

the economic costs associated with SUDs are greater than 740 billion/year (NIDA, 

2017), largely due to costs associated with crime, health care, and lost work 

productivity. Chronic drug and alcohol use increases the risk of many negative 

health consequences, including cardiovascular and neurological problems and 

cancer (NIDA, 2017). Given the substantial economic and individual costs, it is 

essential to identify risk factors that predispose individuals to developing a SUD. 

Genetics play a prominent role in the development of SUDs independent of the 

environment. Family, twin, and adoption studies find that SUD heritability ranges 

from 40% for hallucinogens to 72% for cocaine (Ducci and Goldman, 2012). Parental 

drug use has long-lasting ramifications on child outcomes. The consequences of 

maternal drug use during pregnancy are a well-studied area. In animal and human 

studies, maternal drug use associates with several developmental, cognitive, and 

emotional impairments in offspring (Bandstra et al., 2010; Minnes et al., 2011; 

O'Connor and Paley, 2009; Schempf, 2007). In contrast, the consequences of 
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paternal drug use, especially in periods prior to conception, have received relatively 

little attention. This is unfortunate given that drugs and alcohol can modify sperm in 

humans and animals (Finegersh and Homanics, 2014; Li et al., 1997; Misra et al., 

1977; Ouko et al., 2009; Vassoler et al., 2013); studies in the latter show that these 

changes can be passed to future generations. Thus, drug or alcohol exposure can 

have long-lasting implications for subsequent generations. 

Given this significant genetic influence, candidate gene and genome wide 

association studies have aimed to identify genetic variants that contribute to SUDs. 

These investigations have been challenging given the polygenic nature of SUDs. 

Considering these challenges, hypothesis-driven candidate gene studies have 

identified several genes involved in drug metabolism and the monoamine and 

serotonin systems (Ducci and Goldman, 2012).  Genome-wide association studies 

have identified novel variants that associate with smoking behaviors. However, 

genome wide association studies have been less successful in identifying loci 

associated with other substances, particularly alcohol (Ducci and Goldman, 2012). 

Thus, there may be other factors that contribute to this missing heritability. For 

instance, rare variants of strong effect remain unidentified (Manolio et al., 2009). 

Another possibility is the growing attention to molecular epigenetic factors in human 

diseases, including addiction (Maze and Nestler, 2011; Nestler, 2014; Nielsen et al., 

2012). The primary goal of this review is to determine the current state of the 

preclinical literature on the inter- and trans-generational consequences of paternal 

drug exposure, as well as to highlight areas for further study that may improve 

prevention and treatment approaches for SUDs. 
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Epigenetics 

Epigenetics refers to a range of mitotically and meiotically heritable molecular 

modifications that alter gene expression without changing the underlying DNA 

sequence (Maze and Nestler, 2011). Several related epigenetic mechanisms 

regulate gene expression: chromatin remodeling, DNA methylation, and non-coding 

RNAs. These mechanisms are essential to normal cell function allowing diverse cell 

types to emerge from a single genome. Additionally, some epigenetic alterations can 

have an acute onset (1 hr) and offset (24 hr), while others have a more stable profile 

reflecting events from prior decades (Heijmans et al., 2008). The epigenetic 

mechanisms described below work collectively to regulate gene expression and a 

wide array of biological functions. 

Chromatin remodeling 

Chromatin consist of a complex of DNA and histone proteins. DNA is tightly 

wrapped around eight core histone proteins, two copies each of H2A, H2B, H3, and 

H4, within a nucleosome. Histone tails that project from the histone core are the 

sites for post-translational modifications. Covalent modifications, such as acetylation, 

methylation, and phosphorylation, at histone tails modify the chromatin structure 

leading to open (active) or closed (repressive transcriptional state), or a somewhere 

in between these two states (Kornberg and Lorch, 1999; Kouzarides, 2007). An 

open chromatin state, or euchromatin, enhances gene expression and occurs when 

acetyl groups attach to lysine residues located on histone tails (Gardner et al., 2011; 

Jenuwein and Allis, 2001). Acetylation loosens the electrostatic bond between 

histones and DNA, providing transcription factors access to promoter regions. 
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Histone acetyltransferases increase acetylation and histone deacetylases maintain it 

(Jenuwein and Allis, 2001). Relative to acetylation, histone methylation is a more 

complex histone modification system that, depending on the site and number of 

methyl groups bonded, can facilitate or repress gene transcription. Histone 

methylation is controlled by both histone methyltransferases and histone 

demethylases. Some methyl marks are found in inactive chromatin (i.e., 

H3K27me3), while others are found in transcriptionally active chromatin (i.e., 

H3K4me3) (Barski et al., 2007). In addition, phosphorylated histones are found in 

both active and inactive chromatin (Ito, 2007). It is important to note that these and 

other histone modifications, such as SUMOylation, ubiquitination, citrullination, and 

ADP-ribosylation form a “histone code” to govern gene expression (Jenuwein and 

Allis, 2001). 

DNA methylation 

DNA methylation is the most well studied epigenetic modification and is 

involved in regulating gene expression by marking genes for silencing or activation. 

Specifically, DNA methylation occurs when methyl groups attach to the 5’ pyrimidine 

ring via DNA methyltransferases (DNMT) and methyl CpG-binding protein 2 (Mecp2) 

enzymes (Bestor, 2000). DNMT3a and DNMT3b are involved in de novo DNA 

methylation, while DNMT1 maintains DNA methylation after DNA replication. DNA 

methylation occurs often at cytosine:guanine dinucleotides (CpG) to form 5’-

methylcytosine guanine dinucleotides (mCG). (Bestor, 2000; Bird and Macleod, 

2004; Fazzari and Greally, 2004; Lande-Diner et al., 2004; Robertson and Wolffe, 

2000b); however, DNA methylation can also occur at other dinucleotide pairings 
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(Varley et al., 2013; Xie et al., 2012). Promoter regions of genes contain a high 

density of CpG dinucleotides called “CpG islands” (Larsen et al., 1992). A 

substantial percentage (~70%) of CpG islands are methylated while a smaller 

percentage (~2%) are unmethylated (Ziller et al., 2013). Typically, DNA methylation 

near transcription start sites represses gene transcription while methylation within 

the gene body activates gene transcription (Bird and Macleod, 2004; Campanero et 

al., 2000; Heller et al., 2008; Hwang et al., 2007; Iguchi-Ariga and Schaffner, 1989; 

Jaenisch and Bird, 2003; Lande-Diner et al., 2004; Robertson and Wolffe, 2000b; 

Tong et al., 2010). DNA demethylation (e.g. hydroxymethylation) is facilitated by ten 

eleven translocation (TET) proteins and typically activates transcription (Ito et al., 

2010; Shen and Zhang, 2012). Normal developmental processes, such as genomic 

imprinting and X chromosome inactivation, rely on DNA methylation.  

DNA methylation can also interact with histone modifying enzymes to affect 

chromatin. MeCP2 binds DNA at methylated cytosines to inhibit transcription (Boyes 

and Bird, 1991; Cross et al., 1997; Gabel et al., 2015; Hendrich and Bird, 1998; 

Prokhortchouk et al., 2001). Additionally, MeCP2 may recruit histone deacetylases 

to deacetylate proximal histones, thereby attenuating gene expression (Jones et al., 

1998; Nan et al., 1998; Razin, 1998). Conversely, MeCP2 may be involved in 

recruiting transcription factors, such as CREB in active promoters (Chahrour et al., 

2008). 

Non-coding RNA’s 

Non-coding RNAs can also alter gene expression. MicroRNA’s (miRNA’s) are 

short (~20 nucleotides) non-coding RNA’s that are involved in post-transcriptional 



6 
 

silencing. miRNA’s are transcribed from genomic DNA and a single strand can 

suppress protein translation of dozens of genes (Mercer et al., 2009). The literature 

examining the role of miRNA’s in the intergenerational effects of drugs is limited. 

However, non-coding RNAs are hypothesized to be passed down to future 

generations via the male germ line (Murashov et al., 2016). 

Epigenetic reprogramming in male gametes 

It is becoming clearer that male germ cells do more than passively carry 

genetic information. Sperm can alter the epigenetic profile and regulate the 

expression of hundreds of genes in embryos (Ihara et al., 2014). Mammalian germ 

cells undergo two rounds of epigenetic reprogramming throughout the lifecycle, 1) 

during preimplantation development and 2) during germ cell development (Abe et 

al., 2011; Feng et al., 2010; Monk et al., 1987; Reik et al., 2001; Seisenberger et al., 

2013). Reprogramming during the former is important for naïve pluripotency in the 

zygote epigenome while the latter erases parental and somatic epigenetic marks 

and enables gametogenesis (Messerschmidt et al., 2014; Saitou et al., 2012). 

During the early embryonic period, the primordial germ cells that give rise to 

spermatogenic cells in males demethylate from around 70% to 4% as they migrate 

and colonize the gonadal region (Kobayashi et al., 2013; Seisenberger et al., 2012). 

At this point, even imprinted loci are hypomethylated. Chromatin modifications 

maintain genomic integrity during this period of demethylation. For example, 

repressive chromatin modifications suppress retrotransposon activity (Tang et al., 

2016). Eventually, methylation is reestablished in a sex-dependent manner, 
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~embryonic day 13.5 for males and after birth for females (Messerschmidt et al., 

2014). 

Some genomic loci can escape global demethylation. Most of these loci are 

associated with retrotransposons (Guibert et al., 2012; Hackett and Surani, 2013; 

Seisenberger et al., 2012) while others are found in pericentromeric satellite 

repeats (Tang et al., 2015) and in subtelomeric regions (Guibert et al., 2012). In 

addition, single-copy sequences and genes expressed in the brain and ubiquitously 

can also escape global demethylation (Guibert et al., 2012; Hackett and Surani, 

2013; Seisenberger et al., 2012; Tang et al., 2015). It is important to note that 

preserved methylation at these sites is not necessarily maladaptive and may be 

important for maintaining chromosome stability and chromosome alignment and 

segregation during mitosis (Tang et al., 2016). 

Inter- and trans-generational consequences of paternal drug exposure 

Paternal exposure to environmental stimuli can result in several 

intergenerational consequences. At the preclinical level, paternal diet manipulations 

alter glucose metabolism and brain development in offspring (Anderson et al., 2006; 

Kim et al., 2013; Ng et al., 2010). Sires exposed to stress paradigms have offspring 

with blunted stress responses and greater depression- and anxiety-like behaviors 

(Dietz et al., 2011; Gapp et al., 2014; Rodgers et al., 2013). Conditioned fear to 

odors is also enhanced in offspring of sires exposed to olfactory fear conditioning 

(Dias and Ressler, 2014). Some of the behavioral and physiological effects seen in 

offspring are accompanied by changes in DNA methylation levels (Carone et al., 

2010; Dias and Ressler, 2014; Kim et al., 2013). In each section below, we will 
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review the behavioral and epigenetic consequences of paternal drug exposure 

(Table 1.1). 

Alcohol 

Developmental findings 

Paternal alcohol exposure induces several developmental aberrations. It 

reduces litter sizes (Abel, 1989b; Cicero et al., 1994a; Cicero et al., 1994b; 

Emanuele et al., 2001b; Mankes et al., 1982; Tanaka et al., 1982) and increases the 

number of runts (Abel, 1993; Bielawski and Abel, 1997; Bielawski et al., 2002; 

Chang et al., 2017; Meek et al., 2007), malformations (Bielawski and Abel, 1997; 

Mankes et al., 1982), and pup mortality (Cicero et al., 1994a; Cicero et al., 1994b; 

Meek et al., 2007) in rats and mice. Litters from alcohol-exposed sires also exhibit 

increased (Abel, 1995; Emanuele et al., 2001a) or decreased male-to-female ratios 

(Abel, 1993). Yet, several groups find that these litter parameters are unaltered in 

rats (Abel, 1989c; Abel and Tan, 1988; Bielawski and Abel, 1997; Bielawski et al., 

2002; Cake and Lenzer, 1985; Leichter, 1986) and mice (Abel and Lee, 1988; 

Ceccanti et al., 2016; Finegersh and Homanics, 2014; Randall et al., 1982). Alcohol-

sired offspring also display increased (Emanuele et al., 2001b; Finegersh and 

Homanics, 2014; Rompala et al., 2016), decreased (Bielawski et al., 2002; Ceccanti 

et al., 2016; Ledig et al., 1998; Mankes et al., 1982; Meek et al., 2007; Rompala et 

al., 2017; Tanaka et al., 1982), and no change (Abel, 1989b, c, 1993; Abel and Lee, 

1988; Abel and Tan, 1988; Bielawski and Abel, 1997; Leichter, 1986; Livy et al., 

2004; Randall et al., 1982) in body weights at birth, weaning, or adulthood. At times, 

changes in body weights occur in a sex-dependent manner. Overall, paternal alcohol 
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exposure alters several developmental parameters across strains in rats and mice, 

but results are inconsistent across studies. 

Learning and locomotor activity findings 

Paternal alcohol exposure alters learning and memory and locomotor activity 

in offspring. Alcohol-sired offspring exhibit greater impairments in inhibitory (Abel, 

1994) and active avoidance (Abel and Tan, 1988), and working memory (Abel and 

Lee, 1988; Wozniak et al., 1991). Across several studies using rats and mice, 

alcohol-sired offspring exhibit hyperactivity (Abel, 1989b, 1994; Ledig et al., 1998), 

hypoactivity (Abel, 1989a, b, c; Abel and Lee, 1988; Abel and Tan, 1988), and 

unaltered (Finegersh and Homanics, 2014; Rompala et al., 2017) activity levels 

when measured in pre-adolescence or adulthood. Alcohol-sired offspring also show 

greater amphetamine-induced hyperactivity (Abel, 1993). Alcohol-sired offspring 

display normal motor coordination on the rotarod (Nelson et al., 1988), but male 

offspring are less sensitive to alcohol-induced impairment in motor coordination 

(Finegersh and Homanics, 2014). 

Affective findings 

Paternal alcohol exposure alters baseline and alcohol-induced affective 

behaviors, sometimes in a species-dependent manner. Swiss Webster alcohol-sired 

males exhibit greater aggression and less fear behaviors (Meek et al., 2007). 

Alcohol-sired males show less anxiety-like behavior at baseline (Abel, 1991; Ledig et 

al., 1998) and after alcohol administration (Finegersh and Homanics, 2014; Rompala 

et al., 2017). C57/BL6J alcohol-sired offspring display greater depression-like 
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behavior; however, Long Evans alcohol-sired offspring display less depression-like 

behavior (Abel and Bilitzke, 1990). 

Reward-related findings 

Paternal alcohol alters sensitivity to the rewarding effects of alcohol in a sex-

dependent manner. In two-bottle choice procedures, C57/BL6J alcohol-sired males 

consume less alcohol (Finegersh and Homanics, 2014; Rompala et al., 2017). CD1 

alcohol-sired males also exhibit greater place preference at a lower alcohol dose, 

while place aversion is seen at a higher dose that induced a preference in control-

sired offspring (Ceccanti et al., 2016). Thus, paternal alcohol exposure may confer a 

phenotype that is protective against alcohol-motivated behaviors in male offspring or 

lead to a leftward shift in the alcohol dose response function. Studies using rats and 

operant self-administration procedures are lacking. 

Molecular and physiological findings 

Paternal alcohol exposure results in several molecular and physiological 

abnormalities in offspring, such as alterations in organ weights, gonadal hormones, 

neurotransmitter and stress systems, and neurotrophic factors. Alcohol-sired 

offspring display greater brain (Cake and Lenzer, 1985), thymus (Abel and Lee, 

1988), and adrenal weights (Abel, 1993); while spleen weights are lower (Abel, 

1993). Alcohol-sired male offspring have lower testosterone levels (Abel, 1989b; 

Abel and Lee, 1988). Preadolescent alcohol-sired offspring have greater leptin 

levels. The glutamate, serotonin, norepinephrine, and opioid systems are also 

altered in alcohol-sired offspring (Ledig et al., 1998; Nelson et al., 1988). Alcohol-

sired male offspring have greater Brain-derived neurotrophic factor (Bdnf) mRNA 
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expression in the ventral tegmental area (Finegersh and Homanics, 2014; Rompala 

et al., 2017), while protein levels are lower in the kidneys, frontal cortex, and 

olfactory lobes at baseline and after alcohol (Ceccanti et al., 2016). Nerve growth 

factor protein levels are also lower at baseline and after alcohol exposure in alcohol-

sired males (Ceccanti et al., 2016). In response to acute restraint stress, alcohol-

sired males show lower (Rompala et al., 2016) or unaltered corticosterone levels 

(Rompala et al., 2017). Paternal alcohol exposure also increases deafness (Liang et 

al., 2015) and susceptibility to ocular infections in offspring (Berk et al., 1989). 

Epigenetic findings 

Paternal alcohol exposure alters DNA methylation levels of paternally 

imprinted and neurotrophic factor genes. Alcohol exposure increases Paternally 

expressed gene 3 (Peg3) (Liang et al., 2014) and decreases Bdnf (Finegersh and 

Homanics, 2014) methylation levels in the sperm of sires. These changes are 

maintained in the cerebral cortices (Peg3) and ventral tegmental area (VTA; Bdnf) in 

the brains of offspring (Finegersh and Homanics, 2014; Liang et al., 2014). Bdnf 

methylation and mRNA changes in VTA associate with lower sensitivity to alcohol-

induced anxiolysis and lower alcohol consumption in male offspring (Finegersh and 

Homanics, 2014). However, a recent study in mice found no changes in sperm-

inherited DNA methylation in sires after voluntary alcohol consumption (Chang et al., 

2017). Thus, in some instances, alcohol-induced changes to the sperm epigenome 

can have long-term functional consequences in male offspring. 



12 
 

Cocaine 

Developmental findings 

There has been little research examining for developmental consequences of 

paternal cocaine exposure. Studies in Sprague-Dawley and Long Evans rats that 

have passively received cocaine or self-administered cocaine from 2-2.5 months 

show no changes in several developmental outcomes including litter size, sex ratio, 

and weights at birth and weaning (Abel, 1989c; Wimmer et al., 2017). Lower birth 

weights are found after more than 3 months of paternal cocaine exposure in 

Sprague-Dawley rats (George et al., 1996). Thus, longer durations of paternal 

cocaine exposure may impact developmental outcomes. 

Learning and locomotor activity findings 

Cocaine-sired offspring also show deficits in learning and memory tests and 

greater hyperactivity. In Sprague-Dawley rats, cocaine-sired male offspring display 

impaired long-term object memory and decreased hippocampal long-term 

potentiation (Fischer et al., 2017). In CD 1 mice, cocaine-sired offspring of both 

sexes show impaired sustained visuospatial attention and spatial working memory 

(He et al., 2006). In addition, C57/BL6J and Long Evans cocaine-sired offspring 

display greater hyperactivity at baseline and after psychostimulant exposure (Abel, 

1989c; Fischer et al., 2017). No changes have been seen in C57/BL6J cocaine-sired 

offspring on spatial and working memory, novel object discrimination, and social 

behavior (Fischer et al., 2017; Killinger et al., 2012). Overall, paternal cocaine 

exposure induces learning and memory deficits and increased baseline and 
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psychostimulant-induced activity in offspring. Impairments in learning and memory 

appear to be strain-specific in mice.  

Affective findings 

Cocaine-sired offspring also show altered affective behaviors. Paternal 

cocaine exposure increases anxiety-like behavior in Sprague-Dawley and C57/BL6J 

male offspring on the elevated plus maze, novelty-induced hypophagia, and marble 

burying tests (Fischer et al., 2017; White et al., 2015). It should be noted that 

findings in mice have been inconsistent as anxiety-like behavior is unchanged on 

open field and elevated plus maze in cocaine-sired offspring (Killinger et al., 2012). 

Additionally, C57/BL6J cocaine-sired offspring show greater depression-like 

behaviors on the tail suspension test (Killinger et al., 2012); however, no change in 

depression-like behavior on the forced swim test has been observed in C57/BL6J 

and Sprague-Dawley cocaine-sired offspring (Fischer et al., 2017; White et al., 

2015). Taken together, paternal cocaine treatments result in an anxiogenic 

phenotype in male offspring across rodent species, but findings on depression-like 

behavior are inconsistent. 

Reward-related findings 

Mice and rat studies show that paternal cocaine exposure alters sensitivity to 

cocaine in offspring. Male Sprague-Dawley cocaine-sired offspring show reduced 

cocaine sensitization (Wimmer et al., 2018).  C57/BL6J cocaine-sired females 

display lower cocaine place preference (Fischer et al., 2017). Sprague-Dawley 

cocaine-sired offspring exhibit delayed acquisition and motivation during cocaine 

self-administration (Le et al., 2017; Vassoler et al., 2013) but unaltered nicotine self-
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administration (Wimmer et al., 2018). It is possible that the intergenerational effects 

of paternal cocaine exposure on reward measures are cocaine-specific. While a 

recent study shows that cocaine-sired grand offspring (F2 generation) exhibit normal 

cocaine self-administration (Wimmer et al., 2018), another finds that sires that both 

self-administer high amounts of cocaine and display greater levels of cocaine 

motivation have male offspring and grand offspring that exhibit addiction-like 

behaviors (Le et al., 2017). Thus, high cocaine intake alone, but not a high 

motivation + high intake combination, confers a protective effect against the 

rewarding and reinforcing effects of cocaine in offspring. 

Molecular and physiological findings 

Cocaine-sired offspring show altered neurotransmitter levels and expression 

of genes related to amino acid degradation and the stress axis. Sprague-Dawley 

cocaine-sired male offspring show lower levels of hippocampal D-serine glutamine, 

glutamate, D-amino oxidase 1 mRNA, and Corticotropin releasing hormone receptor 

2 mRNA and protein levels (White et al., 2015; Wimmer et al., 2017). In the medial 

prefrontal cortex, cocaine-sired males have greater Bdnf exon IV mRNA and protein 

levels (Le et al., 2017; Vassoler et al., 2013). Increased levels of BDNF protein in the 

mPFC correlate with cocaine intake in sires and not cocaine motivation (Le et al., 

2017). In summary, paternal cocaine treatments alter gene expression and protein 

levels in the hippocampus and medial prefrontal cortex in male, but not female, 

offspring. 
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Epigenetic findings 

Paternal cocaine exposure induces several histone modifications in the brains 

of offspring. Sprague-Dawley cocaine-sired males show greater global histone 3 

acetylation downstream of D-amino oxidase 1, H3k4me1 (histone 3 lysine 4 

methylation), H3K9ac (histone 3 lysine 9 acetylation), H3K18me1, H3K23me1, 

H3K27me1, and H4K16ac in the hippocampus (Wimmer et al., 2017). These 

epigenetic changes associate with deficits in a hippocampal memory task and 

synaptic plasticity. Interestingly, these deficits were reversed by hippocampal 

administration of the NMDA receptor co-agonist D-serine; however, it is unclear 

whether D-serine reversed the epigenetic marks on the histone proteins. In the 

medial prefrontal cortex, Sprague-Dawley cocaine-sired males also display greater 

histone 3 acetylation and Bdnf exon IV associations, in addition to lower cocaine 

self-administration (Vassoler et al., 2013). Importantly, these functional and 

epigenetic changes are not a result of altered maternal behavior (Vassoler et al., 

2013). The blunted cocaine sensitization in Sprague-Dawley cocaine-sired male 

offspring was accompanied by lower abundance of H3K4me2, H3K20me2, 

H3K27me2, and H3K18ac and increased abundance of H3K14ac in the nucleus 

accumbens (Wimmer et al., 2018). Interestingly, differential methylation in sperm 

exists between sires that show high cocaine motivation + high cocaine intake versus 

high cocaine intake alone (Le et al., 2017). Hundreds (~475) of differentially 

methylated CpG sites were maintained in F1 offspring, primarily at transcription start 

sites (± 2,000 base pairs) and intergenic regions. Specifically, this resulted in 

greater methylation of BTG family member 2 (Btg2) and Nuclear receptor subfamily 
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4 group A member 1 (Nr4a1) promoters in sperm of high cocaine motivated sires 

and their offspring. Both genes have been implicated in neurogenesis and other 

brain functions (Calegari et al., 2005; Chen et al., 2014). A similar epigenetic profile 

was found in the nucleus accumbens of cocaine sires and offspring. Overall, 

paternal cocaine exposure induces histone and DNA methylation changes that alter 

expression of glutamate-related, stress, neurogenesis, and neurotrophic factor 

genes. These epigenetic changes are accompanied by hippocampal memory deficits 

at baseline and lower sensitivity to the reinforcing effects of cocaine, primarily in 

male offspring. However, differential behavioral and DNA methylation patterns 

emerge when cocaine motivation in sires is considered. 

Opioids  

Developmental findings 

Adolescent and adult paternal morphine exposure impairs offspring 

development in several domains. Paternal morphine treatment in Sprague-Dawley 

rats decreased litter size and increased offspring mortality (Cicero et al., 1991; 

Cicero et al., 1995). The findings on birth weight are mixed, with some studies 

showing greater (Wistar rats), lower (CD1 mice), and no change (Sprague-Dawley 

rats) in birth or adult weight (Friedler, 1985; Li et al., 2014; Vyssotski, 2011). Some 

developmental abnormalities are passed on over 4 generations in CD1 mice 

(Friedler, 1985). Paternal methadone treatment in Fischer rats does not alter litter 

weights or body weights prior to weaning; however, methadone-sired offspring 

exhibit lower body weights in adulthood (Joffe et al., 1990). Thus, there is emerging 
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evidence that paternal opioid exposure can have a long-lasting impact on 

developmental trajectories over multiple generations. 

Learning and locomotor activity findings 

Few studies have examined opioid-sired offspring for changes in learning and 

activity domains. Locomotor activity and spatial memory are unaltered in Sprague-

Dawley morphine-sired offspring (Li et al., 2014); however, CD1 morphine-sired 

offspring show impairments in learning in active avoidance and spatial memory 

(Friedler, 1985). Interestingly, paternal methadone treatment in F344 rats results in 

changes in learning and activity (Joffe et al., 1990). Both sexes show decreased 

open field activity. Both sexes also showed enhanced learning in inhibitory 

avoidance procedures. Male offspring exhibit enhanced learning during active 

avoidance, while females display impaired learning. Male, but not female, offspring 

also have impaired motor coordination (Joffe et al., 1990). Although few studies 

have examined paternal opioid treatment-induced changes in learning and activity in 

offspring, methadone-sired offspring show greater variations in these domains, 

which at times occur in a sex-dependent manner. 

Affective findings 

The literature on paternal morphine effects on anxiety- and depression-like 

behavior is mixed. Sprague-Dawley morphine-sired offspring display an anxiogenic 

phenotype (Li et al., 2014), while anxiety-like behaviors in Wistar morphine-sired 

offspring are unchanged (Pooriamehr et al., 2017). Pooriamehr et al. (Pooriamehr et 

al., 2017) also found that depression-like behavior on sucrose preference tests are 

unchanged in Sprague-Dawley morphine-sired offspring. Further work using a wider 
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range of behavioral tests that model anxiety- and depression-like behaviors is 

needed.  

Reward-related findings 

Paternal morphine exposure alters sensitivity to morphine in adult offspring. 

Wistar morphine-sired offspring show increased sensitivity to the analgesic effects of 

morphine (Vyssotski, 2011). Sprague-Dawley morphine-sired male offspring, but not 

females, also exhibit increased sensitivity to morphine-induced analgesia (Cicero et 

al., 1995). Interestingly, paternal morphine exposure in Wistar rats results in 

increased morphine dependence (Vyssotski, 2011), but voluntary morphine 

consumption is unchanged (Pooriamehr et al., 2017). The timing of paternal 

treatment may influence these divergent findings, with sire treatment beginning in 

adolescence inducing morphine dependence in offspring. However, altered 

sensitivity to morphine-induced analgesia is seen in adolescent and adult paternally 

treated offspring. Overall, morphine-sired offspring show greater sensitivity to the 

analgesic effects of morphine with timing of paternal exposure determining 

responses to morphine reward. 

Molecular and physiological findings 

Paternal opioid treatment results in several physiological and molecular 

abnormalities. Sprague-Dawley morphine-sired male offspring have greater adrenal 

weights and lower luteinizing hormone and testosterone levels (Cicero et al., 1991). 

Paternal methadone treatment results in greater adrenal weights in adult females, 

and lower thymus weights in both sexes (Joffe et al., 1990). The findings on basal 

pain thresholds are strain-specific in males; Wistar rat offspring show greater pain 
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thresholds (Vyssotski, 2011) while these measures are unaltered in Sprague-Dawley 

offspring (Cicero et al., 1995). Greater hypothalamic beta endorphin and 

corticosterone levels are found in female offspring (Cicero et al., 1991). In both 

sexes, there is decreased hippocampal dendritic length and branching, as well as 

decreased Insulin-growth factor 2 mRNA and protein levels (Li et al., 2014). 

Induction of long-term potentiation is also impaired in both sexes (Sarkaki et al., 

2008). Interestingly, grand offspring (F2) display lower synaptophysin levels, but 

levels of this enzyme are unchanged in their parents (F1) (Vyssotski, 2011). Taken 

together, there is robust evidence that paternal opioid exposure results in changes in 

organ weights, synaptic activity, and several hormone levels related to growth-

regulation and neurotransmitter function.  

Epigenetic findings 

No studies found. 

Nicotine 

Developmental findings 

Few studies have explored the effects of paternal nicotine use on the health 

of subsequent generations. In C57BL/6J mice, litter size and sex ratios are 

unchanged in litters sired by adolescent nicotine-exposed males. Importantly, 

nicotine-sires were prevented from mating with a nicotine-naïve female for one week 

after the 5-week exposure period, well beyond the half-life of nicotine and its 

metabolite cotinine (Vallaster et al., 2017). 
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Learning and locomotor activity findings 

Nicotine exposure results in hypoactivity in sires but differential changes on 

locomotor and learning behaviors in offspring. Specifically, C57BL/6J nicotine-sired 

offspring display greater locomotor activity, while recognition memory is unaltered 

(Dai et al., 2017). 

Affective findings 

Nicotine exposure induces depression-like behavior in sires but promotes 

resilience in offspring. For example, C57BL/6J nicotine-sired offspring show lower 

depression-like behaviors on the forced swim test (Dai et al., 2017), but anxiety-like 

behavior on the elevated plus maze is unchanged (Dai et al., 2017; Vallaster et al., 

2017). 

Reward-related findings 

Nicotine self-administration behaviors are unaltered in nicotine-sired offspring; 

however, male offspring show increased survival after toxic doses of nicotine and 

cocaine (Vallaster et al., 2017). Thus, paternal nicotine exposure increases 

resilience to toxic nicotine and cocaine doses in male offspring. These findings may 

indicate that, in contrast to paternal cocaine studies which find cocaine-specific 

intergenerational effects, paternal nicotine exposure does not induce nicotine-

specific reward responses in offspring.  

Molecular and physiological findings 

Paternal nicotine exposure alters nicotine and cocaine metabolism and 

signaling pathway involved in neural development. Male C57BL/6J nicotine-sired 
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offspring had greater expression of genes involved with hepatic metabolism and 

nicotine clearance (Vallaster et al., 2017), as well as thalamic Wnt family member 4 

mRNA levels (Dai et al., 2017). The Wnt4 signaling pathway is an important 

regulator of neurogenesis and is associated with the pathophysiology of several 

neuropsychiatric disorders, including bipolar disorder and major depressive disorder 

(Inkster et al., 2009; Matigian et al., 2007).  

Epigenetic findings 

Paternal nicotine exposure alters miRNA targeting the Wnt4 signaling 

pathway in offspring. Nicotine exposed sires have greater DNA methylation of mm-

miR-15b in their sperm; hypermethylation of mmu-miR-15b was also maintained in 

the thalamus of offspring (Dai et al., 2017). Changes in mmu-miR-15b methylation 

levels associate with greater locomotor activity, lower depression-like behavior, and 

thalamic Wnt family member 4 mRNA levels in offspring. Interestingly, viral-mediated 

overexpression of mmu-miR-15b induced hypoactivity and depression-like behavior 

in nicotine-sired offspring. Although a causal link has been demonstrated between 

paternal-nicotine exposure and mmu-miR-15b and the Wnt family member 4 

signaling pathway, it would be useful to investigate whether this link mediates 

responses to nicotine reward in offspring. 

Cannabinoids 

Developmental findings 

Few studies have examined the role of paternal cannabinoid exposure on 

developmental outcomes. Offspring of adult THC-exposed sires did not differ from 
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control-sired offspring on litter size, sex ratio, or body weights when measured at 

birth and weaning. (Levin et al., 2019). 

Learning and locomotor activity findings 

Adolescent paternal exposure to the synthetic cannabinoid receptor agonist 

WIN55,212-2 (WIN) did not alter locomotor activity in adult SD offspring at baseline 

or after unpredictable stress (Ibn Lahmar Andaloussi et al., 2019). Adult THC-sired 

offspring showed more rapid habituation of locomotor activity relative to control-sired 

offspring; this effect was not seen in adolescent offspring (Levin et al., 2019). 

Additionally, episodic memory was unchanged in WIN-sired offspring relative to 

control offspring as measured by the object recognition test (Ibn Lahmar Andaloussi 

et al., 2019). No effect of adolescent paternal THC exposure was seen on the novel 

object recognition test of non-spatial memory (Levin et al., 2019). Although, THC-

sired offspring do not show deficits on the 16-arm radial maze test of spatial 

memory, these offspring have impairments in sustained attention relative to control-

sired offspring (Levin et al., 2019). 

Affective findings 

Paternal WIN exposure in adolescence alters stress-induced anxiety-like 

behaviors in offspring. Adolescent THC exposure in males did not alter anxiety-like 

behavior in offspring on the elevated plus maze (Levin et al., 2019). While WIN- and 

control-sired offspring do not differ on open field anxiety measures, WIN-sired 

offspring show greater unpredictable stress-induced anxiety-like behaviors relative to 

control-sired offspring (Ibn Lahmar Andaloussi et al., 2019). THC-sired offspring do 
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not differ from control-sired offspring in fear response as measured by the novelty 

suppressed feeding task (Levin et al., 2019). 

Reward-related findings 

No studies found. 

Molecular and physiological findings 

Offspring of WIN-exposed sires show differential changes on DNMT’s and 

stress hormones prior to and after stress exposure (Ibn Lahmar Andaloussi et al., 

2019). Corticosterone levels do not differ between WIN- and control-sired offspring 

at baseline or after chronic unpredictable stress. Prefrontal DNMT1 mRNA levels are 

greater in WIN-sired offspring at baseline; however, no differences are seen 

between groups after stress exposure. Conversely, prefrontal DNMT3a mRNA levels 

do not differ between the WIN- and control-sired offspring at baseline, but after 

stress exposure, WIN-sired offspring have higher DNMT3a mRNA levels (Ibn 

Lahmar Andaloussi et al., 2019). 

Epigenetic findings 

Stress exposure in WIN-sired offspring enhances global DNA methylation levels 

in the prefrontal cortex (Ibn Lahmar Andaloussi et al., 2019). Global DNA 

methylation levels do not differ between WIN- and control-sired offspring at baseline. 

However, when exposed to stress, WIN-sired offspring have greater 5-mc 

percentages compared to stressed control-sired offspring. Global DNA methylation 

levels correlate differentially with DNMT1 and DNMT3a mRNA levels in the 

prefrontal cortex. Specifically, global DNA methylation levels positively correlate with 
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DNMT1 mRNA levels, but no relationship is evident between global DNA 

methylation and DNMT3a mRNA levels (Ibn Lahmar Andaloussi et al., 2019). 

Summary of the literature on paternal drug effects 

Paternal drug exposures induce a wide range of developmental, emotional, 

physiological, and epigenetic consequences. Over the last few decades, paternal 

alcohol exposure has received more attention relative to other substances. However, 

given the increased rates of dependency on prescription opioid drugs, the popularity 

of electronic cigarettes, and decriminalization of marijuana in several U.S states, 

further investigation of other drug classes is warranted. Furthermore, studies vary 

widely in methodology across and within drug classes. Age, dose, duration and route 

of administration of paternal drug exposure are all important factors which may 

contribute to a lack of consilience between investigations. In many instances, 

paternal drug effects occur in a sex-dependent manner in offspring, findings that 

likely indicate complex interactions between sire-induced epigenetic modifications 

and the organizational and activational effects of gonadal hormones. In a similar 

vein, behavioral effects might also occur selectively in male offspring due to 

undetected paternal drug-induced epigenetic modifications on the Y chromosome 

that can modify other genes via epistasis (Kutch and Fedorka, 2018). 

There is also a bourgeoning literature on paternal drug-induced effects on 

drug reward in offspring.  There is preclinical evidence of a protective effect of 

paternal drug exposure on drug consumption in offspring that conflicts with studies in 

humans that demonstrate familial transmission of SUDs (Bierut et al., 1998; Heath et 

al., 1997; Kendler et al., 1999; Kendler et al., 2000; Li et al., 2003). Conversely, 
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many of the findings discussed above are in line with a recent longitudinal 

investigation that focused on paternal drug use on risk of alcohol use disorder in 

offspring. Maternal, but not, paternal SUD increased the risk of alcohol use disorder 

in offspring. Although, paternal SUD is not shown to be protective against alcohol 

use disorder, it does not enhance risk (Yule et al., 2018). Looking forward, it would 

be beneficial if preclinical and human work parallel each other when investigating the 

role of paternal drug consumption. For instance, the amount of drug consumed is not 

a criterion for a SUD; thus, there is heterogeneity in drug intake within and across 

drug classes. Whenever possible, it is important to measure clinical features of 

SUDs in sires, such as drug motivation. Rat studies showed that males with high 

motivation for cocaine had offspring that self-administer greater amounts of cocaine 

(Le et al., 2017). Thus, paternal motivation for a drug, coupled with high drug intake, 

may predispose offspring to develop addiction-like behaviors. 

The role of maternal behaviors has also received little attention. This is 

unfortunate given that many paternal treatments reviewed above continued into the 

mating period. Furthermore, paternal environment can alter maternal behavior. For 

example, paternal housing conditions can alter a dam's licking and grooming 

behaviors toward their offspring (Mashoodh et al., 2012), supporting findings that 

females adjust maternal care depending on paternal quality across several species 

(Cunningham and Russell, 2000; Gilbert et al., 2006; Sheldon, 2000).  Additionally, 

some paternal effects disappear after in vitro fertilization (Dietz et al., 2011) and 

embryo transfer likely because these effects are buffered by maternal behaviors 

(Mashoodh et al., 2018). These findings highlight complex maternal-paternal 
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interactions that may contribute to offspring phenotype. Notably, some paternal drug 

studies show that maternal behavior is unaltered (Fischer et al., 2017; Li et al., 2014; 

Vassoler et al., 2013) or use a cross-fostering protocol (Dai et al., 2017). 

Paternal-drug induced epigenetic modifications in offspring are an 

understudied area. Future studies can focus on how epigenetic modifications may 

be facilitating the biological and behavioral changes observed because of paternal 

drug exposure. Given that some short non-coding RNA's may mediate DNA 

methylation processes (i.e. piRNA's) (Kuramochi-Miyagawa et al., 2008; Spadaro 

and Bredy, 2012), it would be beneficial to elucidate their role in the 

transgenerational effects of paternal drug use. Additionally, no studies examined 

interactions between genetic and epigenetic marks. DNA methylation commonly 

takes place in an allele-specific manner across the genome (Meaburn et al., 2010). 

Stress-induced epigenetic modifications can also occur in an allele-specific manner 

(Alexander et al., 2014; Duman and Canli, 2015; Klengel et al., 2013). Thus, it is 

likely that the intergenerational consequences of paternal drug use rely on complex 

interactions between genetic and epigenetic marks. For example, an allele that 

inactivates alcohol dehydrogenase 2 (ALDH2) reduces risk for developing alcohol 

use disorder (Reilly et al., 2017). Such variants may interact with epigenetic 

processes to moderate predisposition to certain alcohol drinking phenotypes. In 

summary, paternal drug exposure, even during periods prior to conception, can have 

a long-lasting impact on future generations. Further work in this area will identify 

novel mechanisms that underlie the paternal contribution to addiction; such findings 
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may lead to the development of more effective prevention and treatment strategies 

for substance use disorders. 
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Hypothesis and Specific Aims 

Human and preclinical evidence suggest that epigenetic factors can be inherited 

via the male germ line and may explain some of the missing heritability of AUD. DNA 

methylation is one well studied epigenetic mechanism that is altered in sperm of 

alcohol drinking men. In addition, preclinical evidence suggests that these changes 

in DNA methylation can be passed down to subsequent offspring. However, 

research on behavioral sensitivity to alcohol in offspring of alcohol-exposed males 

remains in its infancy. Studies in mice show that paternal alcohol exposure 

decreases alcohol drinking and behavioral sensitivity to alcohol in a sex-dependent 

manner. These behavioral phenotypes are accompanied by altered DNA methylation 

levels in the sperm of alcohol-exposed sires that were maintained in the brains of 

offspring. To date, no studies have explored the influence of paternal alcohol 

exposure on sensitivity to unconditioned effects of alcohol or operant alcohol self-

administration in rat offspring. Overall, additional research is needed exploring the 

epigenetic biomarkers by which paternal alcohol exposure influences addiction-like 

behavior in offspring.  In order to address these questions and move the field 

forward, I developed the following specific aims: 

Aim 1: Determine if paternal alcohol exposure alters behavioral sensitivity to 

the unconditioned effects of alcohol in offspring.  

I hypothesize that alcohol-sired (A-sired) male, but not female, offspring will 

have blunted sensitivity to alcohol-induced anxiolysis and motor impairments 

compared to control-sired (C-sired) offspring. 
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Aim 2: Determine whether paternal alcohol exposure alters operant alcohol 

self-administration in offspring.   

I postulate that A-sired male offspring, but not female offspring, will display an 

alcohol-resistant phenotype as indicated by slower acquisition of alcohol responding, 

lower motivation for alcohol, and less craving- and relapse-like behaviors compared 

to C-sired male offspring, 

Aim 3: Determine whether paternal alcohol exposure alters Bdnf DNA 

methylation in offspring.  

I hypothesize that alcohol exposure will decrease global and Bdnf DNA 

methylation in sperm, medial prefrontal cortex, and nucleus accumbens of sires. 

Additionally, these global and gene-specific changes in DNA methylation will be 

maintained in sperm and brains of offspring.  

 

 

 

 

 

 

 

 

 



30 
 

CHAPTER TWO- DETERMINE WHETHER PATERNAL ALCOHOL EXPOSURE 
ALTERS BEHAVIORAL SENSITIVITY TO THE UNCONDITIONED EFFECTS OF 

ALCOHOL IN OFFSPRING 

 

Introduction 

Level of response (LR) to alcohol is a well-established endophenotype of 

alcohol use disorder (AUD). LR refers to the extent to which an individual responds 

to a given dose of alcohol or the number of drinks a person needs to experience 

alcohol’s psychological and physiological effects. Alcohol administration studies in 

humans show that LR can predict AUD risk, especially in individuals with a family 

history of alcohol problems (King et al., 2014; Schuckit and Smith, 1996). Schuckit 

and colleagues have pioneered work in this area showing that low subjective 

responses to the sedative and unpleasant effects of alcohol are risk factors for future 

alcohol dependence (Schuckit, 1984, 1994; Schuckit and Smith, 1996). This is 

termed the low level of response model and this theory examines response to 

alcohol as a unidimensional construct with a focus on the sedative and unpleasant 

effects of subjective responses (Schuckit and Gold, 1988).  

Over the last few decades, updates to the low level of response model reflect 

a multidimensional construct wherein alcohol’s biphasic effects are considered 

(Newlin and Thomson, 1990). Sons of individuals with AUD may be more sensitive 

to the rewarding and psychomotor stimulating effects of alcohol during the 

ascending blood alcohol concentration limb and less sensitive to 

sedative/unpleasant effects when blood alcohol concentration decline (Newlin and 

Thomson, 1990). For example, heavy drinkers report lower sensitivity to the sedative 
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effects of alcohol across the duration of BAC, which in turn associates with a higher 

number of AUD symptoms at 2- and 6-year follow-ups (King et al., 2014). 

 Preclinical work also supports relationship between LR and alcohol drinking. 

Much of the work in this area uses rat strains that are selectively bred to prefer and 

consume pharmacologically relevant amounts of alcohol. These studies find that 

alcohol preferring rats have lower LR compared to non-alcohol preferring rats. For 

example, alcohol preferring rats show less alcohol place aversion compared to non-

preferring rats (Stewart et al., 1996). Alcohol-preferring rats also show less taste 

aversion to alcohol compared to non-preferring rats (Froehlich et al., 1988). Taken 

together, these studies demonstrate that rats with a genetic predisposition for 

consuming large amounts of alcohol are less sensitive to alcohol’s aversive effects.  

 Family history of alcohol dependence can moderate the association between 

LR and risk of AUD. Newlin and Thompson (1990) originally proposed that sons of 

alcoholics may be more sensitive to the rewarding and stimulating effects of alcohol 

as blood alcohol concentrations rise and less sensitive to the negative effects of 

alcohol as blood alcohol concentration rise. Furthermore, a growing body of 

preclinical research finds that paternal alcohol exposure alters a wide range of 

developmental and physiological functions in subsequent generations, including 

behavioral sensitivity to alcohol (Finegersh et al., 2015b; Nieto and Kosten, 2019; 

Rompala and Homanics, 2019). Specifically, a study in mice finds that paternal 

alcohol exposure prior to conception increases sensitivity to alcohol’s anxiolytic and 

locomotor enhancing effects while blunting alcohol-induced motor coordination 

impairments selectively in male offspring (Finegersh and Homanics, 2014). 
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Additionally, in contrast to the LR model in humans, these behaviors in male 

offspring are accompanied by lower alcohol consumption and preference that vary 

as a function of alcohol concentration (Finegersh and Homanics, 2014). However, to 

date, no studies have examined for these paternal alcohol-induced behaviors in a 

genetically heterogeneous rat strain.  

The purpose of this study was to determine whether paternal alcohol 

exposure prior to conception reduced behavioral sensitivity to the unconditioned 

effects of alcohol. We hypothesize that paternal alcohol exposure will enhance the 

anxiolytic and locomotor enhancing effects of alcohol while blunting alcohol-induced 

impairments in motor coordination in male, but not female, offspring. 

Methods 
Animals 

Male and female Wistar rats were purchased from Charles River and used to 

generate offspring used in this dissertation project. Sires (400-500 g) were pair-

housed prior to mating and sacrificed shortly after dams were confirmed pregnant. 

Dams were group-housed prior to mating and then sacrificed after offspring were 

weaned. Offspring were group-housed (females) or pair-housed (males) after 

weaning and throughout the course of the study. Most animals were housed in 

amber polysulfone cages and kept in a temperature-and humidity-controlled 

vivarium. During chronic intermittent ethanol vapor exposure, males were placed in 

standard rat cages housed within vapor chambers. The vivarium was maintained on 

a 12:12 light/dark cycle (lights on at 7:00 AM). Animals had ad libitum access to food 

and water. The Institutional Animal Care and Use Committee at the University of 

Houston approved the experimental protocols in accordance with guidelines set forth 
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in the “Guide for the Care and Use of Laboratory Animals 8th Edition”. Adult 

(postnatal day 75) alcohol and control-sired animals (A-sired and C-sired, 

respectively) were tested for behavioral sensitivity to alcohol as described below.  

Solution and drug preparations  

Alcohol (ethyl alcohol, 190 proof, USP grade, Koptec, King of Prussia, PA) 

was mixed with tap water to reach concentrations of 15% (v/v) alcohol.  

Paternal chronic intermittent ethanol exposure  

Male rats were made dependent by chronic, intermittent exposure to vapor 

alcohol as previously described in (Gilpin et al., 2008). This model reliably induces 

alcohol dependence as indicated by the development of negative emotional-like 

state and somatic symptoms in withdrawal (Gilpin et al., 2008). Standard rat cages 

were housed inside sealed and transparent plastic chambers into which vapor 

alcohol was intermittently pumped. Males underwent cycles of 16 h (6pm) on and 8 

h (10am) off for five consecutive days per week over six weeks. Nondependent rats 

were housed in similar conditions but were only exposed to room air. Blood samples 

were collected from the lateral saphenous vein to monitor blood alcohol levels and 

to adjust vapor exposure settings.   

Breeding and offspring rearing  

Male rats were left undisturbed for 8 weeks after their last alcohol vapor 

session. At the end of this period, males were housed with alcohol naïve females. 

Female rats were examined daily for the presence of a mating plug. Once the mating 

plug was confirmed by research staff, males were removed from the breeding 

cages and sperm and brain regions were extracted the following day. Litters from 



34 
 

these mating pairs were culled to 10 pups (5 pups per sex) as depicted in Figure 2.1. 

Pups were weighed at postnatal day (PD) 1, 4, 7, 10, 35, and then weekly into 

adulthood. Behavioral testing began when offspring reached adulthood ~PD 75. To 

control for possible litter effects, no more than 2 pups per sex per litter were used for 

each aim. Experimental groups and testing sequence for each aim is shown in Table 

2.1. 

FIGURE 2.1. BREEDING SCHEME FOR STUDY AIMS 

 

Figure 2.1. Schematic of the breeding procedure for alcohol-sired (A-sired) and 
control-sired offspring. No more than two offspring were used for each study aim and 
rats were not used for more than one study aim. All animals were left undisturbed 
until behavioral testing or tissue collection in adulthood (i.e., postnatal day [PD] 75). 
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TABLE 2.1. EXPERIMENTAL GROUPS AND TESTING SEQUENCE FOR EACH AIM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EPM, Elevated plus maze; SA, Operant self-administration; PR, Progressive ratio; Bdnf, Brain-derived neurotrophic factor 

 

 

  

 

Aim 
Sire 
treatment 

N Sex 
Offspring 
treatment 

Procedure  
1 

Procedure 
2 

Procedur
e 3 

Procedure  
4 

Procedure 
5 

1 Alcohol 10 Female Water Open field EPM Rotarod - - 
  9 Female Alcohol (1.5 g/kg) Open field EPM Rotarod - - 
  10 Male Water Open field EPM Rotarod - - 
  10 Male Alcohol (1.5 g/kg) Open field EPM Rotarod - - 
 Control 10 Female Water Open field EPM Rotarod - - 
  10 Female Alcohol (1.5 g/kg) Open field EPM Rotarod - - 
  10 Male Water Open field EPM Rotarod - - 
  10 Male Alcohol (1.5 g/kg) Open field EPM Rotarod - - 
          
2 Alcohol 10 Female Alcohol SA Acquisition PR tests Extinction Reinstatement Reinitiation 
  9 Male Alcohol SA Acquisition PR tests Extinction Reinstatement Reinitiation 
 Control 8 Female Alcohol SA Acquisition PR tests Extinction Reinstatement Reinitiation 
  10 Male Alcohol SA Acquisition PR tests Extinction Reinstatement Reinitiation 
          
3 Alcohol 10 Female - Bdnf DNA 

methylation 
Global 
DNA 
methylation 

- - - 

  10 Male - Bdnf DNA 
methylation 

Global 
DNA 
methylation 

- - - 

 Control 9 Female - Bdnf DNA 
methylation 

Global 
DNA 
methylation 

- - - 

  10 Male - Bdnf DNA 
methylation 

Global 
DNA 
methylation 

- - - 
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Behavioral testing 

 Separate groups of A-sired (n’s = 9-10 per group) and C-sired (n’s = 10 per 

group) offspring were administered alcohol (1.5 g/kg) or water via oral gavage 30 

min prior to behavioral testing on the open field, elevated plus maze, and rotarod. 

Rats were acclimated to the gavage for one week prior to testing. The order of the 

tests was not counterbalanced but ordered beginning with less invasive tasks. All 

tests were separated by one week to ensure that alcohol was washed out of the 

animal’s system. 

Open field test 

Anxiety-like behavior and general locomotor activity was assessed over 60-

min in an open field apparatus that consisted of a square box with white floors and 

clear plexiglass walls (Med Associates Inc; 43-cm L X 43-cm W X 11-cm H) wherein 

rats can freely explore. Movement was tracked using infrared beam sensors over a 

60-minute trial. Rats were habituated to the testing room for 30 minutes prior to 

testing. Anxiety-like behavior was automatically indexed by the percentage of time 

and entries into the center of the open field using. Locomotor activity was 

automatically calculated by the distance traveled (cm) within the open field. 

Behavioral indices were captured in six 10-min time bins. 

Elevated plus maze 

 Anxiety-like behavior was assessed one week after the open field test. The 

elevated plus maze was shaped like a plus symbol and consisted of two open (45-

cm long ×10-cm wide) and two closed arms (45-cm L X 10-cm W X 30-cm H), and a 

middle compartment (4-cm long X 4-cm wide). The floors of the maze and the walls 
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of the closed arms were made of black acrylic. Rats were habituated to the testing 

room for 30 min prior to testing. At the start of the 5 min trial, offspring were placed 

in the middle compartment facing one of the open arms. The maze was cleaned with 

disinfectant after each trial. A digital video camera mounted on the ceiling recorded 

the movements of each rat. Data were analyzed using an automated software 

program (ANY-maze; Stoellting Co.; Wood Dale, IL) connected to a computer. Times 

and entries in the open and closed arms were the primary measures that were 

tabulated.  

Rotarod 

Motor coordination was assessed using the accelerating rotarod test. In this 

test, rats were placed on an alley of a rotarod (San Diego Instruments; 66” H X 36” 

W X 24” D) that gradually accelerated from 4 to 50 rpm over a 5-min period. Latency 

to fall off was recorded and the trial ends at that time or after 6 min. Rats acclimated 

to the testing room 30 min prior to training and tests. One week after performance on 

the elevated plus maze, offspring were habituated to the rotarod over five training 

trials (no alcohol administration) separated by 10 minutes. The following day, a 

single test was conducted 30 min after water or alcohol administration. 

Statistical Analysis 

The average number of pups born per litter were compared using Student t-

tests. Body weights were analyzed using a three-way mixed design analysis of 

variance with Sex and Sire as the between group factors and Time as the repeated 

measure factor. A between group analysis of variance was used for elevated plus 

maze data with paternal exposure, sex, and treatment (alcohol vs water) as between 
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group factors. A mixed design analysis of variance was used with open field and 

rotarod data with time/trial added as a repeated measure. Tukey post hoc tests were 

used to follow-up on statistically significant main effects and interactions. All 

statistical analyses were performed using SAS software 9.4 (SAS Institute) with 

statistical significance set at p<.05. 

Results 
Litter characteristics and offspring body weights 

A-sired and C-sired groups did not differ on number of litters, average number 

of pups per litter, or number of male and female offspring (p’s>.05)(Table 2.2). Body 

weights of A-sired and C-sired offspring are shown in Table 2.3. There were 

significant main effects of Sire, F(1, 92)= 49.632, p<0.001, 𝜂𝑝
2 = .35, Sex, F(1, 92)= 

739.87, p<0.001, 𝜂𝑝
2 = .89, and Time, F(5, 460)= 6725.0, p<0.001, 𝜂𝑝

2 = .98, along 

with significant interactions of Time X Sire, F(5, 460)= 14.994, p<0.001, 𝜂𝑝
2 = .14 and 

Time X Sex, F(5, 460)= 527.49, p<0.001, 𝜂𝑝
2 = .85. Tukey post hoc comparisons 

showed that A-sired offspring (male and female) weighed less than C-sired offspring 

specifically at PD35 and PD75 (p’s<0.001). Tukey post hoc comparisons also 

showed that male offspring weighed more than females specifically at PD35 and 

PD75 (p’s <0.001). 

TABLE 2.2. LITTER CHARACTERISTICS FOR ALCOHOL AND CONTROL SIRES 

 Control sires Alcohol sires 

Number of litters 10  10 
Average pups/litter (standard 
error) 

12.4 (1.3) 10.5 (1.8) 

Number of male offspring 52 46 
Number of female offspring 43 49 
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TABLE 2.3. BODY WEIGHTS OF OFFSPRING 

 

 

 

 

 

 

 

 

 

Note. C-sired, control-sired: A-sired, alcohol-sired; PD, postnatal day; 𝝍 indicates 

sex differences at p<0.05; *** indicates sire differences at p<0.001 

 

Open Field 

Paternal alcohol-induced effects on general locomotor activity and anxiety-like 

behavior on the open field test are seen in Fig. 2.2. On general locomotor activity 

(Fig 2.2 A & D), there were significant main effects of Sex, F (1, 71) = 10.77, 

p=0.0016, 𝜂𝑝
2 = 0.13, Time, F (5, 355) = 184.76, p <0.001, 𝜂𝑝

2 = 0.72, Time X Sex 

interaction, F (5, 355) = 8.76, p <0.001, 𝜂𝑝
2 = 0.11 and a Time X Sex X Treatment X 

Sire interaction, F (5, 355) = 2.32, p=0.042, 𝜂𝑝
2 = 0.03. Generally, female offspring 

traveled more than males throughout the 60 min period and locomotor activity 

decreased as time progressed. Tukey post hoc tests showed that locomotor activity 

was higher in females particularly during the first time bin (p<0.001) but did not 

reveal differences between A- and C-sired offspring after water or alcohol treatment 

(p’s>0.05).  

Anxiety-like behavior on the open field test is shown in Figure 2.2 Panels B-F. 

There were significant main effects of Sex, F (1, 71) = 11.11, p=0.001, 𝜂𝑝
2 = 0.14, 

Treatment F (1, 71) = 5.35, p=0.024, 𝜂𝑝
2 = 0.07,  and a significant Sex X Treatment 

Sex Group Body Weights (Mean  ± SEM) 

  PD 1  PD 4 PD 7 PD 10 PD 35 𝝍 PD 75 𝝍 
Male C-sired 8.0 ± 

.22 
12.7 ± 
.08 

16.9 ± 
.46 

26.2 ± 
.90 

147.5 ± 
3.3 

425.4 ± 
5.1 

 A-sired 6.7 ± 
.11 

10.5 ± 
.16 

17.3 ± 
.39 

23.9 ± 
.39 

126.9 ± 
7.1*** 

387.3 ± 
8.5*** 

Female C-sired 8.2 ± 
.31 

12.1 ± 
.17 

16.5 ± 
.31 

23.8 ± 
.55 

125.0 ± 
2.1 

241.5 ± 
2.7 

 A-sired 6.8 ± 
.13 

10.2 ± 
.15 

16.7 ± 
.30 

23.2 ± 
.37 

108.4 ± 
5.0*** 

224.6 ± 
4.1*** 
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interaction, F (1, 71) = 5.02, p=0.029, 𝜂𝑝
2 = 0.07. Overall, female offspring spent less 

time in the center of the open field relative to males. Additionally, alcohol treated rats 

spend more time in the center of the open field relative to water exposed rats. Tukey 

post hoc tests showed that males treated with alcohol spent more time in the center 

of the open field relative to water treated male (p<0.01) and female rats (p’s < 0.01). 

FIGURE 2.2. BEHAVIORAL SENSITIVITY TO ALCOHOL ON THE OPEN FIELD TEST  

 

Figure 2.2. Distance traveled and time spent in the center/margin of the open field 

for control-sired (C-sired [n’s = 10 per group]; open bars/circles) and alcohol-sired 

(A-sired [n’s = 9-10 per group]; filled bars/circles) offspring. Distance traveled over 

six 10-min time bins is presented as mean (±SEM) for males (A) and females (D). 

Time spent in the center and margins of the open field are presented as mean (± 

SEM) for males (B & C) and females (E & F). An asterisk (*) represents a significant 

difference between water and alcohol treatment (p’s<0.05). 

The elevated plus maze 

Anxiety-like behavior on the elevated plus maze is shown in Fig. 2.3. There 

was a significant main effect of Sire, F (1, 71) = 5.79, p=0.0187, 𝜂𝑝
2 = 0.08, as well as 
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a significant Sire X Sex interaction, F (1, 71) = 12.56, p<0.001, 𝜂𝑝
2 = 0.15 on percent 

time spent in open arms. A-sired offspring spent more time in the open arms, but this 

varied as a function of sex. Specifically, A-sired male offspring spent more time in 

the open arms (Panel A) compared to A-sired females (p<0.01) and C-sired offspring 

(p’s < 0.001). For percent of open arm entries, there were significant main effects of 

Sire, F (1, 71) = 3.73, p<0.047, 𝜂𝑝
2 = 0.05, and Sex, F (1, 71) = 11.10, p=0.001, 𝜂𝑝

2 = 

0.13, indicating that A-sired animals and male rats made more open arm entries 

(data not shown). There was a significant main effect of Sire, F (1, 71) = 3.90, 

p=0.042, 𝜂𝑝
2 = 0.05, and a significant Sire X Sex interaction, F (1, 71) = 9.06, p= 

0.003, 𝜂𝑝
2 = 0.11 on percent time in the closed arms. A-sired offspring spent less 

time in the closed arm but varied as a function of sex. Specifically, A-sired male 

offspring spent less time in the closed arms (Panel B) relative to A-sired female 

offspring (p<0.05) and C-sired males (p<0.001). For percent of closed arm entries, 

there was were significant main effects of Sex, F (1, 71) = 12.19, p=0.0008, 𝜂𝑝
2 = 

0.15, Treatment, F (1, 71) = 11.02, p=0.0014, 𝜂𝑝
2 = 0.13, and a Sire X Sex 

interaction, F (1, 71) = 7.54, p=0.0077, 𝜂𝑝
2 = 0.10, indicating that animals given 

alcohol and female rats made less entries into the closed arms. Additionally, Tukey 

post hoc tests revealed that A-sired female offspring made less entries into the 

closed arms compared to A-sired (p< 0.001) and C-sired male offspring (p<0.05; 

data not shown). 
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FIGURE 2.3. BEHAVIORAL SENSITIVITY TO ALCOHOL ON THE ELEVATED PLUS MAZE 

 

Figure 2.3. Time spent in the open and closed arms of the elevated plus maze for 

control-sired (C-sired [n’s = 10 per group; open bars/circles) and alcohol-sired (A-

sired [n’s = 9-10 per group; filled bars/circles) offspring. The percent of time spent in 

the open and closed arms of the open field are presented as mean (± SEM) for 

males (A & B) and females (C & D). *** represents a significant difference between 

control and alcohol-sired offspring (p’s<0.001). 

 

Rotarod 

Performance on the rotarod during five training trials and on test day are 

shown in Fig. 2.3. For training trials, there was a significant main effect of Trial, F (4, 

300) = 12.68, p = < 0.001, 𝜂𝑝
2 = 0.14, and a significant Trial X Sex interaction, F (4, 

300) = 7.13, p <0.001, 𝜂𝑝
2 = 0.09. Generally, all animals improved their performance 

on the rotarod as trials progressed. However, female rats (Panel C) had better 
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rotarod performance on Trial 3 relative to males (Panel A; p<0.01). For the rotarod 

test, there were significant interactions, Sire X Sex, F (1, 71) = 12.45, p<0.001, 𝜂𝑝
2 = 

0.72, Sex X Treatment, F (1, 71) = 4.63, p=0.035, 𝜂𝑝
2 = 0.06, Sire X Sex X 

Treatment, F (1, 71) = 5.66, p=0.020, 𝜂𝑝
2 = 0.07. A-sired males (Panel B) were less 

sensitive to the motor impairing effects of alcohol relative to alcohol-exposed C-sired 

males (p<0.05). However, A-sired females (Panel D) were more sensitive to the 

motor impairing effects of alcohol relative to alcohol-exposed A-sired males (p<0.05) 

and C-sired females (p<0.01). 

FIGURE 2.4. BEHAVIORAL SENSITIVITY TO ALCOHOL ON THE ROTAROD TEST 

 

Figure 2.4. Time on the rotarod for control-sired (C-sired [n’s = 10 per group; open 

bars/circles) and alcohol-sired (A-sired [n’s = 9-10 per group; filled bars/circles) 
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offspring. Time spent on the accelerating rotarod during training trials and test day 

is presented as mean (±SEM) for males (A & B) and females (C& D). * represents 

a significant difference between control and alcohol-sired offspring (p’s<0.05). ** 

represents a significant difference between control and alcohol-sired offspring 

(p’s<0.01). # represents a significant difference between alcohol and water 

treatment (p’s<0.05). 

 

Discussion 
The purpose of the present study is to determine whether paternal alcohol 

exposure alters behavioral sensitivity to alcohol.  We show that A-sired male and 

female offspring display changes in sensitivity to the motor impairing effects of 

alcohol on the rotarod test. Specifically, A-sired male offspring show blunted 

sensitivity, while female A-sired offspring have enhanced sensitivity to alcohol’s 

effects on motor coordination. We do not observe differences between the sire 

groups on the open field; however, A-sired male offspring display a more anxiolytic 

phenotype at baseline relative to C-sired male offspring on the elevated plus maze. 

This is the first study to determine the consequences of paternal alcohol exposure 

on behavioral sensitivity to the unconditioned effects of alcohol using an outbred rat 

strain. 

Sensitivity to alcohol is a well-characterized predictor of AUD risk (Ray et al., 

2016; Schuckit, 1984, 1994). Additionally, the heritability of an individual’s level of 

response to alcohol is ~60% (Heath et al., 1999; Kalu et al., 2012). However, as the 

modified differentiator model recommends, it is important to consider the biphasic 

alcohol curve. That is, rising blood alcohol concentrations are primarily characterized 

by stimulating and rewarding subjective feelings to alcohol. As blood alcohol 

concentrations fall, subjective responses to alcohol reflect sedative and negative 
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effects of alcohol. In this context, enhanced sensitivity to the rewarding effects of 

alcohol and blunted sensitivity to sedative alcohol effects associate with AUD risk 

(Newlin and Thomson, 1990). Few preclinical studies have examined the impact of 

paternal alcohol on behavioral responses to alcohol. 

Our study shows that paternal alcohol exposure alters sensitivity to alcohol in 

both male and female offspring. These divergent sex findings are only seen on the 

rotarod test. Specifically, alcohol-sired male offspring show blunted sensitivity while 

female A-sired offspring exhibit greater sensitivity to alcohol’s impairing effects on 

motor coordination. It is important to note that altered sensitivity to alcohol is only 

evident on the motor coordination task, and not indices of general locomotor activity 

or anxiety-like behavior. In addition, paternal alcohol exposure effects are seen on 

baseline anxiety-like behavior on the elevated plus maze but not the open field. A-

sired males show a more anxiolytic phenotype relative to A-sired females and C-

sired offspring. Given that alcohol administration via oral gavage occurs 30 min prior 

to behavioral testing, blood alcohol concentrations are estimated to be ~125-150 

mg/dl based on previous work. This blood level represents the ascending limb of the 

biphasic alcohol curve. Taken together, paternal alcohol exposure sex-dependently 

alters baseline anxiety-like behavior but changes in alcohol sensitivity are specific to 

motor coordination. 

These findings compliment and extend work on the consequences of 

preconceptual paternal alcohol exposure. Consistent with prior work, we show that 

paternal alcohol exposure does not change basal or alcohol-induced general 

locomotor activity (Beeler et al., 2019; Finegersh and Homanics, 2014). The 
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anxiolytic phenotype observed in A-sired males is consistent with a mouse study 

finding that voluntary paternal alcohol consumption imparts an anxiolytic phenotype 

on the open field test in male offspring (Beeler et al., 2019). However, it is important 

to note that the open field test and elevated plus maze may be measuring different 

dimensions of emotionality (Carola et al., 2002). Studies in mice also show that 

paternal alcohol exposure blunts sensitivity to alcohol on the rotarod selectively in 

male mice (Finegersh and Homanics, 2014), or has null effects (Beeler et al., 2019; 

Rompala et al., 2017). Our results show sex-dependent effects on alcohol-induced 

motor coordination which likely implicate organizational/activational effects of sex 

hormones in the expression of paternal alcohol effects. It is important to note the 

procedural differences in rotarod performance across studies. Previous mouse work 

assesses the effects of alcohol during the training trials, while our study assesses 

the effects of alcohol on a single test day after training. Thus, findings in mice may 

be examining differences in paternal alcohol effects on procedural memory learning 

under the effects of alcohol in offspring. Nonetheless, blunted sensitivity to alcohol 

was accompanied by an alcohol resistant phenotype selectively in A-sired male 

offspring. Specifically, alcohol-sired male offspring consume less alcohol on two 

bottle choice procedures (Beeler et al., 2019; Finegersh and Homanics, 2014; 

Rompala et al., 2017). Continued work in our lab is examining whether paternal 

alcohol exposure alters operant alcohol self-administration behaviors in offspring. 

It is possible that altered sensitivity to alcohol as a result of paternal alcohol 

exposure can be attributed to epigenetic changes transmitted through the male germ 

line (Finegersh et al., 2015b; Nieto and Kosten, 2019). Molecular epigenetic factors, 
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like DNA methylation and histone modifications, influence gene expression without 

changing the nucleotide sequence. Indeed, a growing body of evidence shows that 

paternal exposure to drugs and alcohol can influence the epigenetic profile of 

offspring (Nieto and Kosten, 2019). Specifically, paternal alcohol-induced blunted 

sensitivity and lower alcohol consumption and preference associate with greater 

brain derived neurotrophic factor (Bdnf) expression in the ventral tegmental area and 

frontal cortices (Ceccanti et al., 2016; Finegersh and Homanics, 2014; Rompala et 

al., 2017), key brain regions involved reward-related processes. 

In summary, our results indicate that paternal alcohol exposure alters 

behavioral sensitivity to the motor-impairing effects of alcohol in a sex-dependent 

manner. Specifically, alcohol-sired offspring have a blunted response while alcohol-

sired female offspring have greater sensitivity to alcohol on the rotarod test. These 

studies corroborate and extend previous work in mice by showing that paternal 

alcohol exposure several weeks prior to conception alters sensitivity to alcohol in 

offspring. Future work in our lab aims to identify whether these changes in alcohol 

sensitivity correspond to increased or decreased vulnerability to addiction-like 

behavior. 
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CHAPTER THREE- DETERMINE WHETHER PATERNAL ALCOHOL EXPOSURE 
ALTERS OPERANT ALCOHOL SELF-ADMINISITRATION IN OFFSPRING 

 

Introduction 
Parental alcohol use can have long-lasting intergenerational consequences, 

including altered sensitivity to alcohol in offspring. For example, children of parents 

with an AUD have lower sensitivity to the motor-impairing and stress-activating 

effects of alcohol, responses that increase the risk of developing AUD (Schuckit, 

1985, 1994; Schuckit et al., 1987; Schuckit et al., 2005; Schuckit et al., 1996). Thus, 

parents who engage in pathological alcohol drinking increase the risk of AUD in their 

children. While maternal alcohol use is a well-studied area of clinical research, the 

unique role of paternal alcohol drinking has not been fully investigated (Finegersh et 

al., 2015a; Nieto and Kosten, 2019; Rompala and Homanics, 2019). However, 

preclinical studies have shown that paternal (sire) alcohol use can sex-dependently 

alter sensitivity to alcohol in offspring. In mice, alcohol-sired (A-sired) male offspring 

exhibit greater anxiolysis and less sensitivity to the motor-impairing effects of a 

moderate dose of alcohol (1.0 g/kg) relative to control-sired (C-sired) male offspring 

(Finegersh and Homanics, 2014). In addition to altered sensitivity to the 

unconditioned effects of alcohol, sensitivity to the rewarding effects of alcohol is also 

changed. A-sired male offspring show less preference and consumption for alcohol 

in two-bottle choice procedures (Finegersh and Homanics, 2014), and aversion to an 

environment paired with a moderate dose of alcohol (Ceccanti et al., 2016). These 

studies largely corroborate studies in rats showing that male offspring of cocaine-

exposed sires exhibit reduced cocaine-seeking behaviors (Vassoler et al., 2013). 

Given that human and mouse studies provide evidence of altered sensitivity to the 



49 
 

rewarding effects of alcohol in offspring of alcohol-exposed males, it is possible that 

heritable risks for developing AUD are passed through the male germ line 

(Finegersh and Homanics, 2014).  However, no studies utilizing rats have assessed 

sensitivity to the reinforcing effects of alcohol in A-sired offspring. 

Operant self-administration procedures provide valuable information beyond 

what is assessed using two-bottle choice procedures and conditioned place 

preference, including measuring both appetitive and consummatory behaviors under 

increasing workloads within the same operant session (Bertholomey et al., 2016; 

Nieto and Kosten, 2017; Nieto et al., 2018). Acquisition of drug and alcohol self-

administration is characterized by a progression from sporadic to stable levels of 

responding (Carroll and Meisch, 2011). The focus during this period is on how 

rapidly and what percentage of animals acquire self-administration. Thus, the 

acquisition phase provides information related to initial stages of the addiction 

process, i.e. initiation of drug or alcohol use, that is difficult to investigate ethically in 

humans. A major advantage of acquisition studies is that genetic, epigenetic, and 

environmental factors that underlie vulnerability or resilience to drug use can be 

identified, leading to individualized treatments for AUD. For example, environmental 

and genetic manipulations can affect acquisition of drug self-administration (Carroll 

and Lac, 1993; Carroll and Meisch, 2011; Deminiere et al., 1989; Horger et al., 1990; 

Kosten et al., 1997; Kosten et al., 2000). Additionally, different operant procedures 

are used to model specific phases of the addiction process (Koob et al., 2009). For 

example, maintenance of operant alcohol self-administration may reflect the binge-

intoxication phase of drinking because the focus of this assessment is on 
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consumption. Procedures that employ reinstating operant behavior after its 

extinction may reflect the preoccupation-anticipation phase because it is generally 

tested in the absence of alcohol reinforcement and thus, it reflects appetitive 

behaviors (Koob et al., 2009).  

Operant self-administration procedures vary widely, including the schedules 

of reinforcement used. The fixed ratio (FR) schedule provides an initial qualitative 

assessment of reinforcer efficacy and drug intake (Arnold and Roberts, 1997; 

Richardson and Roberts, 1996), whereas, the progressive ratio (PR) schedule of 

reinforcement provides a quantitative assessment of reinforcer efficacy (Arnold and 

Roberts, 1997). Under a PR schedule, the response requirement gradually 

increases, often after each reinforcer delivery, and, in contrast to the FR schedule, it 

provides a measure (break point or final ratio completed) of an animal’s motivation to 

obtain the reinforcer (Arnold and Roberts, 1997). Whether paternal alcohol exposure 

alter motivation for alcohol in offspring is unknown. 

The purpose of this study is to examine whether paternal alcohol exposure 

alters operant alcohol self-administration in rats. Specifically, we will assess 

acquisition, maintenance, extinction, reinstatement, and reinitiation behaviors in 

offspring. Based on findings from previous paternal alcohol and drug studies, we 

hypothesize that A-sired male offspring, but not female, will show delayed 

acquisition of alcohol self-administration relative to C-sired offspring. Additionally, we 

hypothesize that A-sired male offspring will show less motivation for alcohol in 

progressive ratio tests and reach extinction criteria earlier than C-sired offspring. We 
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also postulate that A-sired male offspring will have blunted cue-induced 

reinstatement and lower alcohol responding during reinitiation sessions. 

Methods 
Animals 

Sired and dams used in Aim 1 were used in this study. Briefly, male and 

female Wistar rats were purchased from Charles River and used to generate 

offspring used in this study. Sires (400-500 g) were pair-housed prior to mating and 

sacrificed shortly after dams were confirmed pregnant. Dams were group-housed 

prior to mating and then sacrificed after offspring were weaned. Offspring were 

group-housed (females) or pair-housed (males) after weaning and throughout the 

course of the study. Most animals were housed in amber polysulfone cages and kept 

in a temperature-and humidity-controlled vivarium. During chronic intermittent 

ethanol vapor exposure, males were placed in standard rat cages housed within 

vapor chambers. The vivarium was maintained on a 12:12 light/dark cycle (lights on 

at 7:00 AM). Animals had ad libitum access to food and water except during operant 

procedures described below. The Institutional Animal Care and Use Committee at 

the University of Houston approved the experimental protocols in accordance with 

guidelines set forth in the “Guide for the Care and Use of Laboratory Animals 8th 

Edition”. Adult male rats were exposed to alcohol vapor (n=10) or room air (n=10) 

prior to being mated with alcohol naïve females (n = 20). A-sired (n = 9 males; n = 

10 females) and C-sired (n = 10 males; n = 8 females) rats were trained to lever 

press for sucrose pellets and then alcohol solution as described below. These 

offspring were littermates of offspring used in Aim 1 and Aim 2. 
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Solution and drug preparations 

Alcohol (ethyl alcohol, 190 proof, USP grade, Koptec, King of Prussia, PA) 

was mixed with tap water to reach concentrations of 2.5% (v/v), 5% (v/v), and 10% 

(v/v) alcohol. 

Paternal chronic intermittent ethanol exposure 

Male rats were made dependent by chronic, intermittent exposure to vapor 

alcohol as previously described in (Gilpin et al., 2008; Priddy et al., 2016). This 

model reliably induces alcohol dependence as indicated by the development of 

negative emotional-like state and somatic symptoms in withdrawal (Vendruscolo and 

Roberts, 2014). Standard rat cages were housed inside sealed and transparent 

plastic chambers into which vapor alcohol was intermittently pumped. Males 

underwent cycles of 16 h (6pm) on and 8 h (10am) off for five consecutive days per 

week over six weeks. Nondependent rats were housed in similar conditions but 

exposed to room air. Blood samples were collected from the lateral saphenous vein 

to monitor blood alcohol levels and to adjust vapor exposure settings.  

Breeding and offspring rearing 

Male rats were left undisturbed for 8 weeks after their last alcohol vapor 

session. At the end of this period, males were housed with alcohol naïve females. 

Female rats were examined daily for the presence of a mating plug. If the mating 

plug was present, males were removed from the breeding cages and sperm and 

brain regions were extracted the following day. Litters from these mating pairs were 

culled to 10 pups (5 pups per sex). Pups were weighed at postnatal day (PD) 1, 4, 7, 
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10, 35, and then weekly into adulthood. Self-administration training sessions began 

when offspring reached adulthood ~PD 75. To control for possible litter effects, no 

more than 2 pups per sex per litter were used in self-administration. 

Self-administration apparatus 

Self-administration sessions were conducted in operant chambers placed 

within sound-attenuating cubicles equipped with fans. Each chamber was equipped 

with a house light on one side of the cage and two retractable levers on the opposite 

wall. Above each lever was a triple cue light and in between the levers were two 

access areas. One area was a recessed food receptacle into which food pellets 

could be dispensed from a pellet dispenser. A dipper could protrude through the 

second recessed area. The dipper was immersed in a solution reservoir and could 

be activated to present 0.1 ml of solution. Both access areas were equipped with a 

light and with infrared sensors that were used to detect head entries. Experimental 

parameters and data tabulation were programmed using a software package 

(Graphic State Notation, Coulbourn) installed on a PC computer. 

Self-administration training 

 Rats were first water-restricted overnight (7pm to 9am) and then trained to 

drink water from the dipper for two weeks. Levers were retracted during this period 

and each session began with two dipper presentations. After these two dipper 

“primes” and for the rest of the 30 min sessions, any head entry into the dipper 

access area triggered a dipper presentation. Dipper presentation times gradually 

decreased from 15 sec to 3 sec, the duration used for the rest of the study. Water-
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restriction and dipper training ended after all rats met the criterion of at least 25 

dipper presentations over two consecutive days. After these dipper training 

sessions, rats were food restricted to 85% of their free-feeding body weight and 

trained to press a lever for food pellets under a fixed ratio 1 (FR1) schedule of 

reinforcement (30 min sessions). These sessions started with the house light 

illuminated and protrusion of levers into the chamber. A food pellet was dispensed 

only after the active lever was pressed. Inactive lever presses had no programmed 

consequences. Operant training for food-maintained responding was continued until 

all rats obtained 20 reinforcers in ≤5 min over two consecutive days. Food restriction 

continued throughout the remainder of the study. 

Alcohol self-administration sessions were conducted under similar 

parameters as food training sessions (30 min sessions; FR1 schedule), except that 

weekly ascending concentrations of alcohol (2.5%-10%) were available as a 

reinforcer. Animals successfully acquired operant alcohol self-administration when 

they achieved at least 25 active lever presses and responding was consistent (< 

20% variability of active lever presses over 2 consecutive days). To decrease the 

group differences between alcohol and control sired offspring, specifically within 

female offspring, a 5% alcohol concentration was the final alcohol solution used 

during the remaining weeks of alcohol training. The number of active and inactive 

lever presses and alcohol deliveries were measured. 

Maintenance and progressive ratio sessions 



55 
 

Rats were maintained on operant alcohol self-administration under FR2 and 

FR4 schedule of reinforcement for two weeks, respectively. After this period, 

motivation for alcohol was assessed over two weeks (4 days per week) under 3-hr 

progressive ratio test sessions as described previously (Kosten, 2011; Nieto and 

Kosten, 2017; Nieto et al., 2018; Walker and Koob, 2008). Under this schedule of 

reinforcement, the response requirement gradually increases over the 3 hr period 

demanding the organism to respond at higher levels in order to receive an alcohol 

reinforcer. We utilized a slow growth progressive ratio schedule in the following 

steps: 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, 18, 18, 21, 21, 24, 

24, etc. The number of active and inactive lever presses and alcohol deliveries were 

measured. 

Extinction, cue-induced reinstatement, and reinitiation sessions 

Extinction sessions were conducted in the absence of reinforcement under 

FR4 (30 min) and PR (3 hr) sessions. Animals completed FR extinction sessions 5 

days per week and PR sessions 4 days per week. Offspring were exposed to two 

types of extinction sessions under each schedule. First, alcohol was replaced with 

water such that active lever presses activated cue lights and the animal was 

presented with water. Second, all cues and water were eliminated from extinction 

sessions. Rats needed to meet extinction criterion (<20% of baseline responding 

over 2 consecutive days) before reinstatement testing.  

Two cue-induced reinstatement tests were conducted in the absence of 

reinforcement. Rats were tested for reinstatement, wherein responding on the active 
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lever produced cue lights + dipper presentations in the presence or absence of 

alcohol odor. Order of reinstatement tests were counterbalanced. Between tests, 

rats underwent at least one week of extinction sessions to ensure that the extinction 

criteria were met. The number of active and inactive lever presses and alcohol 

deliveries were measured where appropriate. 

Statistical Analysis 

 Sessions to acquire water, food, and alcohol were analyzed using between 

groups analysis of variance with Sex and Sire as between groups factors. Active 

lever presses and alcohol deliveries during self-administration were analyzed using 

a three-way mixed design analysis of variance with Sex and Sire as the between 

groups factor and Session or Week as the repeated measure factor when 

appropriate. Effect sizes are reported as partial eta squared ( 𝜂𝑝
2). Tukey post hoc 

tests were used to follow up on significant interactions. Statistical analyses were 

performed using SAS software 9.4 (SAS Institute, Cary, NC) with statistical 

significance defined as p<0.05. Data are presented as mean ± SEM. 

Results 
Alcohol self-administration 

Active lever presses during alcohol acquisition for males and females are 

shown in Figure 3.1. There was a significant main effect of Day, F(39, 975)= 6.777, 

p<0.001, 𝜂𝑝
2 = .21, and significant interactions of Day X Sex, F(39, 975)= 2.970, 

p<0.001, 𝜂𝑝
2 = .11, and Day X Sire X Sex, F(39, 975)= 2.254, p<0.001, 𝜂𝑝

2 = .08. To 

determine the loci of sire differences, we averaged daily active lever presses into 

weekly blocks. Tukey post hoc analyses within each of these weekly blocks showed 
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that A-sired males (Panel B) pressed the active lever less than C-sired males during 

weeks 2-3 (p’s<0.05). A-sired females (Panel D) pressed the active lever less than 

C-sired females during weeks 4-7 (p’s<0.05).  

 

FIGURE 3.1. ALCOHOL RESPONDING DURING ACQUISITION OF ALCOHOL SELF-ADMINISTRATION 

 

Fig 3.1. Active lever presses for control- (C-sired; open circles) and alcohol-sired (A-

sired; filled circles) offspring during acquisition of alcohol self-administration under a 

fixed ratio 1 (FR1) schedule of reinforcement. Active lever presses are presented as 

mean (±SEM) for males (A) and females (C) for each day. Daily active lever presses 

by week are presented as mean (±SEM) for males (B) and females (D). An asterisk 

(*) represents a significant difference between A and C-sired offspring (p<0.05). 

 

Alcohol deliveries during acquisition are shown in Figure 3.2. There was a 

significant main effect of Day, F(39, 975)= 4.191, p<0.001, 𝜂𝑝
2 = .14, and significant 

interactions of Day X Sire, F(39, 975)= 1.542, p=.019, 𝜂𝑝
2 = .06, Day X Sex, F(39, 
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975)= 3.557, p<0.001, 𝜂𝑝
2 = .13, Day X Sire X Sex, F(39, 975)= 1.977, p<0.001, 𝜂𝑝

2 =

.07. Tukey post hoc analyses within the weekly time blocks revealed that A-sired 

males (Panel B) earned fewer alcohol deliveries compared to C-sired males during 

weeks 2 and 3 (p’s < 0.05). A-sired females (Panel D) earned fewer alcohol 

deliveries compared to C-sired females during weeks 4-7 (p’s<0.05). Sessions to 

reach acquisition criteria for water, food, and alcohol did not significantly differ by 

Sex or Sire group (p’s>0.05; Table 3.1). 

FIGURE 3.2. ALCOHOL DELIVERIES DURING ACQUISITION OF ALCOHOL SELF-
ADMINISTRATION 

 

Fig 3.2. Alcohol deliveries for control- (C-sired; open circles) and alcohol-sired (A-

sired; filled circles) offspring during acquisition of alcohol self-administration under 

a fixed ratio 1 (FR1) schedule of reinforcement. Alcohol deliveries are presented as 

mean (±SEM) for males (A) and females (C) for each day. Daily alcohol deliveries 

by week are presented as mean (±SEM) for males (B) and females (D). An 

asterisk (*) represents a significant difference between A- and C-sired offspring 

(p<0.05). 



59 
 

TABLE 3.1. SESSIONS TO REACH ACQUISITION CRITERIA FOR OPERANT SELF-
ADMINISTRATION 

 
 

Active lever presses and alcohol deliveries during maintenance are shown in 

Figure 3.3. For active lever presses, there was a significant main effect of Day, F(19, 

475)= 2.478, p<0.001, 𝜂𝑝
2 = .09, indicating that animals pressed the active lever more 

as the schedule of reinforcement increased from FR2 to FR4. For alcohol deliveries, 

there was a significant main effect of Day, F(19, 475)= 6.394, p<0.001, 𝜂𝑝
2 = .20, 

indicating that alcohol deliveries steadily decreased as the schedule of 

reinforcement increased from FR2 to FR4. There were no significant main effects of 

Sire or Sex, or interactions. No significant differences were found in inactive lever 

presses during acquisition or maintenance sessions (p>0.05; data not shown). 

 

 

 

 

 

 

 

 

 

 

  Sessions to acquisition (Mean  ± SEM) 
Sex Group Dipper training Food training Alcohol training 

Male C-sired 7.3 ±4.4 13.4 ± 4.3 9.9 ± 2.8 
 A-sired 6.9 ±2.8 16.8 ± 2.9 7.7 ± 2.5 
Female C-sired 6.2 ±3.7 17.2 ± 3.8 6.4 ± 2.5 
 A-sired 5.3 ±3.1 14.5 ± 2.1 6.9 ± 2.4 
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FIGURE 3.3. ALCOHOL SELF-ADMINISTRATION DURING MAINTENANCE SESSIONS 

 
 

Fig 3.3. Alcohol deliveries for control- (C-sired; open circles) and alcohol-sired (A-

sired; filled circles) offspring during maintenance of alcohol self-administration under 

fixed ratios 2 and 4 (FR2 and FR4, respectively) schedules of reinforcement. Active 

lever presses are presented as mean (±SEM) for males (A) and females (C) for 

each day. Daily alcohol deliveries by week are presented as mean (±SEM) for 

males (B) and females (D).  

 

Active lever presses and alcohol deliveries during progressive ratio tests are 

shown in Fig 3.4. For active lever presses, there were significant main effects of 

Sire, F(1, 25)= 4.025, p=.041, 𝜂𝑝
2 = .14, Day, F(3, 75)= 29.092, p<0.001, 𝜂𝑝

2 = .58, 

and a significant Day X Concentration interaction, F(3, 75)= 2.951, p=.038, 𝜂𝑝
2 = .11. 

Overall, alcohol-sired rats of both sexes (Panels A & C) pressed the active lever less 

than control-sired animals. Active lever presses decreased as a function of day; 
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however, this decrease was slower when animals were responding for 10% 

compared to 5% alcohol. Comparable results were found for alcohol deliveries. 

There were significant main effects of Sire, F(1, 25)= 6.02, p=.021, 𝜂𝑝
2 = .19, Day, 

F(3, 75)= 35.37, p<0.001, 𝜂𝑝
2 = .59, and a significant Day X Concentration 

interaction, F(3, 75)= 2.81, p=.045, 𝜂𝑝
2 = .10. Alcohol-sired rats of both sexes (Panels 

B & D) received fewer alcohol deliveries relative to control-sired rats. In addition, 

alcohol deliveries decreased as a function of day, but this decrease was slower 

when animals were responding for 10% compared to 5% alcohol. No significant 

differences were found in inactive lever presses or final ratio completed during 

progressive ratio tests (data not shown). 
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FIGURE 3.4. ALCOHOL SELF-ADMINISTRATION DURING PROGRESSIVE RATIO TESTS 

 

Fig 3.4. Active lever presses and alcohol deliveries for control (C-sired; open 

circles) and alcohol-sired (A-sired; filled circles) offspring under a progressive ratio 

schedule of reinforcement. Active lever presses are presented as mean (±SEM) for 

males (A) and females (C). Alcohol deliveries are presented as mean (± SEM) for 

males (B) and females (D). An asterisk (*) represents a significant difference 

between control and alcohol-sired offspring on both behaviors (p’s<0.05). 

 

Active lever presses during extinction training under both FR and PR 

schedules are shown in Figure 3.5. There was a significant main effect of Sire, F(1, 

25) = 4.66, p=.041, 𝜂𝑝
2 = .16, Sex, F(1, 25) = 8.51, p=.007, 𝜂𝑝

2 = .25, and Day F(14, 

350) = 8.68, p<.001, 𝜂𝑝
2 = .26. A-sired offspring had fewer active lever presses during 

extinction training relative to C-sired offspring (Panels A & C). Females pressed the 

active lever more than males during FR extinction training. Active lever presses 

decreased over FR sessions with lowest levels seen during the last week of FR 
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sessions when cues and water were not present in the operant chamber. For PR 

extinction sessions (Panels B & D), there was a significant main effect of Day, F(15, 

375) = 11.99, p<0.001, 𝜂𝑝
2 = .02, and Day X Sire, F(15, 375) = 2.51, p=0.001, 𝜂𝑝

2 =

.09, Day X Sex interactions, F(15, 375) = 1.70, p=.049, 𝜂𝑝
2 = .06. Overall, active lever 

presses decreased over PR sessions with lowest levels seen during the last week of 

PR session when cues and water were not present in the operant chamber. A-sired 

offspring had lower active lever presses during PR extinction sessions 1-4 and 10-12 

relative to C-sired offspring (p’s<0.05). Female rats had more active lever presses 

relative to males during PR extinction sessions 6, 8, and 13 (p’s<0.05). No 

significant differences were found in inactive lever presses during extinction 

sessions (data not shown). 

FIGURE 3.5. EXTINCTION TRAINING SESSIONS 

 
Fig 3.5. Active lever presses in control-sired (C-sired; open circles) and alcohol-

sired (A-sired; filled circles) offspring during extinction sessions. Active lever 
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presses under fixed ratio (FR; 5 days per week) extinction sessions are presented 

as mean (±SEM) for males (A) and females (C). Active lever presses under a 

progressive ratio schedule of reinforcement (PR; 4 days per week) are presented 

as mean (± SEM) for males (B) and females (D). An asterisk (*) represents a 

significant difference between control and alcohol-sired offspring on both sexes 

(p’s<0.05). 

 

Active lever presses during cue-induced reinstatement sessions are shown in 

Figure 3.6. During reinstatement sessions, there were significant main effects of 

Sire, F(1, 25) = 8.90, p =.006, 𝜂𝑝
2 = .26, Sex, F(1, 25) = 11.45, p =.002, 𝜂𝑝

2 = .31, 

Session, F(2, 50) = 7.63, p =.001, 𝜂𝑝
2 = .23 and a Session X Sire interaction, F(2, 50) 

= 4.95, p =.011, 𝜂𝑝
2 = .17. A-sired offspring had fewer active lever presses during 

cue-induced reinstatment sessions relative to C-sired offspring. Females had greater 

active lever presses during cue-induced reinstatment sessions relative to males. 

Both reinstatment sessions (cues only and cues + alcohol odor) increased active 

lever presses compared to extinction responding, but sire group moderated this 

effect. Specficailly, A-sired offspring had lower active lever presses when alcohol 

odor was present during the reinstatment session ( p<0.001; Panels A & B). No 

significant differences were found in inactive lever presses during reinstatment or 

reinitiation sessions (data not shown). 
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FIGURE 3.6. CUE-INDUCED REINSTATEMENT SESSIONS 

 
 

Fig 3.6. Active lever presses for control-sired (C-sired; open bars/circles) and 

alcohol-sired (A-sired; filled bars/circles) offspring during reinstatement sessions. 

Active lever presses during reinstatement sessions are presented as mean (±SEM) 

for males (A) and females (B). *** represents a significant difference between 

control and alcohol-sired offspring in both sexes (p’s<0.001). 

 

Active lever presses and alcohol deliveries during reinitiation sessions are 

shown in Figure 3.7. For active lever presses during reinitation sessions, there were 

significant main effects of Sire, F(1, 25) = 4.98, p=.035, 𝜂𝑝
2 = .17 and Day, F(4, 100) 

= 5.79, p<.001, 𝜂𝑝
2 = .19. A-sired offspring made fewer active lever presses relative 

to C-sired offspring (Panels B & D). Additionally, animals made more active lever 

presses during the sessions 4 and 5 compared to the first session. For alcohol 

deliveries during reinitiation sessions, there were significant main effects of Sire, 

F(1, 25) = 4.94, p=.036, 𝜂𝑝
2 = .16 and Day, F(4, 100) = 5.23, p<.001, 𝜂𝑝

2 = .17., and 

a Sex X Day interaction, F(4, 100) = 2.71, p=.034, 𝜂𝑝
2 = .098. A-sired offspring had 

fewer alcohol delivers relative to C-sired offspring. Tukey post hoc tests showed 
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that there were greater alcohol deliveries on day 4 compared to days 2 (p<.05) and 

3 (p<.001) in male but not female rats. 

FIGURE 3.7. ALCOHOL RESPONDING DURING REINITIATION SESSIONS 

 

Fig 3.7. Active lever presses for control-sired (C-sired; open bars/circles) and 

alcohol-sired (A-sired; filled bars/circles) offspring during reinitiation sessions. 

Active lever presses during reinstatement sessions are presented as mean (±SEM) 

for males (A) and females (C). Alcohol deliveries for alcohol during reinitiation 

sessions under fixed ratio (FR4) schedule of reinforcement (PR) are presented as 

mean ( ±  SEM) for males (B) and females (D). An asterisk (*) represents a 

significant difference between control and alcohol-sired offspring in both sexes 

(p’s<0.05). 

Discussion 
The results of the present study demonstrate that paternal alcohol exposure 

confers an alcohol-resistant phenotype during acquisition of operant alcohol self-

administration. Specifically, we observe that A-sired offspring pressed the active 

lever less and received fewer alcohol deliveries compared to C-sired offspring. This 
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phenotype is observed in both male and female A-sired offspring in a time-

dependent manner. That is, differences between the sire groups appear earlier, but 

last for a shorter duration for males relative to females for which differences between 

the sire groups are seen later and last longer. No differences are seen in lever 

pressing for food or water. During extinction training, A-sired offspring press the 

active lever less during FR and PR extinction training relative to C-sired offspring; 

however, persistence in responding is still evident in both sire groups until cues are 

eliminated from extinction sessions. A-sired offspring have blunted cue-induced 

reinstatement, specifically during sessions when alcohol odor is present. During 

reinitiation sessions, A-sired offspring have lower alcohol responding relative to C-

sired offspring. To our knowledge, this is the first study to show that chronic paternal 

alcohol has a protective effect on various aspects of the addiction cycle as modeled 

in operant self-administration. Importantly, by employing an operant procedure, 

these results provide support for paternal alcohol exposure causing a diminution of 

the reinforcing effects of alcohol, not merely consumption, that do not reflect 

impaired learning or performance. 

Rodent studies have found intergenerational consequences of paternal 

alcohol exposure. Studies in mice and rats show several developmental 

abnormalities in A-sired offspring, including lower body and organ weights (Bielawski 

and Abel, 1997; Bielawski et al., 2002). Paternal alcohol exposure results in deficits 

within affective (Kim et al., 2014; Liang et al., 2014) and cognitive domains (Wozniak 

et al., 1991). Sensitivity to alcohol is also altered in A-sired offspring. In C57/BL6J 

mice, A-sired male offspring display greater alcohol-induced anxiolysis and 
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locomotor stimulation, as well as a blunted response to alcohol-induced impairments 

in motor coordination (Finegersh and Homanics, 2014). In two-bottle choice 

procedures, A-sired male offspring display lower preference for low alcohol 

concentrations and consume less of the moderate concentrations (Finegersh and 

Homanics, 2014; Rompala et al., 2017). In CD1 mice, A-sired male offspring exhibit 

greater place preference for a low dose of alcohol, while place aversion is seen at a 

higher dose that induced a preference in C-sired offspring (Ceccanti et al., 2016). 

Our results corroborate and extend these findings of altered sensitivity to the 

rewarding effects of alcohol by showing that male and female offspring self-

administered less alcohol during the acquisition phase of self-administration. 

Importantly, it is unlikely that paternal alcohol-induced learning and memory 

impairments affected self-administration as the number of sessions to acquire dipper 

training, food training, and alcohol training were equivalent in both sire groups. Thus, 

the data from the current study and past preclinical work support the hypothesis that 

chronic paternal alcohol exposure confers a protective effect against the 

development of addiction-like behaviors for alcohol in offspring.  

Paternal alcohol exposure results in decreases in motivation for alcohol in 

offspring. Specifically, A-sired offspring have lower responding and alcohol deliveries 

during progressive ratio sessions. However, the sire groups do not differ on final 

ratios completed. While this is the first study to examine the effects of paternal 

alcohol exposure on motivation for alcohol in offspring, paternal cocaine exposure 

reduces motivation for cocaine selectively in male, but not female, offspring (Le et 

al., 2017; Vassoler et al., 2013). Interestingly, these behaviors are accompanied by 
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paternal cocaine-induced epigenetic marks in the medial prefrontal cortex that may 

be transmitted via the male germ line. Taken together, the present findings support 

the hypothesis that paternal drug exposure decreases motivation for the same drug 

in offspring. 

 In addition to decreases in motivation, A-sired offspring show blunted craving 

and relapse-like behavior as evidenced by both lower sensitivity to cue-induced 

reinstatement tests and lower alcohol responding during reinitation sessions. In 

contrast to previous paternal alcohol and cocaine studies, we do not observe robust 

sex differences except during acquisition training. This finding might reflect a lack of 

interaction between paternal alcohol exposure and hormonal influences on alcohol’s 

reinforcing effects at later stages of dependency. This is likely the case given that 

several weeks passed between sire’s last alcohol session and mating; whereas 

previous paternal alcohol studies show sex differences when sires are mated 

immediately after their last alcohol session. 

 Family history of alcohol use predicts susceptibility to AUD and sensitivity to 

alcohol in humans. Children of individuals with AUD show decreased subjective and 

behavioral responses (body sway) to alcohol (Pollock, 1992; Schuckit, 1985), which 

negatively correlate with AUD risk (Schuckit, 1994). In addition to subjective and 

behavioral findings, these children also showed alterations in physiological markers. 

For example, children of parents with AUD exhibit blunted cortisol levels after 

alcohol (Schuckit et al., 1987) and decreased p300 event-related potential amplitude 

(Begleiter et al., 1984; Costa et al., 2000), the latter of which also negatively 

associates with AUD risk (Hesselbrock et al., 2001). Paternal alcohol use also 
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results in several abnormalities in children related to increased risk of 

neuropsychiatric disorders (Knopik et al., 2005; Ozkaragoz et al., 1997; Pihl et al., 

1990) and cancers (Infante-Rivard and El-Zein, 2007), as well as decreased brain 

volume (Gilman et al., 2007) and cognitive impairments (Ervin et al., 1984). Thus, 

paternal alcohol use has far reaching intergenerational consequences.  

There is a lack of consilience between human and preclinical studies of family 

history of alcohol use and the propensity to drink alcohol in children. As mentioned 

above, a family history of alcohol use associates with an increased risk for AUD in 

human children; however, paternal alcohol exposure decreases the consumption 

and preference for and, as we show in the current study, reinforcing effects of 

alcohol. There are several factors that may be responsible for the lack of agreement. 

First, studies in humans have not focused on the unique contribution of paternal 

alcohol consumption to AUD risk in children. Second, the focus of the rodent studies 

was on chronic alcohol exposure in sires, whereas the amount of alcohol 

consumption is not considered in clinical criteria for AUD. Future preclinical studies 

that screen sires for behaviors reflective of AUD symptomology after chronic alcohol 

exposure may reconcile the differences between the human and animal data. A 

clear example is evident in paternal cocaine studies wherein cocaine-sires that 

displayed high motivation for cocaine in operant self-administration had offspring 

that self-administered more cocaine while a cocaine-resistance phenotype was seen 

in the offspring of cocaine-sires with low motivation (Le et al., 2017).  

While the current study has several strengths, including the use of both sexes 

and different alcohol concentrations during acquisition, there are some limitations. It 
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is possible that food restriction led to caloric compensation, wherein alcohol’s caloric 

value maintained operant responding. If so, A-sired animals, which weighed less 

than C-sired offspring, should have self-administered alcohol at equivalent or greater 

levels as C-sired offspring. Instead, A-sired offspring self-administered less alcohol. 

Therefore, it is likely that the reinforcing effects of alcohol and not its caloric value 

maintained operant responding. 

In summary, our findings demonstrate that paternal alcohol exposure 

decreased alcohol self-administration during acquisition. This effect is greater when 

animals respond for higher concentrations of alcohol (5%-10%) rather than for the 

lowest concentration (2.5%). Sex differences in paternal alcohol effects also occur 

during acquisition; sire group differences are seen at earlier sessions for males and 

at later sessions for females. Yet, by the end of the acquisition study, the sire groups 

respond for 5% alcohol at equivalent levels, suggesting that a long-term drinking 

history may eventually offset the protective effect of paternal alcohol exposure under 

low workload. A-sired offspring show less drug-seeking behaviors during FR and PR 

extinction sessions. In addition, A-sired offspring exhibit blunted and craving- and 

relapse-like behaviors during cue-induced reinstatement tests and reinitiation 

sessions. Taken together, our findings support the hypothesis that paternal alcohol 

exposure has long-lasting intergenerational consequences, including a protective 

effect on addiction-like behaviors in offspring that may occur as a result of 

transmitted epigenetic marks.  
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CHAPTER FOUR- DETERMINE WHETHER PATERNAL ALCOHOL EXPOSURE 
ALTERS GLOBAL AND Bdnf DNA METHYLATION LEVELS IN OFFSPRING 

 

Introduction 
Alcohol use disorder (AUD) is a highly debilitating disease and one of the 

most prevalent mental disorders in the United States (SAMHSA, 2015); therefore, 

identifying genetic and epigenetic factors that enhance vulnerability or promotoe 

resilience to AUD is a major initiative of NIAAA. It is well known that children of 

individuals with AUD may suffer from several impairments in physiological and 

psychosocial domains, as well as an increased risk of developing AUD. Children of 

individuals with AUD have decreased subjective responses and behavioral 

sensitivity to alcohol, sometimes occurring in a sex dependent manner (Schuckit, 

1985, 1994; Schuckit et al., 1987). In fact, twin and adoption studies consistenly find 

that the heritability rate of AUD is ~50% (Prescott and Kendler, 1999; Young-Wolff et 

al., 2011; Ystrom et al., 2011). Although several genetic variants associated with 

AUD have been identified (Reilly et al., 2017), only a few are consistently associated 

with AUD. While genome wide association studies (GWAS) have yielded promising 

candidate genes, the genetic variants identified thus far explain only a small 

percentage (~0.1%) of the heritable risk for developing AUD (Heath et al., 2011). 

Therefore, there is a critical need to identify biological mechanisms that underlie this 

“missing heritability”.  

There are several factors that might help explain missing AUD heritability. 

Individual risk of developing most psychiatric disorders is the product of gene X 

environment interactions (Meaney, 2017). The environmental component of the 

equation (e.g., cultural diversity, early life stress, environmental toxins) adds a 
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considerable degree of heterogeneity across AUD populations (Ober and Vercelli, 

2011). Additionally, AUD features complex symptomology comprised of multiple 

endophenotypes that further challenge efforts to identify the genetic contribution to 

AUD (Blanco-Gomez et al., 2016). Furthermore, there is growing evidence to 

suggest that a portion of the heritability of complex phenotypes may result from 

parental preconception experience.  

Some of the earliest evidence of intergenerational effects of environmental 

exposures stem from the 1944 to 1945 Dutch Famine Cohort. Men exposed to 

famine during prenatal development are more likely to have offspring with increased 

body weight and more body fat in adulthood (Painter et al., 2008; Veenendaal et al., 

2013). Similarly, the Överkalix study shows that the food supply of paternal 

grandparents negatively associates with longevity in grandchildren of both sexes 

(Bygren et al., 2001; Pembrey et al., 2006). In a similar vein, fathers that smoked 

prior to puberty are more likely to have sons with increased body mass index 

(Pembrey et al., 2006). Mothers and fathers exposed to traumatic stress episodes 

prior to conception have offspring with lower basal cortisol levels (Lehrner et al., 

2014; Yehuda et al., 2007). Children of mothers that survived the Holocaust have an 

increased risk of developing trauma and mood-related neuropsychiatric disorders 

(Yehuda et al., 2008).  Furthermore, sons of U.S. civil war prisoners of war are more 

likely to die (Costa et al., 2018). Maternal in utero effects and parental investment in 

child development top a long list of potential confounding variables, making a 

germline-specific mechanism difficult to identify. Thus, to rule out confounding 

variables, preclinical studies have focused on the intergenerational effects of 
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paternal environmental insults on a wide array of behavioral and biological measures 

in offspring. For instance, obese fathers confer deficits in glucose metabolism to 

offspring (Chen et al., 2016; Cropley et al., 2016; de Castro Barbosa et al., 2016). 

Numerous paternal chronic stress paradigms reshape physiological and behavioral 

stress vulnerability across generations (Dietz et al., 2011; Gapp et al., 2014; 

Rodgers et al., 2013; Short et al., 2016) and paternal cocaine exposure alters 

preference and hippocampal-dependent memory in male offspring (Le et al., 2017; 

Vassoler et al., 2013; Wimmer et al., 2017). 

There are dozens of studies published on the effects of paternal 

preconception alcohol exposure in rodents. Most of these studies show that paternal 

alcohol exposure has far reaching consequences affecting developmental, 

physiological, cognitive, and mood-related domains in offspring (Finegersh and 

Homanics, 2014; Finegersh et al., 2015b; Nieto and Kosten, 2019). Few studies 

have examined the effect of paternal alcohol exposure on offspring alcohol drinking 

or alcohol sensitivity. In mice, alcohol-sired (A-sired) male offspring have increased 

sensitivity to the anxiolytic effects of alcohol and decreased alcohol drinking 

preference and consumption (Finegersh and Homanics, 2014). In addition, A-sired 

male offspring show enhanced place preference at low alcohol doses (0.5 g/kg) and 

decreased place preference at a moderate dose (1.5 g/kg) (Ceccanti et al., 2016). In 

rats, sires exposed to alcohol for 8 days via intragastric delivery have offspring that 

consume more alcohol at postnatal day 14 (Hollander et al., 2019). Taken together, 

these studies suggest that paternal alcohol exposure prior to conception is a 

heritable factor capable of driving alcohol-related phenotypes in the next generation. 
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Epigenetic processes can alter gene expression without changing the DNA 

sequence, and thus, may contribute to the heritability of AUD. Environmental factors 

can induce epigenetic modifications leading to diverse phenotypes in organisms. 

These mechanisms are reversible and can be recapitulated in successive mitotic 

generation of cells (Maze and Nestler, 2011). DNA methylation is a well-studied 

epigenetic mechanism leading to an increase or decrease in gene transcription 

depending on genomic location. Promoter regions of genes contain a high density of 

CpG dinucleotides, termed CpG islands (Larsen et al., 1992). The addition of methyl 

groups to cytosines near transcription start sites can decrease gene transcription 

and prevent binding of transcription factors (Robertson and Wolffe, 2000a). Human 

and mouse studies find that alcohol alters DNA methylation levels of imprinted and 

non-imprinted loci in sperm of males and these changes can be passed on to non-

exposed offspring (Finegersh and Homanics, 2014; Knezovich and Ramsay, 2012; 

Liang et al., 2014; Ouko et al., 2009). For example, alcohol exposure results in lower 

methylation of the brain derived neurotrophic factor (Bdnf) gene in sire’s sperm and 

hypomethylation is maintained in the ventral tegmental area of A-sired male and 

female offspring (Finegersh and Homanics, 2014). It is important to note that 

although offspring of both sexes inherit lower Bdnf methylation levels, only A-sired 

males consume less alcohol, suggesting that the behavioral consequences of 

paternal alcohol exposure can vary by sex. Interestingly, paternal cocaine reduces 

cocaine-seeking behavior in male offspring and this phenotype is reversible with a 

BDNF-receptor TrkB antagonist. Given that BDNF is a well-studied regulatior of drug 

and alcohol intake, the Bdnf gene may be an attractive target for examining 
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mechanistic effects of paternal alcohol exposure on offspring neurobiology across 

reward-related brain regions. However, paternal alcohol studies have not ruled out 

the contribuition of global DNA methylation changes to phenotypes seen in offspring. 

The purpose of this study is to examine the effects of paternal alcohol 

exposure on global and Bdnf DNA methylation levels in adult offpspring. We 

hypothesize that alcohol exposure will reduce global and Bdnf DNA methylation 

levels in sperm, nucleus accumbens, and medial prefrontal cortex. We also 

postulate that this epigenetic profile will be maintained in male and female offspring. 

Methods 
Animals 

Sires and dams used in Aims 1 and 2 were used for DNA methylation studies. 

Male and female Wistar rats were purchased from Charles River (Wilmington, MA) 

and used to generate offspring used in this study. Sires (400-500 g) were pair-

housed prior to mating and sacrificed shortly after dams were confirmed pregnant. 

Dams were group-housed prior to mating and then sacrificed after offspring were 

weaned. Offspring were group-housed (females) or pair-housed (males) after 

weaning and throughout the course of the study. Most animals were housed in 

amber polysulfone cages and kept in a temperature and humidity-controlled 

vivarium. During chronic intermittent ethanol vapor exposure, males were placed in 

standard rat cages housed within vapor chambers. The vivarium was maintained on 

a 12:12 light/dark cycle (lights on at 7:00 AM). Animals had ad libitum access to food 

and water except during operant procedures described below. The Institutional 

Animal Care and Use Committee at the University of Houston approved the 
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experimental protocols in accordance with guidelines set forth in the “Guide for the 

Care and Use of Laboratory Animals 8th Edition”. Adult male rats were exposed to 

alcohol vapor (n = 10) or room air (n = 10) prior to being mated with alcohol naïve 

females (n = 20). A-sired (n = 10 males; n = 10 females) and C-sired offspring (n = 9 

males; n = 10 females) were used for DNA methylation studies. Importantly, these 

animals were a separate cohort of offspring than those used in the unconditioned 

behaviors and self-administration studies (Chapters 2 and 3, respectively). 

Solution and drug preparations 

Alcohol (ethyl alcohol, 190 proof, USP grade, Koptec, King of Prussia, PA) 

was used to expose sires to alcohol vapor. 

Paternal chronic intermittent ethanol exposure 

Male rats were made dependent by chronic, intermittent exposure to vapor 

alcohol as previously described in (Gilpin et al., 2008; Priddy et al., 2016). This 

model reliably induces alcohol dependence as indicated by the development of 

negative emotional-like state and somatic symptoms in withdrawal (Vendruscolo and 

Roberts, 2014). Standard rat cages were housed inside sealed and transparent 

plastic chambers into which vapor alcohol was intermittently pumped according to 

protocols described in (Gilpin et al., 2008). Males underwent cycles of 16 h (6pm) on 

and 8 h (10am) off for five consecutive days per week over six weeks. 

Nondependent rats were housed in similar conditions but exposed to room air. Blood 

samples were collected from the lateral saphenous vein to monitor blood alcohol 

levels and to adjust vapor exposure settings.  
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Breeding and offspring rearing 

Male rats were left undisturbed for 8 weeks after their last alcohol vapor or air 

session. At the end of this period, males were housed with alcohol naïve females. 

Female rats were examined daily for the presence of a mating plug. If the mating 

plug was present, males were removed from the breeding cages with sperm and 

brain regions extracted the following day. Litters from these mating pairs were culled 

to 10 pups (5 pups per sex). Pups were weighed at postnatal days [PD] 1, 4, 7, 10, 

35, and then weekly into adulthood. Offspring were sacrificed and tissue was 

collected when they reached adulthood ~PD 75. To control for possible litter effects, 

no more than 1 pup per sex per litter was used in DNA methylation studies. 

Tissue collection and DNA extraction 

Motile sperm was collected from sires and male offspring using the double 

swim up assay (Anway et al., 2005). Briefly, the cauda epididymis was dissected 

from the testes and placed in 1% bovine serum albumin. Longitudinal cuts were 

made along the cauda epididymis and it was placed with 1% bovine serum albumin 

in a 15 mL conical tube. The tissue was incubated at 37°C for 30 minutes. 

Supernatant containing sperm was collected and incubated again at 37°C for 10 

min. The top 1 mL of supernatant was collected and pelleted at 4°C at 4000 RPM for 

5 minutes. Motile sperm was resuspended in sperm lysis buffer with Proteinase K 

and incubated overnight at 50°C. DNA was extracted from motile sperm using a 

modified guanidine thiocyanate method (Griffin, 2013). DNA samples were 

immediately placed on dry ice and stored at -80°C until bisulfite treatment. 
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Medial prefrontal cortex and nucleus accumbens were collected from sires 

and offspring. After rats were anesthetized with isoflurane and decapitated, brain 

regions were dissected using a Rodent Brain Matrix (RBM-4000C). Brain regions 

were immediately placed on dry ice and stored at -80°C. DNA was extracted using 

the Gentra Puregene DNA isolation methods (Qiagen, Valencia, CA). 

DNA methylation 

 Global DNA methylation (5-methylcytosine quantification, 5mC) was 

assessed using MethylFlash Global DNA Methylation (5-mC) ELISA Easy kit 

(colorimetric) EpiGentek (Farmingdale, NY). DNA methylation levels within the Bdnf 

promoter region were determined using direct sequencing methods as reported 

previously (Hao et al., 2011; Kosten et al., 2014). Genomic DNA (300 ng) was 

treated with sodium bisulfite using the EZ-96 DNA Methylation Kit D5004 (Zymo 

Research, Irvine, CA) according to the manufacturer’s instructions. Bisulfite-treated 

DNA was amplified using a modified step-down method with annealing temperatures 

of 56, 53, 50, 47, and 44°C with the primers M-RATBDNF-4F (5’-

GGTAGAGGAGGTATTATATGATAGT-3’) and M-RATBDNF-4R (5’-

ATAACCCATATATACTCCTATTCTTCAACA-3’). Sequencing was performed at 

GENEWIZ, Inc. (South Plainfield, NJ) using both the forward and reverse primers 

used in the amplification of the Bdnf promoter. Trace files (.ab1) were analyzed 

using the Epigenetic Sequencing Methylation Analysis Software (Epigenomics AG; 

Berlin, Germany) version 3.2.1. Nucleotides were numbered relative to the exon IV A 

of the ATG translation start site. The rat Bdnf gene exon IV promoter region was 
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analyzed for predicted transcription factor binding sites using AliBaba2.1 

(http://www.gene-regulation.com/pub/programs/alibaba2/index.html). 

Statistical Analysis 

 DNA methylation data in sires were analyzed using Student’s t-tests (global 

methylation) and two-way mixed design analysis of variance with CpG sites 

considered a within subject factor and Treatment (alcohol vapor vs room air) as a 

between groups factor. In offspring, DNA methylation levels were analyzed using 

two (global methylation) or three-way mixed design analysis of variance with CpG 

sites, Sex, and Sire as the independent variables. Tukey post hoc tests were used to 

follow up on significant interactions. Effect sizes are reported as partial eta squared 

( 𝜂𝑝
2).  Statistical analyses were performed using SAS software 9.4 (SAS Institute, 

Cary, NC) with statistical significance defined as p<0.05. Data are presented as 

mean ± SEM. 

Results 
 Global DNA methylation levels in sires are depicted in Figure 4.1. Alcohol-

exposed sires had greater global methylation levels in sperm, t(15) = 2.310, p<0.05, 

Cohens’ d = 1.10, and lower levels in the nucleus accumbens, t(17) = -2.113, 

p<0.05, Cohen’s d = 0.98, relative to control sires. There was no difference in global 

DNA methylation levels between sire groups in the medial prefrontal cortex (p>0.05). 

 

 

 

http://www.gene-regulation.com/pub/programs/alibaba2/index.html
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FIGURE 4.1. GLOBAL DNA METHYLATION IN SIRES 

 
Fig 4.1. Global DNA methylation levels for control (open bars) and alcohol-treated 
(filled bars) sires. Percentage of Global DNA methylation is presented as mean 
(±SEM) within sperm, nucleus accumbens, and medial prefrontal cortex of sires. An 
asterisk (*) represents a significant difference between control and alcohol-treated 
sires (p<0.05). 
 

 Global DNA methylation levels in offspring are depicted in Figure 4.2. Global 

DNA methylation levels in sperm did not differ between A-sired and C-sired male 

offspring (Panel A; p>0.05). There were no significant main effects of Sire, Sex, or a 

Sire X Sex interaction in the nucleus accumbens (p’s>0.05). In the medial prefrontal 

cortex, there was a significant main effect of Sex, F(1, 30)= 7.077, p<0.05,  𝜂𝑝
2 =  .18, 

indicating that females (Panel B) had higher global DNA methylation levels relative 

to males, but no significant main effect of Sire or a Sire X Sex interaction (p’s>0.05). 
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FIGURE 4.2. GLOBAL DNA METHYLATION IN OFFSPRING 

 
Fig 4.2. Global DNA methylation levels for control- (C-sired; open bars) and alcohol-
sired (A-sired; filled bars) offspring. Percentage of Global DNA methylation are 
presented as mean ( ± SEM) within sperm, nucleus accumbens, and medial 
prefrontal cortex of male (A) and female offspring (B). 
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Bdnf DNA methylation levels in sires are depicted in Figure 4.3. In the 

nucleus accumbens, there were significant main effects of Sire, F(1, 17)= 3.011, 

p<0.05, 𝜂𝑝
2 =  .18, and CpG site F(11, 154) = 9.865, p<0.001, 𝜂𝑝

2 =  .41. Alcohol-

exposed sires had lower DNA methylation levels in the nucleus accumbens relative 

to air-exposed sires (Panel B). DNA methylation levels varied by CpG site, but there 

was no interaction with treatment (p>0.05). In the medial prefrontal cortex, there 

were significant main effects of Sire, F(1, 17)= 3.592, p<0.05, 𝜂𝑝
2 =  .20, and CpG 

site F(11, 154) = 9.806, p<0.001, 𝜂𝑝
2 =  .41. Alcohol-exposed sires had higher Bdnf 

DNA methylation levels in the medial prefrontal cortex compared to control sires 

(Panel D). DNA methylation levels varied by CpG site, but there was no interaction 

with treatment (p=0.126). In sire sperm, there was a significant main effect of CpG 

site, F(11, 154) = 17.44, p<0.001,  𝜂𝑝
2 =  .51., but not Sire or their interaction (p>0.05; 

data not shown). 
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FIGURE 4.3. BDNF DNA METHYLATION IN SIRES 

 

 
 

Fig 4.3. Bdnf DNA methylation levels for control- (open bars) and alcohol-treated 
(filled bars) sires. Percentage of DNA methylation at CpG sites are presented as 
mean (±SEM) within the nucleus accumbens (A) and medial prefrontal cortex (C) of 
sires. Percentage of methylation levels across CpG sites are presented as mean 
(±SEM) within the nucleus accumbens (B) and medial prefrontal cortex (D). An 
asterisk (*) represents a significant difference between control and alcohol-treated 
sires (p<0.05). ** represents a significant difference between control and alcohol-
treated sires (p<0.01) 

 

Bdnf DNA methylation levels in male and female offspring are depicted in 

Figure 4.4. In the nucleus accumbens of offspring there was a significant main effect 

of CpG site, F(11, 264)= 24.465, p<0.05, 𝜂𝑝
2 =  .50, and a CpG site X Sire X Sex 

interaction, F(11, 264) = 2.481, p<0.01, 𝜂𝑝
2 =  .09. Tukey post hoc tests showed that 

A-sired male offspring had lower methylation at CpG sites -11 and -62 (p<0.05) and 



85 
 

higher methylation levels at CpG site 43 (p<0.01; Panel A). A-sired females also had 

differential methylation patterns that varied by CpG sites. Specifically, A-sired 

females had lower methylation levels at CpG site -24 (p<0.05) and higher 

methylation levels at site 141 (p<0.05; Panel C). In the medial prefrontal cortex 

(Panels B & D), there was a significant main effect of CpG site, F(11, 286)= 14.860, 

p<0.001, 𝜂𝑝
2 =  .36, but not Sire or Sex or their interactions (p’s>0.05). In male 

offspring sperm, there was a significant main effect of CpG site, F(11, 198)= 15.261, 

p<0.001, 𝜂𝑝
2 =  .46 but not Sire or their interaction (p’s>0.05; data not shown). 

FIGURE 4.4. BDNF DNA METHYLATION IN OFFSPRING 

 
 

Fig 4.4. Bdnf DNA methylation levels for control- (C-sired; open bars) and alcohol-
sired (A-sired; filled bars) offspring. Percentage of DNA methylation at CpG sites are 
presented as mean (±SEM) within the nucleus accumbens of male (A) and female 
offspring (B). Percentage of DNA methylation at CpG sites are presented as mean 
(±SEM) within the medial prefrontal cortex of male (C) and female (D) offspring. An 
asterisk (*) represents a significant difference between C- and A-sired offspring 
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(p<0.05). ** indicates a significant difference between C- and A-sired offspring at 
p<0.01. 
 

Discussion 
The results of the present study demonstrate that paternal alcohol exposure 

prior to conception has long-lasting consequences, including the transmission of 

heritable epigenetic marks to offspring. Specifically, alcohol exposure decreases 

Bdnf DNA methylation levels in the nucleus accumbens but increases methylation 

levels in the medial prefrontal cortex of sires. Similarly, A-sired offspring of both 

sexes show differential methylation at specific CpG sites within the Bdnf promoter 

region. This is the first study to examine paternal alcohol-induced changes in global 

DNA methylation in offspring. Although alcohol exposure alters global DNA 

methylation levels in sperm and nucleus accumbens of sires, these changes are not 

maintained in the brains of offspring. Taken together, our results show that paternal 

alcohol exposure imparts locus-specific changes in DNA methylation levels in 

offspring. 

Altered BDNF signaling has been implicated in neuropsychiatric disorders, 

including alcoholism (Ghitza et al., 2010; Ron and Messing, 2013; Russo et al., 

2009). Preclinical studies support the notion that BDNF is implicated in a 

homeostatic pathway that influences the negative aspects of alcohol consumption 

(Ron and Messing, 2013). For example, studies using two bottle-choice and operant 

self-administration paradigms find that moderate alcohol consumption increases 

BDNF levels in the dorsal striatum of rodents (Jeanblanc et al., 2009; Logrip et al., 

2009; McGough et al., 2004). In addition, reducing BDNF levels using 

pharmacological or genetic approaches increases alcohol drinking behavior 
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(Jeanblanc et al., 2009; Jeanblanc et al., 2006; McGough et al., 2004); however, 

global increases in BDNF levels reduces alcohol intake (Jeanblanc et al., 2009; 

Jeanblanc et al., 2006; McGough et al., 2004). Similarly, downregulation of BDNF 

levels in the central or medial amygdala enhances alcohol preference (Pandey et al., 

2006). In a similar vein, selectively bred alcohol-preferring rats have reduced innate 

BDNF levels in the medial and central amygdala (Prakash et al., 2008), but 

increased levels in the ventral tegmental area and nucleus accumbens of relative to 

non-preferring rats (Raivio et al., 2014). Alcohol-preferring rats also have a blunted 

response to alcohol-induced increases in Bdnf signaling compared to non-preferring 

rats. Escalated alcohol intake to levels of intoxication in mice blunts alcohol-induced 

upregulation of BDNF levels in the dorsal striatum and medial prefrontal cortex 

(Logrip et al., 2009). Infusion of BDNF into the ventral tegmental area shifts alcohol 

place preference from a dopamine-dependent to a dopamine-independent behavior 

(Ting et al., 2013). Taken together, enhanced BDNF levels negatively regulate 

alcohol drinking behaviors in rodents (Darcq et al., 2015). 

Alcohol exposure results in long-lasting changes to Bdnf DNA methylation 

levels in the brain reward circuitry of sires, while differential methylation patterns are 

transmitted to offspring of both sexes. Specifically, alcohol-exposed sires display 

lower DNA Bdnf methylation levels in the nucleus accumbens and higher 

methylation levels in the medial prefrontal cortex. It is important to note that we did 

not find altered Bdnf methylation patterns in the sperm of alcohol-exposed sires or 

A-sired male offspring. However, Bdnf DNA methylation may also be recapitulated 

indirectly via germ line transmission of other epigenetic processes such as 
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chromatin modifications and non-coding RNA’s (Rompala and Homanics, 2019; 

Vassoler et al., 2013). Several of the CpG sites that have differential Bdnf DNA 

methylation levels in offspring encompass transcription factor binding regions that 

may influence Bdnf gene expression. For example, A-sired males compared to C-

sired males have altered methylation at CpG sites -11, 43, and 62; the latter CpG 

sites are in the Specificity protein 1 (Sp1) and Early growth response protein 1 

(Egr1) transcription factor binding sites (AliBaba2.1), respectfully. The Sp1 

transcription factor is involved in many cellular processes (e.g., cellular 

differentiation, cell growth, apoptosis, immune responses) and chromatin 

remodeling, specifically recruitment of histone acetyltransferases (Sun et al., 2009). 

Additionally, the Egr1 transcription factor is involved in brain development, neural 

plasticity and DNA methylation, specifically in DNA demethylation by recruiting the 

Ten-Eleven Translocation 1 protein (Sun et al., 2019). A-sired females compared to 

C-sired females also have altered Bdnf methylation patterns at CpG sites -24 and 

141 (AliBaba2.1), both are in Sp1 transcription factor binding sites. Given that 

altered methylation is observed at Sp1 binding sites in both A-sired male and female 

offspring, it is likely that differential Bdnf methylation patterns in combination with 

inherited histone modifications may contribute to altered Bdnf signaling. Indeed, 

previous work in mice shows that alcohol exposure in sires decreased Bdnf 

methylation in sperm (Finegersh and Homanics, 2014). Lower Bdnf methylation 

levels are recapitulated in the ventral tegmental area, a key dopamine-rich pathway 

involved in reward circuitry, but not the medial prefrontal cortex, of A-sired male and 

female offspring. Interestingly, this epigenetic profile associates with decreased 
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alcohol preference and consumption selectively in A-sired male offspring (Finegersh 

and Homanics, 2014). Similarly, epigenetic-driven intergenerational changes in 

BDNF signaling within reward circuitry have been noted in other paternal alcohol and 

cocaine studies (Ceccanti et al., 2016; Rompala et al., 2017; Vassoler et al., 2013).  

The method and duration of alcohol exposure in sires likely influence the site 

of Bdnf methylation levels in sires and offspring. Vapor vs oral administration of 

alcohol impart differential effects on BDNF signaling. Sires that consume alcohol in 

drinking water have offspring with higher BDNF protein levels in the prefrontal cortex 

(Ceccanti et al., 2016); whereas, no changes in prefrontal Bdnf mRNA expression or 

DNA methylation levels are observed in offspring alcohol vapor-exposed sires 

(Finegersh and Homanics, 2014). We also show a lack of Bdnf DNA methylation 

changes in the medial prefrontal cortex in offspring of alcohol vapor-exposed males. 

Indeed, behavioral consequences of paternal alcohol exposure in offspring differ 

depending on route of alcohol administration (Beeler et al., 2019). Future work is 

needed to further assess the influence of voluntary vs involuntary methods of 

paternal alcohol administration on epigenetic mechanisms.  

In summary, we find that paternal alcohol exposure results in aberrant Bdnf 

DNA methylation patterns in sires and offspring. Specifically, we observe that 

alcohol exposure results in higher levels Bdnf DNA methylation levels in the 

prefrontal cortex and lower methylation levels in the nucleus accumbens compared 

to control sires. In A-sired offspring, differential Bdnf DNA methylation patterns in the 

nucleus accumbens are also seen at certain CpG sites. Importantly, changes in Bdnf 

DNA methylation are not due to changes in global DNA methylation levels. Overall, 
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our work compliments and extends previous work by demonstrating that paternal 

alcohol exposure several weeks prior to conception has long-lasting epigenetic 

consequences in both male and female offspring. 
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CHAPTER FIVE- OVERALL CONCLUSIONS 

 

Conclusions 

 The heritability of AUD is ~50%, yet the genetic basis of the disease is still 

poorly understood. Findings from genome-wide association studies have been 

questioned due to lack of replication and technical limitations. Missing heritability of 

AUD can be explained, at least in part, by epigenetic processes. Epigenetic 

mechanisms are heritable molecular factors that influence gene expression without 

changing the underlying DNA sequence. Ancestral environment can impact future 

generations through aberrant epigenetic mechanisms. In particular, paternal 

exposure to environmental insults in periods prior to conception (e.g., drug, stress) 

can have long-lasting behavioral and physiological changes in offspring that may be 

mediated by transmission of epigenetic factors. Whether paternal alcohol exposure 

alters behavioral responsivity to alcohol is an understudied area.  

The purpose of this dissertation project is to use outbred rats to determine 

whether paternal alcohol exposure impacts offspring sensitivity to the unconditioned 

effects of alcohol, operant alcohol self-administration, and global and Bdnf DNA 

methylation levels in sperm and brain tissue. 

Aim 1: Determine whether paternal alcohol exposure alters sensitivity to the 

unconditioned effects of alcohol in offspring. (Chapter 2) 

 We hypothesize that male A-sired offspring will show altered sensitivity to the 

unconditioned effects of alcohol. Specifically, A-sired male offspring, but not female, 

will exhibit greater alcohol-induced general locomotor activity on the open field test 
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compared to C-sired male offspring. In addition, A-sired male offspring will show 

greater alcohol-induced anxiolysis on the open field test and elevated plus maze 

relative to C-sired male offspring. Lastly, A-sired male offspring will be less sensitive 

to the alcohol-induced motor coordination impairments compared to C-sired male 

offspring. 

 The open field test provides measures of general locomotor activity and 

anxiety-like behavior. A-sired offspring do not differ from C-sired offspring on general 

locomotor activity across the 60 min test. While alcohol treatment lowers anxiety-like 

behavior as indicated by increases in time spent in the center of the open field area 

selectively in A-sired male offspring, A- and C-sired offspring did not differ in their 

responses to alcohol. These results agree with a previous study in mice showing 

that A-sired and C-sired offspring do not differ on open field behaviors (Finegersh 

and Homanics, 2014). Thus, paternal alcohol does not alter sensitivity to alcohol’s 

effects on general locomotor activity or anxiety-like behavior measured on the open 

field test. 

 The elevated plus maze provides a widely-used and valid measure of anxiety-

like behavior. We find that A-sired males have a more anxiolytic phenotype indicated 

by greater percentages of time spent in the open arms and lower percentage of time 

spent in the closed arms of the maze; however, contrary to our hypothesis, A-sired 

offspring do not differ from C-sired offspring after alcohol treatment. These results 

are contrary to previous studies in mice showing that A-sired male offspring are 

more sensitive to the anxiolytic-effects of alcohol compared to C-sired males 

(Finegersh and Homanics, 2014; Rompala et al., 2017). Previous work in mice used 
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genetically similar mouse strains, thus, a lack of agreement between studies may 

reflect differences in species and genetic background. Nonetheless, paternal alcohol 

does not alter sensitivity to alcohol’s effects on anxiety-like behavior indexed on the 

elevated plus maze in rats. 

 Rotarod performance is an index of motor coordination in rodents. A-sired 

offspring do not differ from C-sired offspring on the training trials indicating intact 

procedural memory. On the test day, A-sired males given alcohol are less sensitive 

to alcohol’s motor coordination impairing effects relative to alcohol-treated C-sired 

males. Conversely, A-sired female offspring are more sensitive to alcohol-induced 

impairments in motor coordination. These results corroborate and extend previous 

work using mice (Finegersh and Homanics, 2014). However, paternal alcohol effects 

on rotarod performance are not consistent across studies and depend on the genetic 

profile of mice (Rompala et al., 2017). 

 Sensitivity to alcohol is a candidate endophenotype of AUD. Generally, 

individuals with a family history of alcohol misuse display greater sensitivity to the 

stimulating/rewarding effects and blunted sensitivity to the sedative effects of alcohol 

at peak blood alcohol levels. Interestingly, this profile increases the risk of 

developing an AUD. In Aim 1, we show robust effects of paternal alcohol exposure 

specifically on alcohol-induced impairments in motor coordination which occur in a 

sex-dependent manner. Thus, these results likely reflect complex interactions 

between paternal alcohol exposure, alcohol treatment, and 

organizational/activational effects of sex hormones. 
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Aim 2: Determine whether paternal alcohol exposure alters operant alcohol self-

administration. (Chapter 3) 

 We hypothesize that A-sired male offspring will show an alcohol-resistant 

phenotype on alcohol self-administration. Specifically, A-sired males will acquire 

alcohol self-administration slower than C-sired males. A-sired males will also show 

lower motivation during progressive ratio tests. Finally, A-sired males will exhibit less 

alcohol craving- and relapse-like behaviors as measured during extinction training, 

cue-induced reinstatement tests, and reinitiation sessions. 

 Acquisition of operant self-administration measures acute drug/alcohol taking 

behaviors and represent a transition from sporadic to stable levels of responding. A-

sired offspring do not differ in the number of sessions to acquire food, water, or 

alcohol self-administration. Interestingly, during the alcohol training period, A-sired 

offspring have lower responding which varies by sex and time. A-sired male 

offspring exhibit lower responding during initial sessions while A-sired female 

offspring have lower responding during later sessions. By the end of the FR1 training 

sessions, the sire groups do not differ in level of alcohol responding. Alcohol 

responding does not differ when the schedule of reinforcement increases to FR2 and 

FR4.  

 Progressive tests provide a measure of an animal’s motivation to obtain a 

reinforcer. During PR tests, the response requirement gradually increases for an 

animal to obtain a single alcohol reinforcer. A-sired male and female offspring show 

lower motivation for 5% and 10% alcohol compared to C-sired offspring. Extinction 

training is an index of craving-like behavior and is measured by an animal’s 
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persistence of responding in the absence of the reinforcer. When alcohol is replaced 

with water, A-sired offspring have lower active lever presses compared to C-sired 

offspring. Yet, both sire groups do no reach extinction criteria until all cues are 

eliminated. 

 Cue-induced reinstatement and reinitiation sessions are measures of relapse-

like behaviors. Two reinstatement tests are conducted in the absence of the 

reinforcer wherein a press on the active lever will activate light and dipper cues. 

Alcohol odor is present in the operant chamber in one reinstatement session; the 

order of reinstatement tests is counterbalanced. During cue-induced reinstatement 

sessions, A-sired offspring of both sexes have fewer active lever presses relative to 

C-sired offspring, specifically when alcohol odor is present in the operant chamber. 

When animals are given access to 5% alcohol for one week during reinitation 

sessions, A-sired offspring show lower alcohol responding relative to C-sired 

offspring. 

 Operant self-administration is the gold standard in addiction research and is 

used to measure various aspects of the addiction cycle. While environmental and 

genetic insults can alter self-administration behaviors, the effects of paternal alcohol 

exposure on the propensity to develop addiction-like behaviors is an understudied 

area of research. In Aim 2, we provide robust evidence that paternal alcohol 

exposure contributes to an alcohol-resistant phenotype in offspring. Although, sex 

moderates paternal alcohol effects during acquisition training, we do not observe a 

robust moderating role of sex on self-administration behaviors as previously shown 

for two-bottle choice tests (Finegersh and Homanics, 2014) and paternal cocaine 
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studies (Vassoler et al., 2013). These results are in line with previous work showing 

that hormonal influences are more influential during acquisition of alcohol self-

administration and are less influential after stable responding is established (Becker 

and Koob, 2016). 

 

Aim 3: Determine whether paternal alcohol exposure alters DNA methylation levels 

in offspring. (Chapter 4) 

 We hypothesize that paternal alcohol exposure will alter global and Bdnf DNA 

methylation levels in offspring. Specifically, alcohol exposure in sires will increase 

global and Bdnf DNA methylation levels in sperm, nucleus accumbens, and medial 

prefrontal cortex. Additionally, the same epigenetic profile will be maintained in 

sperm and brain regions of offspring. 

 We measure global methylation using ELISA kits and Bdnf DNA methylation 

using bisulfite-treated DNA and direct sequencing methods. Alcohol-treated males 

have greater global methylation levels in sperm but lower methylation levels in the 

nucleus accumbens relative to control males. However, paternal alcohol exposure 

does not alter global methylation levels in sperm, nucleus accumbens, or medial 

prefrontal cortex in offspring. Additionally, A-sired males have lower Bdnf 

methylation levels in the nucleus accumbens and greater methylation levels in the 

medial prefrontal cortex. There is no difference in Bdnf methylation levels in sperm. 

A-sired offspring also show aberrant Bdnf DNA methylation patterns in the nucleus 

accumbens that varied by CpG site and sex. A-sired female offspring have higher 

Bdnf methylation levels at CpG site 141 and lower methylation levels at CpG site -24 
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compared to C-sired males. A-sired male offspring have greater Bdnf methylation 

levels at CpG site 43 and higher methylation levels at CpG sites -11 and 62 

compared to C-sired male offspring. No differences in Bdnf DNA methylation levels 

are seen in the medial prefrontal cortex or sperm of offspring. 

 Epigenetic mechanisms are likely involved in the phenotypes observed in this 

study. DNA methylation in the promoter region of a gene often suppresses gene 

activity. However, paternal alcohol exposure does not alter global DNA methylation 

levels in offspring, indicating that paternal alcohol use results in locus-specific 

changes in DNA methylation levels. Given that BDNF signaling is a well-established 

regulator of drug and alcohol-seeking behavior in rodents, it is pertinent to assess 

Bdnf DNA methylation levels in sperm and reward-related circuitry. In Aim 3, we 

provide evidence that paternal alcohol exposure alters Bdnf DNA methylation levels 

in offspring. Several of the CpG sites that have differential Bdnf DNA methylation 

levels encompass transcription factor binding regions that may influence Bdnf gene 

expression. This finding supports and extends previous paternal studies implicating 

altered BDNF activity in offspring’s sensitivity to cocaine and alcohol (Finegersh and 

Homanics, 2014; Vassoler et al., 2013). Importantly, sires are mated 8 weeks after 

their last alcohol or control session; thus, paternal alcohol exposure has long-lasting 

effects on Bdnf DNA methylation levels that are transmitted to offspring. 

Limitations 
 

This dissertation project has many strengths, including the use of an outbred 

rat strain, inclusion of both sexes, a wide range of operant self-administration 

behavior, etc.; however, there are some limitations. In our study, blood alcohol levels 
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of sires are kept at a range previously shown to induce dependence, but sires are 

not screened for behaviors that reflect AUD symptomology in humans. As an 

example, motivation for alcohol in sires in unclear. It is possible that paternal alcohol 

effects in offspring may differ depending on sire’s motivation for alcohol. Indeed, 

paternal cocaine studies show that cocaine sires with high motivation for cocaine 

have offspring that self-administer greater cocaine than offspring of sires with low 

motivation for cocaine (Le et al., 2017). Although, we did not assess for changes in 

metabolism between sire groups, previous work in mice demonstrates that 

pharmacokinetic differences are unlikely (Finegersh and Homanics, 2014). In a 

similar vein, it is unclear whether A-sired offspring are responding for alcohol at 

pharmacologically relevant levels during self-administration or if taste of alcohol 

influences self-administration levels. However, these may be marginal 

considerations given that A-sired offspring find alcohol reinforcing and by the end of 

the acquisition training the sire groups are responding at equivalent levels. 

Additionally, we did not measure Bdnf mRNA or protein levels; thus, it is unclear 

whether changes in Bdnf DNA methylation levels alter gene activity. Lastly, we did 

not monitor estrus cycle, so it is possible that some paternal effects are masked by 

sex hormones. 

Future Directions 
 

 There is a lack of consilience between human and preclinical work 

investigating paternal alcohol effects. While children of alcoholics have an increased 

risk of developing an AUD, paternal alcohol exposure in rodents imparts an alcohol-

resistant phenotype. As mentioned above, screening rodent sires for behaviors that 
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reflect AUD symptomology in humans may reconcile these differences. The extent to 

which maternal behavior is influenced by paternal environment should also be 

further examined. In addition, novel gene editing tools that can apply locus-specific 

CpG methylation in the germline will help to determine the validity of paternal alcohol 

effects on the sperm epigenome. It is also important that future work in this area 

examine paternal alcohol effects on other epigenetic mechanisms. Sperm RNA may 

have a causal role in paternal effects. Paternal diet and stress studies find that 

injecting embryos with affected paternal sperm RNA can recapitulate phenotypes 

seen in offspring. 

Final Comments 
 

 This dissertation project examines the effects of paternal alcohol exposure. 

We show that paternal alcohol exposure alters sensitivity to alcohol-induced 

impairments in motor coordination in offspring. Furthermore, paternal alcohol 

exposure induces an alcohol-resistant phenotype on alcohol self-administration 

behaviors that model various aspects of the addiction cycle. Lastly, paternal alcohol 

exposure alters Bdnf methylation levels in offspring of both sexes. Overall, this 

dissertation project concludes that paternal alcohol exposure imparts long-lasting 

behavioral and epigenetic consequences in rat offspring. 
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