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ABSTRACT ' ‘

In this paper the Gel”“fand representation of a commutative Banach
algebra is developed, The fundamental results are as follows. 1) Any
complex commutative Banach algebra A is homomorphic to an algebra of
continuous complex vélued functions on a locally compact Hausdorff space.
1§63 A has an identity then fhe space is compact and in any case the.func-
tioné vanish at infinity, The representation is norm decreasing. 2) If
A i; semi-siﬁple the representation is an isomorphism, 3) If A is such
tha; |1x2}]] = ||x||? then the Gel“fand representation of A is isometric
to A.GAFiﬁéliy the Gel”fand represcntation is used to prove thc Banach-
Stone Theofem and the essential uniqueness of the Stone-CechAcomﬁacéi-_
fication, and the Gel“fand representation of an element of Ll(-w,W) is

£

seen to be the Fourier transform of that element,
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CHAPTER 1

INTRODUCTION

In 1941, I, M, Gel“fand published his result that every con-
mutative Banach algebra with identity can be represented as an
algebra of complex valued functions on a compact Hausdorff space,
These results were later extended to the case where an identity is
not present, Some of Gel-“fand's results can be extended to the
honccmmutative case, but the representation cannot be obtained
because the quotient of a ring modulo a maximal ideal is not ncces-
sarily a field._ This paper develops the representation of a com- .
mutative Banach algebra,

A Banach algebra is a complex Banach spaée in which a multipli-
cation is defined such that the Banach space is also an algebfa in
which scalars are complex numbers, The additional requireﬁent is
that the norm of a product must be less than or equal to the pro-
duct of the norms, In any Banach algebra multiplication is contin-
uous, |

The key to the Gel-“fand representation is the fact that, in any
commutative Banach glgebra, every homomorphism of the algebra.to the
complex numbers is continuous and the norm of the homomorphism.is
less than or equal to one, Furthermore, there is a one to one corres-
pondence between the regular maximai ideals of the algebra and the homo-~
morphisms onto the ‘complex numbers, These results are established in
Section 7 of Chapter II. |

Sections 1 through 6 of Chapter II are devoted to establishing



the preliminary results needed for Section 7, Sections 2 through

5 establish the algebraic results needed to show that the quotient

of a commutative Banach algebra umolulo a regular maximal ideal is a
field, Sectioﬁ 6 establishes analytic results which lead to the con-
clusion that a complex commutative Banach algebra which is also a field
is isometrically isomorphic to the compléx nunbers,

The results of Section 7 lead immediately to the Gel“fand repre-
sentation, namely, that any commutative Banach algebra is homomorphic
to an algebra of contiruous complex valued functions on a locally com-
pact Hausdorff space, This homomorphismvis in general nomm decreasing,
The representation has the further property that if the algebra has an
idegtity, the space is compact, and that in any case the functions of
the:representation vanish at infinity, The points of the space are the
regular maximal ideals of the algebra, |

In Section 9 the spectrum of an element is defined. The spectrum
of én element is shown to be the range of the function whicﬁ is the .
Gel“fand representat ion of the element, The spectral norm of an element
becomes the supremum of the absolute values of the range of the function
which is the representation of the elemeﬁt.

The radical of a commutative Bamach algebra is the intersection of
the regular maximal ideals of the algebra, An algebra is "semi-simple if
and only if the radicai contains only the zero element., In Section 10

it is shown that the Gel“fand representation is an isomorphism if and only



if the algebra is semi-simple,

Questions concerning the isometry of a Banach algebra and its
Gel“fand representation afe considered in Section 11, A necessary
and sufficient condition that the Gel“fand representation of a comnu-
tative Banach algebra be isometric to the algebra is that the norm of
the square of each element of the algebra be equal to the squafe of
the element's nom, | |

An analogue for analytic functions of an element of a commuta-
tive Banach algebra is developed in Section 12, It is shown that,
with proper restrictions, a Banach algebfa is cloéed under £he applica-
tion of analytic functions to eclements of the algebra, | ‘

In Chapter III examples of the Gel“fand representation are given,
In'Section 1 the fact that the space of ﬁaximal ideals depends only on
the structure of the algebra is used to draw some topologicél éonclu-
sions, In Section 2 the Fourier transform of an éﬁsolutely integrable
function from the real line is seen to be the Gel“fand represen;atiéh

of the function,



CHAPTER II

DEFINITIONS & THEOREMS

SECTION 1 DEFINITIONS

Definition: A Banach algebra is set A such that:
a) A is a Banach space in which scalars are complex numbers,

b) A is an algebra,

|Y| .

¢) For all x, y e A, ||xy|| 2 || xl|-
Definition: A Banach algebra with idéntity is a Banach algebra A
which contains an element e such that ex = xe = x for all
X g A,
Definition: A commutative Banach algebra is a Banach algebra. A
such that xy = yx for all x,y ¢ A,
Hotation: Throughout Chanter II, A will be uscd for a Banach algebra
(with or without identity),'Ae for a Banach algebra with identity,
e for the identity of é Banach algebra with identity, and C for

the comnlex numbers,
SECTICN 2 ELEMENTARY PROPERTIES

In this section some elementary properties of Banach algebras
are aiscusscd, namely that multiplication is continuous, that any Banach
algcbra may be imbedded in a Banach algebra with identity, that a Banach
algebra with identity may be renormed such that [|e]| = 1, and that any

Banach algebra may be viewed as a ring of opnerators on a Banach space,



Proposition 1: In any Banach algebra multiplication is continuous,

Proof: Let {x,} be a sequence such that x -+ x, Let {y,} be a sequence

n

such that Yo T Y. Then
Hxgyg = 2yl o= xgyy - xyy + xyy - %yl

< Hxgrn - 2yl + xy, - xyl]

<y Ielixn = x{] o+ =l {1y, -yl
Therefore

.

n gy = vl Lgtin gl 1l - x1D + g L1y, = y1D)

= Hyll f5m ey = <l b HxE da Hy, - vI1 = o

Thus, Xpy, > Xy as mre, or multiplication is continuous,

Proposition 2: If A is a Banach algebra witﬁou; identity, theﬁ A can
Be imbedded isometrically and isomorphically in aﬁéanach algebra
Ae with identity,
Proof: Let A, = {(},x) | A s.C, x € A}, No confusion will arise if Xe + X

is written instead of (X,x) for (A,x) € Ae‘ Definé

(Ae+x)+(he+rx)=(0 +2)e+ (x +x j,
1 1 2 2 1 2 1 2
Al e + X = (AX e + AX
( . l) ( 1) .

and

Ce+x)e(le+x)=(Ar)e+ (A x +xrx + X X ).
1 1 2 2 1 2 1 2 21 1 2

It is easily verified that A, is an algebra and that e = e + 0

is an identity for Ags



et ||xe + x|| = [a] + [1x]]. 1t is easily verified that

||ae + x|] is a norm. The algebra A, is complete in this norm,
since || (e + x) - (e *+ x) ] = ]Am -l |1x, -x 1l + o0,
if and only if Ixm - Anl >0 and ||x, - xnll + 0. If e + x )
is a Cauchy sequence, then Ayt Ao and x> X and (Ane +xp)

Ay ¥ X, SO Ae is complete, It follows that
o

A = [A A A A X X
_||(>\1e+x1) (2e+x2).ll l12|+”. 1}(2+ 21‘”‘2”

A el Al Ale b
PN R NN R TN PR BIPR IR I

I, I

=lae v x [l e + x 11

llenceforth, whenever a Banach algebra without identity is said
to be cxtended to a Banach algebra with identity, the extension will

be understood to be performed in the manner described in Proposition 2,

Proposition 3: Any set satisfying a) and b) in the definition of a
Banach algebra which also has an identity and continuous nmulti-
plication is isomorphic and homcomorphic to a Banach algebra with
idéntity such that ||e|| = 1. Morcover, the isomorphism is such
that any Banach algebra may be viewed as an algebra of linear
transformationson a Banach space where composition is multipli-
cation,

Proof: Let A, be a sct satisfying a) and b) with identity and continuous

multiplication,



Let Hom(A,,A) be the set of all bounded linear transfor-
mations from A, to A, with the usual operator nom, Let AJ
= {x” ¢ Hom(A, Ae)l there is an X € A, such that x“(y) =
for all y € A}, Now for all x ¢ A, there is an x” ¢ Aé satis-
fying the above and the mappihg is one to one, since if x1 $ x2
in A, then x e $ X e, which implies that x;(e) ¥ x;(e), or
x; % x;.

Now it is sufficient to show that AZ is closed in Hom(Ag,A)).

there is a w_, € A

If ag = %ig an, 3, AZ, then for each an, n e

such that an(x) = wx for a}l X € Ae‘ Now for all x,y e A,

a,(xy) - Ilflfg a_(xy) = é_l)g WpXy = (11132 w X}y
= (%ig a (x))y = (a,(x))-y.

Letting Xg = ao(e), then for all y € A,
ay(y) = agley) = (a5(e)) -y = xyy,

therefore a

o € AZ, or Ag is closed, hence A; is a Banach algebra,

Let é:Aé > Ae by ¢(x“) = x, Then

Hx*|] = sup |lxyl| 2 |]x l Lixll
lHylls ||e|| ]T'TT
Thus ||x|| < |lel|<]|x*]| or ¢ is bounded, But since ¢ is a one

to one bounded linear transfonnat1on from a Banach space Ag onto a

Banach space Ag,¢"! is continuous,

4



Therefore AZ is isomorphic and homcomorphic to A,. ‘loreover,

- - %~ p . ” el ”
Ag is a ring of operators as promised, and for all x7, y” ¢ AZ

and W € Ae

[ (xey) (] = x| < x|y ) ]
< i1ty Tl ], or [lx7eyll = Hx7 ey I,
It also follows that |le“(n) || = [ley|| = ||y||, ot ||e”]| = 1.

In any Banach algebra with identity, e, ||e|| 2 1, since other-
wise ||e]| < |]|e||™ + 0 as ﬂ » =, Since any Banach élgebra with iden-
tity satisfies tﬁe hypothesis of Proposition 3, it may be renormed such
that ||e|| = 1. Henceforth, in any Banachialgcbra with identity, the

norm of the identity will be assumed to be equal to 1,

SECTION 3 “INVERSE AND ADVERSE

Definition: The inverse of an element x of a Banach algebra with iden-

tity is an element x”! such that xx"! = x-1x = e,

It will be shown that in a Banach algebra with identity, the set

of elements having inverses 1is open,

Lemma 1; If x is an element of a Banach algebra such that ||x-e|] <1,

then x has an inverse,

. n .
i
Proof: Consider the sequence {x,} where x, = ¢ + ) (e - X)75 {xg} is
i=]

a Cauchy sequence, since, given € > 0, therc is an N such that



form > n > N,

-4

m . m :
Hx, = =l = 11L e - 0M ] = Tl - x)NiZn‘N(e - x|

N N i N N i
<Ile = x| 1M ) e - x| glle - x||7 ] |le - x]|
1=n-N i

i=n-N
;Hc-xllN{ 1 1
L= []e - x|

for sufficiently large N, Let x™! = limx_=e + ) (e - x)*,
nse N izl _
Then x = e - (e - x) and
xx"! = (e - (e - x))x~}

e + iZl(e - X)" - (e - x)izlse - X)

e+ ) (e- x)i - ) (e - )1 = e, or xx~! = e,
i=1 izl .

Propssition 1: If Ae is a Banach algebra with identity, then ﬁhe set

of elements of A, having inverses is open,

i}

Proof: Let V & | x e Ae and x~ ! exists ),

Let U, = & | x €A, and |lx - e|] <1}, The set U, is open and

UseV by Lemma 1, If x €V then x has an inverse x~! such that

xx=1 = e, Since multiplication is continuous, there is a neigh-
borhood U of x such that Ux~! = b lys= x %~ ! for some x~ ey} < Ue.
Thercfore for all z e U, 2x~ !¢ Ug-or 2x” ! has an inverse w., Since

1

e = (zx" Hw = z(x? w), then x™'w is an inverse for z; therefore UV,



10

But x was any element of V, so V is open, Of course, V is not

empty, since e = e~! eV,

Since a Banach algebra may not have an identity, the properties of
inverses are not meaningful in that general setting, The notion of

inverses does admit generalization in the following sense,

Definition: If A is a Banach algebra, and x € A, then an element y ¢ A
is a right adverse of x if and only if X + y - xy = 0, The

element x is said to be a left adverse of y.

Now, if y is a right adverse of X in a Banach algebra A, and A
is imbedded in an algebra with identity, then e - y is a right ihversé
of § - x, since |
(e ~x)(e ~y) =e - ex - e} + Xy =¢€ - (i +y - xyj = e,
-In.any commutative Banach algebra a left adverse is aléo é-right
adverse, This is not true in general in the non-commutative case, i.e,
an element might have a left adverse but not a right adverse, Neverthe-

less, the following may be said of any Banach algebra,

Proposition 2: In any Banach algebra, if én element x has both a left and
.a right adverse, then the adverses are equal and consequently
unique,

Proof: 1If u is a left adverse of x and y is a right adverse of x, then

(after imbedding the algebra in an algebra with identity if



11

necessary) e - u is a left inverse of (e - x); and e - y is
a right inverse of (¢ - x)., Now
e-u={e-u)fe-x)(e-y)=e-y,

Hence e - u =e -yoru=y,

If x has a right and left adverse, then this unique element will be
called the adverse of x and will be denoted by x-, Theorems concerning

adverses often follow the same line as theorems concerning inverses,

Lemma 2: If x is an element of a Banach algebra such that ||x|]| <1,
then x has an adverse, H

n -
Proof: Lety = -'ZIXI. Form > n
1=

|| =11 !f i ¢} L "] '
Yoo = = - X < X = X X 1

< Hxl (- |1 ) >0 as n +> o,
o 1- X i

Therefore {y } is a Cauchy sequerce,

-]

IE?YQAT %iz Yo = - lei, then

]

Xy = Xy, =X« ) xt . X,X xi

So Yo is a right adverse of x, Similarly x = Yo = YoX = 0, so

Yo is an adverse of x and



Tyl = V=L <3 = am -] s3] = v )3 x4
i=1 nr= i=1 LESAadI 13 §

s Usllain 11l = el 10 = el

Proposition 3: If A is a Banach algebra, then the set of elements having
adverses is open,
Proof: Define x oy =X + y - Xy for all X,y €¢ A, Then y is a right
adverse of x if and only if x o y = 0, It follows immediately
that o is associative,
Let V° be the set of all elemeﬁts of A having adverses, Since
0 haé ;n adverse, V-~ + b, |
Ifye V* let x € A be such that [1x]] < (1 +-||y‘|l)'1.- NowA
||x-xy“|| < ||x]]+CL + ||y’|]) <1, By Lemma 2, u = x - xy” has an

adverse, u”, Now

-

(y+X) oy =y +x+y”-yy”=xy”=x-xy%
consequently
Gy ex) ey eu) = ((y+x) oy) out =0,
of y® o u” is a.right adverse of y + x,
Similarly, if ||x|| < (1 + ||y"]]|)”! then ||x-y“x|| < 1 and
V=X - y”x has a left adverse v“.and y” o (y + X) = x - y’x = v,
NoQ'v‘ o y* is a left adverse of y +lx.

Hence, y + x has an adverse, Thus, if z ¢ A and

llz = yII < (1 + |ly’][)7! then z has an adverse, and thus V* is open,

12



Proposition 4: In any Banach algebra, the mapping x » x” is
continuous,
Proof: Using the notation of Proposition 3,
(y+x)7-y"=(y"eu’) -y =u’ -y’
Thus,

Gy + =) = y*[] < [ {f-Cx« [ly’ID
[ullCL = [HulD7r@ + [ly*ID
<Hxa «Jly-1h?

Jixtica+ Hy*lh

A

Letting a = (1 + [|y’]|)~!; then

ey «+ x)7 -y | < Uxl a2« |1x]] >0

1-at Il (a- llxlh,

as ||x|| » 0, or the mapping x + x* is continuous,

Proposition 5: In any Banach algebra with identity, the mapping
x + x"! is continuous,
Proof: Let V be the set of elements having inverses, Let V“ be
the set of elements having adverses., Let ¢:V” + V be defined
by ¢(x) = e - x, Let y:V » V be defined by y(x) = x”,
Now if X ¢ Vthene - x ¢ V* and (e - X)” = e - x=1, since
(e = x) + (e -x1) - (e-x(e-x1)
=e-x+e-x}-e+x+x!.xx!=o,

The mapping x + x~! is the mapping ¢eye¢, since

13



1y

e(w(e(x))) = ¢(w(e - x)) = ¢(e - x~1) = x~1,

But ¢ is continuous, and ¢ is continuous, therefore the map-

ping x > x~! is continuous,

1 are one to onc, and since

Since the mappings x = x”and x > x~
these mappings are their own inverses, the mappings are in fact home-

omorphisms,
SECTION 4 MAXIMAL IDEALS

In the first part of this scction, certain properties of Banach
algebras are discussed which are conscquences of the fact that a Banach
algebra is a ring, In the second part, the topological properties of

maximal ideals are discussed,

Definition: If R is a ring, a subset I of R is a right ideal of R,
if and only if the following are satisfied:

1) ifxe I andy é I thenx -y el,

2) if xe I and z ¢ R then xz ¢ I,

3) I is a proper subset of R,

A left ideal is a subset I of R satisfying 1) and 3) and the
requirement 2)- if x ¢ I and z ¢ R then zx ¢ I. An ideal of
R is maximal if and only if it is properly contained in no

other ideal of R, (Maximal right and left idcals are defined

analogously).
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v
Proposition 1: If R is a ring with identity, and I is an ideal of

R, then therc exists a maximal ideal MI containing I.
Proof: Let S be the set of ideals of R containing I, partially
ordered by inclusion, Let& be any chain in S.Then.%JscIC
is a proper ideal of R fore ¢ }JLGIC.. (Every Ic is ;roper
c

and hence cannot contain e,) Therefore & is bounded above,

and by Zorn's Lemma, there is a maximal element of S,

Definition: Le; R be a ring, and let I be an ideal of R, An clement
u of R is a left identity mod I if and only if for all x ¢ R,
(ux - x) ¢ I. An ideal I of a ring R is regula; if and only‘
if R has a left identity mod I,.
The following proposition is prchd in the same manner as Propo-
sition 1,
Proposition 2: If R is a ring and I a regular (right) ideal, then
there exists a maximal regular (right) ideal containing I,
Proof: Let u be a left identity mod I, lNow u % I for if ue I,
then, for all x € R, ux € I, But ux- x € I; therefore every
element of R would be an element of I. Similarly, if J is any
ideal containing I then J is regular, and u £ J since u is
a left identity mod J. If & 1is any chain of ideals containing

I, u is not in Uy
cel

and U J is an ideal containing I, llence,
c Ce€ ¢

by Zorn's Lemma, there is a maximal ideal containing I,
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In an algebra with identity, maximal ideals will play a key role
in the representation of a Banach algebra. The analogous role in an
algebra without identity is played by the regular maximal ideals, If
an algebra has an identity, then cvery ideal is, of course, regular,
since ¢ is a left identity-modulo any ideal, There is furthermore é
correspondence between the regular maximal ideals of an algebra with-
out identity and certain of thé maximal ideals of the cxtension of this

algebra, which is discussed now.

Proposition 3: If A, an algebra without identity, is extended to Ae;
an algebra with identity, then there is a one to one correspon-
dence between the regular ideals of A and the ideals of A, which
arc not subsets of A,

Proof: let Ie be any right ideal of Ae not included in A, Then there
is an clement of the form - e + x in Ie’ where x e A,
Let v = - e + x; then x is a left identity mod Iy in Ag, since’

for all y e Ay, xy ~y = (x - e)y = vy ¢ Io. But x € A and, for

all y e A, xy - y e A; hence, Ieﬂ A'is a regular ideal in A,

I T 1s a regular (right) ideal in A, and u is a left iden-

tity mod I in A, define I, = {y | uy e 1}7 I, is a subring of

Ay, and if x e Ay then u(yx) = (w)x. But uy eI, gnd I is an

ideal in A ; hence, uyx €¢I, Sincc u §1I, e ¢ I,. Thus I, is an

ideal of A, Moreover, u - e ¢ I, since (u - e)u = wu - u.e I,



But u - e ¢ A, thus Ie is not a subset of A,

Pronosition 4: 1In a ring R with identity, an element x has a right

Proof:

inverse if and only if x lies in no maximal right ideal of R.
if x has an inverse and I is a maximal ideal containing x, then
xx'! =e e Tand z =eze L orI=R; soifx has an inverse,
then x is an eleﬁent of no maximal ideal,
Now if x lies iw no maximal ideal then x has an inverse, for
if x does not have an inverse, then I_=‘{xy | y e R} is a right

ideal, and (e ¢ I), and I is contained in a maximal right ideal.

Proposition 5: In any ring R an element x has a right adverse if and

Proof:

only if therc is no regular maximal right ideal modulo which x

is a left identity,

If x has a right adverse, x°, and if x is a left identity modulo
a maximal ideal I, then x = xx” - x%e I, and for all y e R,
y =Xy - (xy -y) e I. So if x has a right adverse, then there
is no regular maximal right ideal modulo which x is a left iden-
fity. If there is no maximal right ideal modulo which x is a. ':
left identity, then x has an adverse, for if x does not have an
adverse, then I = {xy -y | y ¢ R} is a regular right ideal and x
is a left identity mod I. This follows from xz ~ z ¢ I for any
zeR, and x ¢ I, since if x ¢ I, x = xx” -x” for some x”"¢ R, and

-

x” is a right adverse of x, Now I is containsd in a regular maxi-

17
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mal right idcal modulo which x is a left identity, which contra-

dicts the hynothesis, so x must have a right adverse,

Similar theorems concerning left inverses and adverses could be
formulatcd; and these could be used in conjunction to lead to the
statement that the set of elements having inverses is the set of ele-
nents which lie in no maximal ideal and that the set of elements having
adverses is the set of elements x such that there is no maximal ideal
modulo which x is a reclative identity,

The following propositions assert some topological properties of

maximal ideals,

J

Proposition 6: If I is an ideal in a Banach algebra A, then its topo-
logical closure I 1is an ideal of A or is A,
Proof: If x,y ¢ I, then there is a sequence {xn} <. I, and a sequence

{y,} « I, such that x, » x and y, = y. Then

x+y=]_imxn+xllim_vn'=%xim (Xn*'yn)EI
oo -2 Xaid

since xn Y, € I for all n, Also, xz = (%ig xn)z = %ig(xn-q e I

since x_ ¢ I for all n.

If T kA, then I is an ideal, otherwise T = A,

How maximal ideals in rvings with identity and recgular maximal ideals
in rings without identity are closed,

v
Proposition 7: If Ae is a Banach algebra with identity, and M is a

maximal ideal of A , then M is closed.



Proof: By Proposition 6, M is an ideal and by Proposition 4,
Mc A, - Vwhere V is the set of elements having inverses,
Since V is open, M c.Ae -V = Ay - V which is a proper subset

of Ae. Thus M is an ideal containing M; but M is maximal.

Hence M = M, or M is closed.

Proposition 8: If A is a Banach algebra and M is a regular maximal
ideal, then M is closed,

Proof: 1If x is a relative identity for M, then define p(M, X)
= inf {||y - x|| | y ¢ M}, MNow p(M, x) > 1, since if there
is an element y € M such that ||x - y|| <1, then x - y has

an adversc a,. Then (x - y)a - a - (x - y)

0, but

(x-yla-a-(x-y)=(xa-2)-ya+y-xegl, and
Xxa - a, ya, ye I, soxe I, But if x € I then, since

xz - z eI for all z ¢ A, it follows that z ¢ I for all

zeA, Sop(M, x) 21, then p(M, x) > 1. Thus, M is a regu-
lar ideal containing M, but M is maximal, soM = M, or M is

closed,
SECTION 5 QUOTIENTS AND FIELDS

If R is a ring and I is an ideal of R, then R/I will denote the
quotient ring of R by the ideal I, and (x) will denote the coset of

I containing the element x,

19



Proposition 1: If R is a ring and I is an ideal of R, then a subset
of R/I is an ideal of R/I if and only if it is of the form J/I
where J is an ideal of R ccntaining I. Moreover, J/I is vcegular
and/or maximal if and only if J is a regular and/or maximal ideal
of R and J contains I, |

Proof: J is an ideal of R containing I if and only if
1) x +y e J for all x,y € J which occurs if and only if
(x) + (y) € J/1 for all (x), (y) ¢ J/1,

2) xz e J for all x € J, z ¢ R, which occurs if and only if
(x)+(z) € J/1 for all (x) € J/I, (z) ¢ R/1,
3) J # R which occurs if and only if J/I # R/I,

Thus, J is an ideal of R containing I if and only if J/I is an

ideal of R/I. Maximality and regularity follow in a similar manner,

Proposition 2: A commutative ring R with identity is a field if and only
if there are no nonzero ideals of R,

Proof: Since R is a commutative ring, it suffices to show that eﬁery
nonzero element of R has an inverse, There are no nonzero ideals of
R if and only if {0} is a maximal ideal of R, By Proposition 4 of
Section 4, {0} is a maximal ideal if and only if for all x ¢ R - {0},

x"! exists.

Proposition 3: If R is a commutative ring and M is a regular ideal of R,

then R/M is a commutative ring with identity,

20
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Proof: Obviously R/M is a commutative ring., If u is a relative
identity of R mod M, then ux - x ¢ M for all x in R, then
W+ (x) - (x) = (0) for all (x) ¢ R/M, or (u)«(x) = (x) for

all (x) € R/M,

géoposition 4: If R is a commutative ring and M is a regular maxi=-
mal ideal, then R/M is a field,
Proof: By Proposition 3, R/M is a commutative ring with identity,
Since M is a maximal ideal, {(0)} is the only ideal of R/M, by

Proposition 1, Therefore R/M is a field,

If A is a Banach algebra and I is an ideal of A; then for any
(x) e A/ let |[|(x)]] = inf {]|y]] I y ¢ (x} and let @: A ~ A/I be
defined by x = (x).
{
Proposition 5: If Auis a Banach algebra, and I is a closed ideal of
A, then A/I is a Banach algebra and ¢: A ~ A/I is continuous,
and ||e|| < 1.
Proof: For (x) e A/I, (x) is a closed subset of A, since (x) = x + I,
and the mapping, fx (y) =x+yof A to A, is a homeomorphism,
Now,’
1) That ||x|| > 0 is clear. Now ||x|]| = 0 if and only if there
is a sequence {x_ }® c I, such that |Ix [] >~ 0. Since (x) is

n=1
closed, ||x,|] 0 if and only if 0 ¢ (x) or (x) = I.



2 1t e W =ing Qlx syl | xe 0,y e 0)

sing (lxl]+ Iyl | x e 0,y e ()

inf {||x]] | x e (0} + inf {|]y]] | y e (y)}

=[]+ T

3) |IA)]|| = inf {||Ax||'| x € A(x)}
= inf {A]+]Ix]] | x e ()
= Il ang (|| | x e 03 = Al |Ixl

Consequently, ||x|| is a nomm,

If {(x)n} is a Cauchy sequence in A/I, there is a subse-

LT (y)nll < 2““7//Form

a sequence in A as follows: Let yl > (Y)l' Choose y, .4

quence (y), of (x), such that [|(y)
n+

by noticing that since (y)pel - ¥y, = (y)n+1 - (y)n, there is a

Ynep € (Ppen) such that [y o -y || = [0 pep = O 11 < 270,

Then y, is a Cauchy sequence, and if y, = lim y , then (y,)

= %ig (y)n = %ig (x)n since (xn) is a Cauchy sequence and (yn)

is a subsequence of (x),. Consequently, A/I is complete,
The norm behaves properly under multiplication since -
-] = inf Ulxyll | xe 0,y e o0
<inf Ulxllyl] | xe 0,y e )
inf (1x]] | x e Godeing (lyll |y e o0
He ol

Thus, A/I is a Banach algebra,

22
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Now, for all x ¢ A, ||(X)]]| = inf {1yl | y € (x)}

< |Ix]] or ||o}] <1 and ¢ is continuous.

Now if M is a regular maximal ideal of a commutative Banach
algebra, then A/M is a field which is also a Banach algebra, (Propo-
sitions 41and éf. In Section 7 this normed field will be shown to
be isometrically isomorphic to the field of complex numbers., In

order to prove this isomorphism, some results concerning analytic

functions will be required,
SECTION 6 ABSTRACT ANALYTIC FUNCTIONS

Definition: A subset D of the complex plane C is a region of C.if
and only if it is an open connected subset of C,
Definition: A function I:[0,1] » C is a simple closed curve if
and only if both of the following are true:
1) T is continuous
2) T(x) =T(x) if and only if x =0 and x = 1,
1 2 1 2
If T is a simple closcd curve, then the image of T will be
.denofed by T*,
Definition: If D is a region of Cand I' is a simple closed curve such ...
that I'*< D then I' is said to be a simple closed curve on D,
Definition: A simple closed curve T is a closed path if and only

if there are finitely many points 0 = S <S8 <iva.<sy =1
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such that for cach interval !s

j_ll Sj])j

I has a continuous derivative on [Sj‘l’ %].

Definition: If D is a region and T is a closed path on D and

A € D - I'*, then the number 1 d g is called the
' J2mi £~ A

index of A and is written Ind (1).

The set of all such A that Ind (1) =1 is called the
region enclosed by T.

Definition: A function & from a region D to a Banach algebra A (¢:D » A)
is analytic on D if and only if for all ) ¢ D,

lim _¢(A+h) - ¢(h) = exists, where the limit is taken in the
[hl+ 0 h

sense of convergence in the norm of A,

If ¢ is analytic on a rcgion D then the above limit is called
the dcri;ative of ¢ at the point X, (The derivative is an ele-
rient of A),

Higher order derivatives are defined in a manner analogous to

(n)(A) will be used for the .

the usual definition. The symbol @
nth derivative of ¢ at the point A,
Definition: IfT is a closed path on a rezion D, then a subset {XO....AH}

of I'* is a partition of I' if and only if there exist

0 f th2tp 2t ceeeen.gty =1 such that r(ti) =A; for i = 0,1,...n.
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Definition:If{Ao,A ,‘...An} is a partition of a closed path T on a

region D then a point ) -is said to be between ), and Ak+1

if and only if there is a t, - such that

k= "k = tk+

ct
A
t
Y
A

1 and r(tk,) = )\k’o

Definition: If A is a Banach algebra, D is a region, ¢:D > A, T is

a closed path on D and Ir(é) exists where

n-1
I(2) = lin Yoe(ae) (A - A)
T maxlxk+1 - Ak|+o ko K k+l k

. 1s between Ak and Ak+

k 1

and where the limit is taken in the sense of convergence in the

{xo,xl,xn} is any partition of 'and A

norm of A, then the above limit is called the integral of ¢ over

I and is written { o(A)dr, (Define so(A)|dA| analogously,)
T

The above generalized definitions of the derivative and the inte-
gral of a fuﬂction from C to a Banach algebra A permit the development
of a theory of abstract analytic functions. This thcory parallels very
closely the theory of analytic functions of a complex variable, In
particular, a useful technique in proving a given theorem for an ab-
stract analytic function will be to shift the range of the function to
the complex numbers and use the analogous regular theorem,

If D is a region of the complex plane, A is a Banach algebra, T is

a closed path on D, and ¢: D -+ A is continuous, then since I* is



compact, ¢ is uniformly continuous on I'*, The existence and unique-
ness of the integral over T of such a continucus function follows in
the same manner as the existence and uniqueness of the ordinary
Riemann integral, The lineérity of the integral is also straight-
forward, as is the inequality [|£¢(A)dk|l é={|l¢(k)|| dal.

The next two probositions establish the validity of the tech-

nique mentioned above since C, the complex numbers, is itself a

Banach algebra,

Proposition 1; If A and A" are Banach algebras, D is a region of C,
¢:D ~ A is analytic on D, and f:A >~ A” is a bounded linear

- ... function, then fo?¢ is analytic on D, and (fo9)” = fo0~,

Proof: £(0(A + h) - £(2(2)) o(A + h) - o(1)
h = £ i ’

Let °(A\) = 1lim &(x + h) - #(}) . Since f is continuous
[h|-0 h

1im £(0(x + h)) - £(o(A))
|n|-0 = h

lim £ (A + h) - o(Q)
Ihl+0 . h

{1

£ 1im fo(x + h) - oM | = £(e°(\))
Ihl—*O h

for any A ¢ D,

26



Thus fe¢ is analytic on D and

(£00)" (A) = £(¢” (W) = (£227)(N).

Proposition 2: If A and A” are Banach algebras, D is a region of C,
I is a closed path on D, ¢:D » A is continuous, and f:A » A”
is a bounded linear function, then

{ f(e(r))dx exists and { £{o(A))dx = £ (%@(k)dl).

Proof: The composition f¢d:D » A” is continuous; therefore,

{f(@(x))dx exists. For any partition of T,.

n-1
kZO EQO) O -3

n-1
= £( ) e

-2 ))
k=0 k

) (Ak+1

since f is linear. Since f is continuous

%f(@(x»dx =:f({®(x)dk).

Theorem (Cauchy): If A is a Banach algebra, D is a region of C, T
is a closed path on D, and ¢:D » A is analytic on D, then

{200dr = 0,
Proof: {@(x)dx cxists. Suppose {@(A)dx = y £ 0. By the lahn-Banach

thecorem, there is a bounded linear transformation f:A + C such

that f(y) # 0. By Proposition 1, fe¢:D » C is analytic on D,

27
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By the ordinary Cauchy's Theoren, {(fOQ)(A)dA = 0, But by Pro-
position 2, {(fc@)(k)dk = fg{@(k)dx) = £(y) % 0., This is a

contradiction, so %o(x)dx = 0,

Cauchy's Intcgral Formula: If A is a Banach algebra, D is a region
of C, T is a closed path on D, ¢:D -+ A is analytic on I and A
is inside of T, then

1 I¢(€)d§

¢(Ax
) 201 T E-A

"

1
2(2) - I¢(€)d£

Proof: Let y -
2mi F &

+ Suprose y % 0, By the lahn-Banach

theorem there is a bounded linear functional f:A - C such that
f(y) ¥ 0. By Proposition 1, fo® is an ordinary analytic function
on D, By the ordinary Cauchy's Integral Formula

0= (£e2) (1) - 2:1 / (foz)(ki =
| r -

g £(e(A) - 2;1 £ Q(E)_di ) = £(y) % 0,

But this is a contradiction, Thus the formula is valid,

Proposition 3: 1If A is a Banach algebra, D is a region of C, T is

a closed path on D, @D - A is continuous on T*, then the func-

tion Fn(A) =f fiélgé_. is analytic on the region enclosed
r (g-))
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by T and its derivative Fﬁ(k) = nFn_l(x).

The analycity of Fn follows in the same manner as in the reg-
ular case replacing absolute values by norms, cf, Ahlfors
[1 p. 97]. The validity of the formula can be verified as
follows: Let y = Fi(A) - nF ., (0. If y $ 0 by the lahn-Banach
theorem there is a bounded linear functional £:A » C such that
f(y) 4 0. Then

L = - -
05 £(y) = £(F () - nF (1))
= (foF)“()) = n(feF)(A) = 0,

But this is a contradiction,

The above formula establishes the validity of the formula for

derivatives of analytic functions.

. Rl 2(g)ds
oM () = 2Hi—£ GERYL

where A is a point enclosed by the closed path T on the region D,

S

Proof:

Theorem (Liouville): 1If ¢:C » A is analytic and bounded on C, the

vhole plane, (||2(M)[] <M for all X ¢ C), then there is an
x € A such that ¢()) = x for all X ¢ C,

Sunpose é is not a constant,  then there are ki,kz e C such
that QCXI) % Q(AZ). By the Hahn-Banach theorem there is a
bounded linear functional £:A - C such that f(é(kl))# £(¢(A2)).
Yet again this leads to a contradiction of the regular Liouville

Theorem, since for all X e C
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| (fee) M| < £ -1l < [1£]]+M and
0 £(0(1)) - £(2(1 ) = (£20)(A)) ~ (£20)(3) = 0.
\

Proposition 4: If A, is a Banach algebra with identity, and X € A
then the mapping @x(X) = (x - Ae)~! is analytic on the point§
of C where it is defined,

Proof: When |A] > ||x|], x/A has an adverse and x/A - e has an inverse,

| Thus when |Ax| > ||x]], x - Ae has an inverse, Thus there is a A
for which ¢« (1) is defined. The mapping A > X -'Ae‘is contin-
uous as is the mapping (x - Ae) + (x - Ae)'l. Thus the set of
points where the mapping is defined is open, Moreover

oy (A + h) - ox(2) (x = (A +h)e)~! - (x - re)~!

h h

= (x -~ (A + h)e)! (x - ae)-?

But the mapping x = x-! is continuous, so

lim o(A +h) - ¢(A) . lim (x - (A + h)e)=! (x - Ae)~}
|n|-0 I |h|>0 ‘ .

= (x - xe)2,
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SECTION 7 HOMOUIORPHISHS AND ISOMORPHISMS

Definition: An algebra homomorphism is a ring homomorphism which
preserves scalars, i.e.: o(Ax) = A%(x).

The following proposition establishes the key to Gel “fand's

theoren,

J

Proposition 1: If A is a commutative Banach algebra, and M is a
fegular maxinal ideal of A, then A/M is isometrically iso-
morphic to C, the field of complex nunbers,

Proof: Recall that by Pronosition 4 of Section 5 that A/M is a field.
It is sufficient to show that for any x € A/H there is a A ¢ C
such that x = Xe, Sunpose, on the coatrary, that there is an
x € A/M such that for all A € C, x $ Ae. Then x - Ae is ne-
ver zero and therefore (x - Ae)” ! exists for all A e C, By

X(A) = (x - ac)"! is

Proposition 4 of Section 6, the manning @
analytic on C, Notice that A7l +» 0 as A > » and (xA"! - &) » -e
as x » », Thus, since

Hox ] = [1¢x = 2 2| = 2t feamt = @7} ]| » 0

as A+, (1) is bounded.- By Liouville's theorem &,()) = X,

a constant, Since |[x || » 0 as A+ =, x, =0 or (x - 2e)°! =0,

a contradiction, Censequently, A/M is isomorphic to C.



Proposition 2: If ¢:A » C is a homomorphism of a comnutative Banach
algebra A onto C, then 6"1(0) is a regular maximal ideal of A,

Proof: ¢~1(0) is a regular ideal since an element of A whose image
is 1 is a relative identity mod ¢~}(0). But A/[¢"1(0)] is a
field, Therefore, there are no nontrivial ideals of A/[¢71(0)]
of [¢1(0)] is a maximal ideal of A,

Since the kernel of any homomorphism of a commutative Banach alge-

32

bra onto the complex numbers is a regular maximal ideal, the fundamental

homomorphism theorem for rings and Proposition 1 show that any such
homomorphism is continuous and has norm less than or equal to 1, Fur-
ther, by Propositions 1 and 2, there is a oné'to one cofrespondence
between the regular maximal ideals of a commutative Banacﬁ»algebra

and thé-homomorpﬁisms of the algebra to the complex numbers .,

SECT‘ION 8 THE GEL“FAND REPRESENTATION

From this section on, only commutative Banach algebras will be
discussed, In any statement the term Banach algebra will be under-
stood té mean commutative Banach algebra,

Let‘h1 be the set of all regular maximal ideals of a Banach.alge-
bra A; let A be the set éf all (continuous) homomorphisms of A onto
the comblex numbers C, Since there is a one to one cofrcspondeﬁce
between the set of regular maximal ideals and the continuous homomor=-
phisms of A onto C, let hy be the homomorphism corresponding to the
maximal ideal M, and let My be the maximal ideal correSpopding to the

homomorphism h,



33

In this section, a normed function algebra which is homomorphic
to A will be constructed. The domain of the functions will be‘hP(or
equivalently A), If x ¢ A, define i:?q'+ C,(x:a > C), by

X (M) = X(hy =hy(x).

Let R be the set of all such functions, The function X will be

called the Cel“fand representation of the element x € A, The mapping
A - .
A~ A;p(x + x) will be called the Gel“fand representation of A,

A is an algebra of complex valued functions when addition, multi-

plication, and scalar multiplication are defined pointwise,

)
Proposition 1: If A is a commutative Banach algebra and A is the .

Gel“fand representation of A, then the Gel’fand reﬁieééﬁfééion
is a homomorphism.,
Proof: For any h £ A and any X,y ¢ A and any A € C

T+7 (h) = h(x + y) = h(x) + h(y) = X(h) + F(h)

45 (h) = h(Ax) = Ah(x) = AX(h)
%y (h) = h(xy) = h(x)h(y) = X(W)¥(h)

~ -~

" But h was any point in 4, so 5(:>}‘= X+ 9,3 =%, and
P AN
Xy = xy.
Thus the mapping A - A, the Gel “fand representation of

A,is a homomorphism,

\

Proposition 2: If A is a commutative Banach algebra and A is the Gel”fand

representation of A, then the functions of A are bounded.



Proof: Let X ¢ A, There is an x € A such that x - X, Now for
all h e A, ||h]] < 1 by Section 7, Now x is bounded since
X)) = |h) ] < Hx]].

Since the functions of A are bounded, let

[x]| = sup {|x(h)] |h € A},

A is a normed linear space and the mapping x -+ x is norm
decreasing (hence continuous), [?n Segtion 10 conditions under
which the Gel“fand representation is an isohorphism are discussed,
In Section 11 conditions under which the algebra is complete are
discussed.;

The functions of A can be used to generate a topology on the
sééf*l. Let fTw be the weak topoloéy generaﬁed by the funcéion§
of A, The sets of the form |

U:‘c,e,Mo = (M em | |xQM) - £(Mo)| < €}

for X ¢ A, e >0, Mye T?L are a subbase for /. Since A is also
"an éigebra of functions on A, the weak topology may be induced on
A, A subbasic open set for the weak topology is of the form

ui.e’ho = {hea| |x(m) - XA < e,

Since the subbasic open sets of 1YL and A are exactly the same

under the one to one correspondence, hM > Mh’ this correspondence

is a homeomorphism, Since for all X € X, §(h“) = i(Mh), the alge-

3y
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bra A behaves exactly the same under the correspondence, The spaces
h1 and A will be used interchangeably.

The space'h1 with the above topology will be called the maximal
ideal space of a Banach algebra A; the space A will be called the space
of continuous homomorphisms of a Banach algebra A,

The following propositions demonstrate that1YL is either a com-
pact or a locally compact Hausdorff space,

Proposition 3: *ﬁl is a Hausdorff space under 7,.
Proof: Suppose M , M , ¢ M+ M. Then there is an x e A such
ppose M, M, e, M3 M. Th €

that x ¢ M1 and X ¢ Mz' (or vice versa)., Then i(Ml) =04 i(MZ)

. N a I* M ).I
-~ = ‘\ - okz..(w.-Lu_
Let Ux,e,Ml M ehll [ x (M) x(Ml)I < - }
: - - X(M,)]
u, = {M E"’{ll IX(M) - x(M )I < IX( ) }
X’E‘M 2 3
2 )
Now U - is a néighborhood of M , and U. is a neigh-
2,5,“1 1 X’E,M
borhood of M. Furthermore, Ui,e,MJw Ui,e,Mz = ¢, for sup-

pose Mo is in the intersection,
This leads to a contradiction since

|§(M?)| & {i(m_z) - i_(.\ffx;)l_; li(Mz) - x(M)| + l;:(M?) - i(Ml)l
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SIx0] R

3 3

Thus,1TL is a Hausdorff topological space. .

A homomorphism of a Banach algebra to the complex numbers is
automatically‘a bounded linear functional, hence a member of A*, the
set of bounded linear functions on A viewed as a Banach space, Since
any homomorphiém has norm less than or equal to 1, any set of homomor-
phisms is a subset of the unit sphere S< A*, S'= {x*c A*| |[|x*|| < 1L

The weak* topology on A* is the weak topology induced on A* by the
elements of A when they are imbedded in A**, It is the topology of
pointwise convergence of elements of A*, i.e, if {f;} is a sequence
in A* and f_ is the weak* limit of {f,}, then for each ¢ > o‘and for
each x ¢ A there is N such that for n > N, Ifn(x) - fo(x)l < ¢, The norm
topology on the other hand is the topology of uniform convergenc{iﬁ The
fact that the unit sphere is compact in the weak* topology will be used
to show that‘h1 is either compact or locally compact.

Q .
Proposition 4: If H is a sct of homomorphisms of a Banach algebra A to

the complex numbers C, and h is an element in the closure of H,
as a subset of A* with the weak* topology, then h is a homomor-
phism of A to C,

Proof: Since h ¢ A*, h is linear, It is sufficient to. prove that

h(xy) = h(x)h(y) for all x,y ¢ A, If x and y are elements of A
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and € > 0, there is an h € H such that

Ih(x) - h ()] <«

Iny) - b ] <e

laGxy) - b ()] <.
Then  |h(x)h(y) - h(xy)|
[h()h(y) - hoGIRM) | + [h (ORG) - h (I (] + [ho(xy) - h(xy)]
< hG b)) = h (x)] + [hgx) |+ Ihly) - hoG) ]+ [ho(xy) = h(xy)]
h(y) |+ € + [n(x) |

Thus for all ¢ > O,llh(x)h(y) - hixy)| < (|h| + |Ix]] +1).

A

A

cevece((h| + 1ixl] + D

fla

Consequently, h(x)h(y) - h(xy) = 0, or h(x)h(y) = h(xy), soh is
a homomorphism, |
If therset H in Proposition 4 is A, the collection of all homomorphisms
of A onto the complex numbers, then the only other homomorphism of A to the
'complex numbers is the zero homomorphism, which sends every element to zero,
The set A is either closed, ot the closure of A consists of A aﬁd only one
additional point, 0,
If the elements of A are imbedded inlthe second conjugate space of A, A**,
then the weak topology of A induced by R'is a subset of the weak* topology of
A*induced on 4, 9;*. If.A is compact (locally compact) uﬁder the weak* top-

ology, then, since 27; c ég;, A is compact (locally compact) under the weak

topology, Z.

Proposition 5: If A is a Banach algebra, 7??, (A), the maximal ideal
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space of A endowed with the weak topology induced on'h\ by the
functions of the Gel”fand representation A, then'hl is locally
compact, If A has an identity,ﬁ*l is compact, In any case, the
functions of A vanish at infinity,

Since A& is a closed subset of the unit sphere, & is compact

under 'JL*. If A = B then A is compact under 17;*; otherwise

T = 40U {0} is a compact Hausdorff space under 7 «; if 4 = A-{0},
then A is locally compact under :7§*. Sincé A is compact or lo-
cally compact under 7“,*, and ‘7w [ .7"*, A is compact or locally
compact under '3;. If A_has an identity, then h(e) = 1 for all

h € A, Then if ho is the zero homomorphism,

U o = (x* e A*| [x*(e)| < 1/2} is a weak* neighborhood of O,

e,1/2,
which does not intersect 4, or A is weak* closed, Then 4 is
weak* compact and hence weakly compact.

If A is locally compact but not campact, the zero hemorphism
corresponds to the point at infinity in the Alexandroff one-point‘

compactification, and if X ¢ A and € > 0, then

Ux’s’0 = {M Shll |x(M)| < elis wegkly open in B, henceA

A - Us. . is weak* closed and weak* compact. But

X L e R
A - Us = x(M)| 2 so X vanishes at infinity.
) %,€,0 {M ETYII [x(M)| 2 ¢} y

The results of this section can be restated as in the following,
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Theorem (CGel“fand): Any commutative Banach algebra is homomorphic
to an algebra of continuous functions on a locally compact
lausdorff space, If the algebra has an identity, the space is
éompact; if the algebra does not have an identity, the functions
vanish at infinity.
Hencefor‘th,“(’\’1o or A, will denote the one point compactification

of Tﬂ.or A and the functions of A will be continuously extended by

SECTION 9 THE SPECTRUM AND THE SPECTRAL NORM

Definition: If Ay is a Banach algebra with identity, and A is a

complex number, then A is in the spectrum of x if and only if (x - Xe)

does not have an inverse,

If A is a Banach algebra without identity, then a complex A

is in the specttum of x if.and only if (x - xe)”}! does ﬁot exist when A
is extended to a Banach algebra with identity. The spectrum of an ele-
ment, x, of a Banach algebra is the sét qf all complex numbers A such
that A is in thé spectrum of x, The spectrum of an element x will be

denoted o(x). -

If A, is an algebra with identity, then by Proposition 4 of Section 4,
; :
A # o(x) if and only if (x - Ae) lies in no maximal ideal of Ay, In parti-

cular, an element, x, has an inverse if and only if 0 ¢ o(x). In a Banach
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algebra without identity a correspondence between the spectrum of an

element and adverses is established below,

Proposition 1: If A is a commutative Banach algebra without identity,

Proof:

and x ¢ A, then 0 ¢ o(x) and 04 X e o(x) if and only if x/A does
not have an adverse in A,

First, 0 € o(x), for suppose y‘+_Ae is an inverse of x + Oe = x
in Ag, the exteﬂsion of A, then e = x(y + Xe) = xy + X € A, a
contradiction. If x $ 0, then (x - Xe) - x(x/X - ) and
A ¢ o(x) if and oﬁly if (x - xe)”! exists. But

(x - 2ae)” ! = 271 (x/2 - ei'lexists if and.only if x/) has an adverse,

Another extremely useful characterization of the spectrum of an ele-

nent is the following,

Proposition 2: If A is a commutative Banach algebra and x € A, then the

Proof:

spectrum of an element x corresPénds to the range of i, the Gel“fand
representation of x. (o(x) = x(?qo)).

A complex number Ais ing{x) if and only if x - )e lies in some
maximal ideal M, This occurs if and only if hM(x - »®) =0, or
hy(x) = A Thus X e o(x) if and only if there is an M 51“-0 such

thatlﬁ(M) = A,
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Using the results of Propositicn 2, the spectrum of an element is
compact, since it is the continuous image of a compact set. Moreover,

the spectrum is closed and bounded.

Definition: If A is a BaAnach algebra, x € A, then the spectral nomm

lellsp is defined by ||x||sp = sup {|a| l Ae o(x)}

2 e o(x)}

By Proposition 2, ||X!|sp = sup{|A|

= sup {|A] IA = x(M) for some M e'h\p} = |1x]] .

since | |x||g, = [Ixl] 4 and [Ix]]| < [Ixl],1xHgp < Ll
Proposition 2 also leads immediately to the following conclusion.

Proposition 3: If A is a Banach algebra, and x ¢ A, then o(x™) = (o(x))™.
/\ PN
Proof: o(x") = x“(hlo); since x + x is a homomorphism,

/5 -
X ) = XMG) = Q)T = (G
The spectral norm of an element x of a Banach algebra is related
to the norm of the element by the following.

Proposition 4: If A is g commutative Banach algebrag and x ¢ A then

HXHSp = ,]{_1,5.‘ Hxnlll'/n

Proof: For ali n, Proposition 3 shows that



n
||xl|2p = ||xn||sp, but ||x™||sp < ||x ||, Thus

nlll/n for all n, There-

A

x5 < T o HIxlT < T

’ 1
fore ||x|| < im ||| /"
S oo .
It will be shown that for all but a finite number of
1
n's, if a is such that l]xl[sp < a, then ||x"}] /n:; a,

Define ¢x(x) = (x - re)~! (Embedding A in an algebra with

identity if necessary), The function @x is defined for all

v

A such that |A] > ||xl|5p. Let D = (A[x e C, [A] |Ix||sp}.

Then ¢,:D » A is an abstract analytic function on D,

2 () = A7l - x/7h = aTHe w ) /MM

o ’ n=1
Now if £ is any bounded linear functional on A, f(@x(k))
is analytic on D and
-1 * xn
£)) = \THEWD + ] £Cp
n=1

= ATLEW) ¢ ) ATREGM) for all |A] > |Ix|] .
n=1 - sp

Now for any a such that ||x|| < a < a,
- sp.

z f(xn/an) converges for any f € A*, So by the uniform
n-1



boundedness principle ||x"/a™|| is bounded for all n by
say K. Thus ||x®|| < Ko or‘llxnlll/n:; K'/Ma, But as
n > o, K™ .1 and for all but a finite number of the

n's, K'/n < a, or ||anl/n < a,

But a was any number such that [|x||sp <a, so
T nln
T[]0 g ]y

Thus ||| = lim |x™]|Y/7,
Sp  now

SECTION 10 THE RADICAL AND SEMI-SIMPLICITY

Definition: An element x of a Banach algebra is a generalized

nilpotent if and only if limllx1ﬂ|l/n = 0,
N e

Definition: The set of all generalized nilpotents of a Banach

algebra A is the radical of A,

An equivalent definition of the radical is the fol-

lowing.,

Proposition 1: The intersection of all regular maximal ideals
of a commutative Banach algebra A is the radical of A,

Proof: An element x of A is in the radical of A if and only if

43
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1in] || |}/™ = 0, But
n—)\'n
. n/n _ A A
}l}glle -||X|lsp~|l.><||-0

if and only if X(M) = 0 for all M e’y ., But X(M) = 0 for all
M e'ﬁ?if and only if hM(x) =0 for all M ¢ ﬁQ, or, equivalently,

X eM for all M ¢ f?{.

Definition: A Banach algebra A is semi-simple if and only if. the radi-

cal of A is zero (contains only the zero element),

Proposiiion 2: If A is a commutative Banach algebra and A is the
Gel“fand representation of A then A is isomorphic to A/radical(A).
Proof: If &:A » A is the Gei’fand representation of A, then
ker(s) = {x e Al% = 0} = {x ¢ A|x() = 0 for all M ¢ )}
= {x e Alx ¢ M for all M ¢ 1@2} = radical(&).‘

-

Thus, A is isomorphic to A/ker(®) = A/radical(A).

Proposition 3: If A is a commutative Banach algebra and A is the
‘ vGel’fand representation of A, then A is isomorphic to A if and
only if A is semi-simple,
Proof: Now A is isomorphic to A if and only if Ker(?) = 0, but
ker(®) = radical(A), So A is isomorphic to A if and only if

radical(A) = 0, or A is semi-simple,

The results of this section can be summarized as:

In a commutative Banach algebra the following conditions are equi-
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valent:

1) A is semi-simple

2) The radical of A is zero

3) A contains no generalized nilpotents

4) A is isomorphic to A.

Proposition 4: If A is a commutative Banach algebra and A is the
Gel“fand representation of A, then A is seni-simple,

proof: If Qo is in A and io % 0, then there is an M_ e, such
that x () 4 0. The mapping hy :A > C, determined by
hM (x) = i(Mo) is a homomorphismoof A onto the complex numbers,
The kernel of hM is a regular maximal ideal and §° ¢ ker(hM ).

Q .
But xo was any nonzero element of A;.thus A is semi-simple,

11) ' ISOMETRIES OF A AND A -

In this section, necessary and sufficient conditions that the

Gel”“fand representation be a homeomorphism are developed,

Definition: If A1 and A2 are Banach spaces and T is a linear function
from Ai to A2 then T* the adjoint:of T is the mapping from A* to

) 2

A* defined bY”T*(x;) for x; € A; is the element x: € A; deter-

1
mined by

x;(y) = (T*(x;)(Y) = XZ(T(Y))

for each y ¢ Al.
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Proposition 1: If A1 and A2 are commutative Banach algebras and T is

Proof:

an algebra homomorphism of A, onto a dense subset of AZ, then

the adjoint T* defines a homeomorphism of Tnz,the maximal ideal

space of A ,onto a closed subset of'ﬂQP the maximal ideal space
2 )

of A,
1

The mapping T* of this proposition is the adjoint mappiﬁg re-
stricted to A « A*, This mapping is well defined ona and

2 2 2
has a subset of 4, as its range, for if h, ¢ 4, then for all

by €A,

(T*(h)) (y) = hy(T(y)) = (hpeT)(y).
But hon is a homomorphism of A1 to the complex numbers, Since
h2 maps A2 onto the complex numbers and T(A;) is dense in Az’
there is an element y ¢ A such that hZ(T(y)) + 0. Thus the im-
égé.bf h2 is a homomorphism of AIAdifferent_from the zero homof
mdrphism;- By the results of Section 7, this homomorphism is a
continuous homomérphism of A1 ont& the complex numbers, Since
the homomorphisms in A2 are continuous andﬂT(Al) is dense in Az'
then if h1A+ h2 b, there is a y ¢ A1 such that

hl(T(y)) # hz(T(y)). Thus the ﬁappingvof A2 to Al ié one to one,

Notice that if y € Aland h e 4, the function (T(y))"'is given by
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(T(y))*(h) = h(T(y)) = (T*h)(y) = y(T*h). Since T(Al) is dense
in A2 and since the Gel“fand representation is norm decreasing,
the functions in RZ determined by elements of T(Al) are dense

in Rz. This dense subset of Rz is sufficient to determine the

weak topology of Az, i,e., all sets of the form

Ui €, = {h ¢ A2| l%(h) - i(ho)l < ¢ and X is the Gel”fand

representation of an element of T(Al)}'
are a subbase for the weak topology of Az' But each set
T*(U ,e,h ) = (U e, T*(h )) where T(y) = x and X X,
Thus, T* gives a one to one correspondence between elements of
subbases for the topologies for A2 and T*(Az). Consequently,
T* is a homecmorphism of A2 onto T*(A5).
Now T*(4,) is closed in Al since if g, € T*(4,) in the weak

e A,

’ n 1

topology of A1 then g, is such that given ¢ > 0, xl,xz,...x

there is an a € A2 such that ]go(xi) - ofTx3)| <€ for i = 1,2,...n,
Define ho:T(Al) + C by ho(T(x)) = go(x). The mapping is.well

defined since if T(x ) ='T(x2) then g (x ) = g (x),
and Iho(y)l_; 1yl for y ¢ T(Al). Thus h_ is a continuous homo-
morphism of a dense subset of A2 onto the complex numbers, and can
be uniquely extended to all of.AZ. Thus go = T*tho) or T*{A,) is
closed,

Propgsition 2: When both A1 and A, are commutative Banach algebras,

A, is semi-simple, and T is a homomorphism of A; onto a dense
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subset of A2 then T is continuous.

The proof of this proposition uses the Closed Graph Theorem,

If T is the graph of T in AIXAZ’ and (x ,y) e T then there is

a sequence {(xn,yn)} e T such that (x,,y,) » (xo,yo). In parti-

cular Xy > X

o and T(xp) » y . It nust be shown that T(x ) = y,.

But if x; + x, then X, + io uniformly,and if y_ -y, then Yn > Yo
Qniformly. But for all z ¢ A, and for all h e Az’ )
z(T*(h)) = (Tz)~(h). Thus

(Tx) " (h) = %o(T* (1) = Lim x,(T*(h) = Lim(Tx)"(h) = y ().
Thus T(x,)" = ?o . But since A2 is semi-simple, T(x,)" =-§6 im-
plies that T(x,) = Yy OF (xo,yo) ¢ T'. By the closed Graph Theo-

rem T is continuous.,

Proposition 3: If A is a semi-simple commutative complex algebra, then

Proof:

there is at most one norm (to within topological equivalence) with
respect to which A is a Banach algebra.

Suppose there'are two norms.such that A is a Banach algebra with
respeét to each. Now A is-semi-simple with respect to each and the
identity mapping is an algebra homomorphism, Thus the identity map
is continuous from A with either ﬁorm to the other, Consequently,

the identity is a homeomorphism or the norms are equivalent.

An immediate consequence of Proposition 2 is that every automorphism

of a semi-simple Banach algebra is a homeomorphismg
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Proposition 4: If A is a commutative Banach algebra and A is the Gel“fand
representation of A then a necessary and sufficient condition that
A be semi-simple and A be uniformly closed is that there exist a
cénstant K > 0 such that ||x||%2 < K||x?|| for every x € A,
Proof: If a is semi-simple and A is unifdrmly closed, then the Gel“fand
representation is a one to one, continuous linear trénsformation
of a Banach space onto a Banach sbace. Consequently, the inverse
mapping is continuous, Thus there is a K > 0 such that
1xI] < kl1x|]. Then
x]12 < k2[1x[2 = k21D 2 k2 ]3]
Conversely, if ||x]]? < k||x?]]then
[xl] < k2] 121172 g k2w /e 10

< R 2'“‘|x2n||2-n.

1 N )
Thus ||x[| < X lim [1x2}] /™ 2 K||x|| and the Gel’fand representation
k1 _

is uniformly closed, By Proposition 4 of Section 10, A is semi-

simple, But A is isomorphic to A, Consequently, A is semi-simple,

Proposition 5: If A is a commutative Banach algebra and A is the Gel”fand

representation of A, then a necessary and sufficient condition that

A be isametric to A is that Hlx]]12 = ||x%|| for every x € A,
Proof: If A is isometric to A then ||x||2 = |]x]]2 = |]x®)*]] = ||x2||.
If ||x][? = ||x?|| then just as in Proposition 4 with K = 1,

Hxl12 < 32 < 1] = Hxl2 or (x| = [1x]].
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SECTION 12  ABSTRACT ANALYTIC FUNCTIONS IN A

In this section it is shown that the Gel“fand representation of
a commutative Banach algebra A is closed under the application of ana-

lytic functions,

Propositioh 1: If Ae is a commutative Banach algebra with identity,
Ae is the Gel‘fand.representationvof Ag, X € Re' D ié a region
of C containing the spectrum of x (X(i)), £:D »C is analytic on
D, then there is a y € Ae which is such that £(x(M)) = f(M) for

all M 51*1; Moreover, the element y of A, is given by

1 £y dr
I (xe = x)

where the integral is the generalized integral defined in Section 6

and M is a closed path on D which encloses the spectrum of x,
Proof: Since no point of the spectrum of x is a member of I'*, the ele-

ment (xe - x)71 exists and is continuous on r'*. Moreover, since

f is analytic on D, the function g:r'* - A, defined by

g{x) = f(A)+(de - x)"! is uniformly continuous on T*, Thus,

{.g(A)dl exists; | -

Since the Gel“fand representation ¢:A, - Ke is in particular
a bounded linear function from the commutative Banach'aigebra Aq

to the commutative Banach algebra Ke» Proposition 2 of Section 6
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can be applied to yield

——g———

¢l 1 JSg(N)dag = 1 J(®0g) (A)da
2mi 27i r

or

N

ys 1 fgO)dr = 1 (0 (xe - x)~lda,
Zni T 271

But ¢(x) = X is a homomorphism, and thus
y= 1 ffEA)0e-x)"tr = 1 SEQ) (A - x)~lda,
iz 7t
Now if M is any element of 1V2, the mapping hM:Ae +C is
a homomorphism of A, to C. In particular hM is a bounded lin-
ear functional from Ag to C, Using the same reasoning as above

FOO =h () = 1 SEQ)(r - XCO)TY = £(RON).
M WIS

In the setting of a comnmutative Banach algebra without identity,
the above proposition may be reformulated using adverses, Additional

restrictions must be placed on either f or T, however,

~

Proposition 2: If A is a commutative Banach algebra without identity, A
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is the Gel“fand representation of A, X € R, D is a region con-
taining the spectrum of x, £:D > C is analytic on D, T is a
closed path which encloses the spectrum of x, and either

a) £(0) =0 or

b) T does not enclose 0,
then there is a y e A which is such that y(M) = £(X(M)) .

for all M e TYL.

Moreoever, the element y € A is given by

1 £00_ [x)*
y = - f N h)dx

where (x/A)” is the adverse of x/A.

Let A, be the extension of A to an algebra with identity. -Now

()\e - x)‘l = )\'I(e .,x/)\)‘?l.z A-le - N 1(){/ )\) ‘ By PI’OpOSitiOI\ 1,
1 (£

y - [-;- [,

i A

77 | £ [97,.

€ = 27 A A

The first term is an element of A,, the second is an element’of

A. If the term in brackets is zero, the result is in:A, and by
Proposition 1, y(M) = £(X(1)) for all M 5171. But the term in

brackets is zero whenever either a) or b) is satisfied.



CHAPTER III

EXAMPLES AND APPLICATIONS

SECTION 1 ALGEBRAS OF FUNCTIONS

If X is a nonvoid set, then a set of bounded complex valued func-
tions on X will be a commutative Banach algebra if addition, multipli-
cation, and scalar multiplication are defined pointwise, the norm is the
supremum norm, the set.is closed under addition, multiplication, and
scalar multiplication, and the set is ciosed with respect to unifomrm
convergence, An algebra satisfying the above will be called a function
algébra. Given a function algebra on a set X, the weak topology induced
on X by the elements of the algebra will make the algebra one of contin-
uous bounded complex valaed functions on a topological space, Thus any
function algebra may be viewed as an algebra of continuous bounded com-
plex valued functions on.a topological space, If the set X already has a
topology then the weak topology might have no relation to the ériginal
topology. If the functions are continuous in the original topology, then
the weak topology will be a subset of the original topology.

In this section, éertain function algebras will be discussed and
relations between the alggbraic properties of the function algebra and

topological properties of the space X will be drawn,

The Algebra C(X)

If (x,ﬁfi is a-compact Hausdorff space, then the set of all contin-
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uous complex valued functions on X is a Banach algebra, Let C(X) denote
the set of all continuous complex valued functions on X. This algebra is
commutative and has an identity, the function which is 1 everywhere,

In this section it will be shown that C(X) is isomorphic to'Ef;;:
the Gel“fand representatiog of C(X), and that X is homeomorphic toTYL.
Notice that points of X determine maximal ideals of C(X) since if p is a
point of X the mapping hp:C(X) + C determined by hé(f) = f(p) for £ ¢ C(X)
is a hosonorphism of C(X) onto the complex numbers. The kernel of hpis the

set of functions which are zero at the point p, Let M, denote the kernel

p

of h ,
%

Proposition 1: 1If C(X) is the aigebra of continuous complex valued func-
tions on a compéct Hausdorff space andVI is an ideal of C(X),=then
there is a point p of X such that I is a subset of Mp.

?roof: Suppose I is an ideal of C(X) such that I is a subset of no Mp.
‘Then for each p € X, there is an £ ¢ I such that f(p) + 0. But
Tp) = T(P) € C(X); thus |£]2 = £2f € I and |£]%(p) > 0. Thus for
each p € X there is a g, ¢ I such that gp(p) > O.A For each gé
ihere.is an open set containing p such that gp is positive on
thatoﬁen set containing p. The collection of all sefs of this .
form arean open cover of X, Since X is compact there is a finite
subcover of X, The sum of the function associated with the open

sets of this subcover is an element of I, But this sum is a func-

tion which is bounded away from zero, Call this function fo. Then
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l/f0 € C(X) and fo°(1/fo) =e e I, (e is the identity for C(X).)
But then I = C(X), a contradiciton, Thus there is a p ¢ X such

that 1T C M ,
P

Now in particular maximal ideals of C(X) are determined by points
of X; that is, if 4 is a maximal ideal of C(X), then there is a point p
of X such that M = Mp‘ Moreover, since the functions of C(X) separate
points, there is a one to one correspondence between the points of X
and the maximal ideals of C(X), p« Mp.

Notice that the algebra C(X) is semi-simple since Fglﬂp = 0, Thus
by Section 10 of Chapter II the Gel”fand representation is an isomor-
phism, Since the representation is an isomorphism and since thefe is
é one to one correspondence between the points of X and the poin.ts of 7)? ,
the space X endowed with the weak topology of the functions of C(X) is
homecmorphic toﬁﬂl. The weak topology is a subset of the original top-
ology. But the weak topology is a Hausdorff topology and the original
topology is a compact topology, thus the two topologieé must be the same,
The one to one correspondence p <~ Mp is thus a homeomorpﬁism.

It has been demonstrated that the algebra C(X) is isomofphic to
the Gel“fand representation and that the space X is homeomorphic to tﬁe
space‘ﬁq of maximal ideals; thus the.Gel’fand representation of C(X) is
faithful in the sense that all algebraic and topological properties are

preserved, Moreover in any algebra of functions, ||f£%]|| = ||£[|? for
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any f in the algebra, By Proposition 5 of Section 11, Chapter II,
C(X) is isometric to its Gel“fand representation,
One immediate consequence of the fact that the Gel“fand repre-

sentation is faithful is the Banach-Stone Theoren,

Theorem (Banach-Sténe): Two compact Hausdorff spaces are homecitor-
phic if and only if their corresponding function algebras
C(X) and C(Y) are isomorphic,

Proof: If X is homeomorphic to Y then C(X) is clearly isomorphic
to C(Y). Moreover; if C(X) is isomorphic to C(Y), C(X) and
C(Y) have the saﬁe Gel“fand representation. But X and Y are
each homeomorphic to the space 76Qof fhis Gel“fand represen-

tation, Consequently, X and Y are homeomorphic,

The Algebra C,(X)

If (X,:7; is a locally compact but not compact Hausdorff space,
then the set of ail continuous complex valued functions thch vanish
at infinity is a commutative Banach algebra. Let Co(X) be the function
algebra of continuous complex valued functions which vanish at infinity
on X, The algebra Co(X) does not have an identity, The exten;ion
of C_(X) to an algebra with identity is the algebra of all eleménts
of the form A + £, whefe XA is a complex number and f is an element

of Co(X)., If X” is the Alexandroff one point compactification of X,
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then every element g of C(X;) is an element of the form g(«) + f, where

f is in C,(X). The isomorphism of the extension of Co(X) and C(X*) shows
that the Alexandroff one point compactification corresponds in the above
sense to the extension of C,(X) to an algebra with identity, Thus, two

locally compact Hausdorff spaces X and Y are homeomorphic if and only if

Co.(X) is isomorphic to C_(Y).

Completely Regular Spaces

A topological space (X,7) is completely regular if and only if
for any point x ¢ X and any closed subset F of X which does not contain
x there is a continuous real valued function f such that £:X -+ [d,l]
and f(x) = 0 and £(F) ={}, In particﬁlar, every compact or locally com-
pact Hausdorff space is completely regular,

If X is a completely regular space, let C(X) denote the continuous
~complex valued functions on X, Now C(X) has the following propertieé:

1) CcX) is'a commutative Banach algebra with identity,

2) 1If p is a point of X, then Mp is a maximal idegl of p.

3) .If P, and p, are points of X, then there is an £ ¢ C(X) such

that f(pl) % £( %)

4) If £ e C(X) then ¥ e C(X)

5) If £ e C(X) and glb(|£(p)] |p € X} > 0, then 1/£ ¢ C(X)

It follows from statement 1 that the Gel-“fand representation of

C(X) is an algebra of continuous complex valued functions on a compact
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Hausdorff space, Since any function algebra is semi-simple, the
Gel“fand representation is an isomorphism,

It follows from statements 2) - 5) that distinct points of X
determine distinct maximal ideals, The points of X can thus be
imbedded in’TTl. Since the closure in.TTI of the image of X is a
compact Hausdorff space, the proof of Proposition 1 shows that the
maximal ideals of C(X) are given by points of this closure, Conse-
quently, the image of X is dense in TTL. Since this image is dense
in TQ, C(1Tl), the ;lgebra of continuous complex valued functions
on WTL must be just'ETIT.

Recall that the Stone-Cech compactification B8X of;a completely
regular space X i§ such that the functions of X can be uniquely ex-
tended to continuous function on the compactification.. Thisvuniqﬁe
extension property is equivaieht to the statement that C(X) is iso-
morphic to C(BX),-‘Thus the Gel”fand representation is isomorphic
to C(BX). But since Q(X) is isomorphic to thl), CCTn) is isomor-
phic to €(8X). By the Banach-Stone Theorem, BX is homeomorphic to'y , .

the maximal ideal space of the Gel’fand representation,
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SECTION 2 THE FOURIER TRANSFORM

An important class of Banach algebras can be characterized as
convolution algebras. An example of convolution algebra is the space
of functions from the real line to the complex numbers whose absolute
values are Lebesque integrable, Let Ll(-w,w) denote this set, This
space is a Banach space when addition and scalar multiplication are
defined pointwise and the norm of an e1e$ent of Ll(-w,w) is the inte-

gral of the absolute value of that element,

el = 7 leejax.
ilenceforth, whenever the limits of integration are -« and =,
the symbol S will be used in place of _Z,
If the product of two elements is defined as convolution,
(£xg) () = / £(x)g(y - x)dx
forrywe R, the real numbers, and f,g € Ll(-w,m); the Banach space

Ll(-w,w) becomes a Banach algebra, Since

P Exgll = F{7E)gly - x)dx|dy < /7|£(x) ]

gly - x)[dxdy,
but by the Tonelli Theorem‘this is
= [71 £ | ]gly - x) |dydx,

Letting w = y - x the above is

I E(x)
(F1£0x) |dx) « (S| g(w) | dw)
[1£}1-1gll.

Consequently, Ll(-m,w) is closed under multiplication, and the

| g(w) | dwdx

]
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norm inequality on preducts is satisfied,

The linearity of the integral lcads immediately to the fact that
multiplication is distributive and that the mixed associative law holds,
The Tonelli Theorem leads to the fact that multiplication is associ-
ative,

The above discussion indicates that Ll(-m,w) is a Banach algebra
With éonvolution for multiplication, Moreover, multiplication is com-
mutative since for any f,g, € L,(~=,») and any y ¢ R,

(£+8) (y) = /£(X)g(y - x)dx,
Letting w = y - x, the above is

-0

L= £y - wiglw)dw
Jf(y - w)g(w)dw
(g=f) (y),

or fxg = g,f for any £,g ¢ Ll(—w,w).

The algebra Ll(-m,w) does not have an identity, 1In order to prove

this result the following Lemna is needed,

Lemma 1: 1If g,f ¢ Ll(-w,w) and g is bounded (|g(t)| < C for all t) then -
gxf is a continuous function,
Proof: Let z(t) = (g«f)(t), then
fz(t + h) - z()]

|7g()ECt + h - x)dx - fg(x)E(t - x) dx|

A

FlgX)(£(t + h - x)- £(t - x)) |dx

St ax

=

< C/£(t +h - x)
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Letting w = X - t the preceding is

Cflf(h - W) - f(-w)]dw.
Since any function can be approximated by a simple function
and when f in the above integral is a simple function,.the
integral approaches 0 as h - 0, Consequently z is a uniformly

continuous function,

Suppose that Ll(-m,m) contained an identity elément. Then multi-
plication by the identity maps every bounded function to a continuous
function. Moreover, this continuous function must equal the bounded
functién almost everywhere, This is a contradiction, since in parti-
cular, if ins the characteristic function of [0,1] then Xg is in
Ll(-w;m) and there is no continuocus function which is equal t; X1
alnost everywhere, This contradicts the assumption that Ll(-w,w) has
an identity, Consequently Ll(-w,w) does not have an identity,

Henceforth L1 will denote Ll(-m,w), il will denote the Gel”fand
fepresentation of L1,1T1 will denote the_maximal ideal space of Ll.

At least some of the points of 4TL are given by pdints of (-w,w)r
in the following sense, Cénsider the mapping hy from Ll(-w,w) to the
complex‘numbers (hy:L1 -+ C) defined by ‘

hy (£) = J£(x) eIXVdx for f e L (-=,%),

The mapping is linear and preserves scalars since the integral is linear,
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Moreover, the mapping is a homomorphism of Ll(-W,w) onto the complex
numbers since

h (£g) = reIXY(fE(t)g(x - t)dt)dx

= ffE(£)g(x - t)elXYaxdt,
Letting w = ; - t; then hy(f*g)

e gy et Y quae

]

(SE() el )« (rg(w) el aw)
hy(f)'hy(g).

Thus homomorphisms of Ll(-w,w) to C are given by points in the above

]

sense, The points of (-»,2) can thus be identified with a subset of
the maximal ideal space 1Tlof Ll(-w,w). Moreover,.the value of a func-
tion f at the image of the point y in the maximal ideal space is givgn
by‘ |

| %(hy) = £y) = SE(x)elXvax,
This is the Fourier transform of the function f at the point vy,

It will be shown that the continuous homomorphisms of LI(-w,w) onto
the complex numbers are precisely those given by points of (-»,»), Sup-
pose h is any homomorphism of L1 onto the complex numbers, Then in parti-
éular ﬁ is a bounded linear functional on Ll. Conséﬁuently, h can be.rep-
resentéd as an integral of the form h(f) = /f(x)¢(x)dx for all f ¢ L1
where ¢ is an essentially bounded function on (-« ,»), § e L t-w,w).

® .

Moreover,
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h(£)h(g) = h(f)fg (¥)e(y) dy = /h(f)gly)e(y)dy
and

h(£)h(g) = h(fxg) = S(f.g) (x)+o(x)dx

= fg() UE(x - y)e(x)dx)dy

= fg(y)h(fy)dy

where f is the translate of f defined by fy(x) = f(x - y) for all
X € (-»,»2), Consequently, h(f)¢(y) = h(fy) almost everywhere in (-«,»),

But the mapping y - h(fy) is a continuous function on (-»,») £or
each f ¢ L . Since £ was any function in L , choose f such that
h(f) # 0., Then, letting ¢(y) = h(fy)/h(f), % is a continuous fﬁnction )
of y almost everywhere in (-»,»),

Letting y = x + z,

h(f)e(x + z) = h(fy) = h((fx)) = h(£,)¢ = h(f)e(x) o,

Thus ¢(x + z) = @(X)é; or ¢ is a continuous homomorphism of the real
numbers as an additive group to the complex numbers as é multiplicative
group, But every such homomorphism is of the form ¢(x) = eiXY, Thus
every homomorphism of L1 is given by a point of Ll(—wgw). |

Now distinct points of (-~,») determine distinct homomorphisms;
that is, if yl, y2 g€ (-»,°) then there is an f € L1 suéh that

hY1(f) ¢ hyz(f)' Thus the identification of points of y1 with maximal

ideals is one to one and onto,

Moreover, the functions of L1 are continuous functions of y
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in the usual topology of the real line since if h, > 0

By + 1) - 2] < IrEea e D TP Yy

£(x)e™™ |dx

< rle™n L og]e|£(x) |dx.
But the integrand is dominated by 2|f(x)|. Thus

xhp,

- ~ L 1 )
ﬁiﬁ | £(y + h) - i < i:f e = 1] £(x)]x,

and by the Lebesgue Dominated Convergence Theorem the last limit-is

ixhn - ll o

f%igle f(x) dx = 03
thus £ is continuous.
Since the functions of ﬁl are continuous under the topology of

and under the fop010gy of (-»,») when idenfified with’h1 and since by
the Riemann-Lebesgue Lemma the funcfions of il vanish at infinity, the
the functions of ﬁl are continucus on both the real line with the
Alexandroff ome point compa;tification and the maximal ideal space 1“0.
But the topology of +np is a subset of the tqpologyvof the gompagtifi-
cation of the real line, Thus the mapping of points of the compaétifi-
cation of the .real line to points of the maximal ideal space is é one
to one continuous and énto mapping of a compact space onto a Hausdorff,
space, Hence the inverse is continuous and the spaces are homeomorphic,

Thus the Gel“fand representation of L1 is just the algebra of
Fourier transforms of the elements of Ll.

The proof that L1 is semi-simple is too long to be included here,

The. interested reader is referred to Loomis, Nevertheless, since L1 is
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semi-simple the Fourier transform is an isomorphism, Thus different
elements of Ll have different Fourier, transforms,

The results of Section 12 can be applied to yield the following
proposition, If f is an elgment of £1 and ¢:D >~ A is analytic on a .
region containing the range of ¥ and ¢(0) = 0, then there is an absolu-
tely'integrable function g such that the Fourier transform of g is such

that g(y) = o(f(y)) for all y e (-»,).
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