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Abstract 

Light detection and ranging (LiDAR) is a powerful technique that provides 

accurate three-dimensional measurement of targets. New generation single photon 

LiDAR (SPL) systems are able to collect data at faster rates than conventional linear-

mode LiDAR and at a lower cost. However, the new SPL systems are also very sensitive 

to false returns, which cause a high noise rate in the collected data. As a result, SPL 

systems present new data processing challenges.  

The filtering of SPL data has different requirements than imaging or conventional 

linear-mode LiDAR data. There is no intensity information for each return, and the data 

structure of the 3-D point cloud is irregularly spaced and different than 2-D images, 

therefore most imaging processing methods cannot be applied directly to SPL data. It also 

has a much higher noise rate than conventional LiDAR data, which makes conventional 

LiDAR filtering methods inapplicable. There has been some initial research on 

techniques for filtering SPL data; however, the problem has not been fully studied. In this 

dissertation, new SPL filtering algorithms which accommodate the higher noise and false 

return rates, along with afterpulsing will be developed and analyzed.  

First, two novel filtering methods are proposed to remove solar/dark noise for 2-D 

and 3-D SPL data respectively. The 2-D method considers inhomogeneous noise 

distribution and local point distribution to provide a more reliable filtering result. The 3-

D method utilizes principle component analysis to remove near-signal noise more 

effectively. Results from these two methods were compared with current methods on 

different types of terrain. The proposed methods removed more noise points and had 

lower RMSE compared to the reference data. An improved version of the proposed 3-D 
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filter that better retains linear features such as powerlines is then proposed and validated. 

Finally, a method based on robust regression is proposed to remove afterpulses. We 

found that on average, 90% of the afterpulse points were removed over rooftop areas and 

the mean elevation difference with respect to a reference surface was reduced from 1.95 

m to 0.23 m. 
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Chapter 1 

Introduction 

Remote sensing helps provide a better understanding of the world. Scientists can 

observe large scale vegetation distribution with modern satellite optical imaging [1], 

visualize urban heat island effects using advanced infra-red sensors [2] and detect targets 

hundreds of miles away with the help of radar [3].  Among the many remote sensing 

techniques, light detection and ranging (LiDAR) can directly provide accurate 3-D 

information of imaged targets. Since its first use as a part of the Apollo Command and 

Service Module project in the 1970s [4],   LiDAR has shown its ability to accurately map 

in a variety of applications: Earth topography, forest biomass, shallow water bathymetry 

and ice sheet elevation changes [5]–[8] to name just a few.  

Currently, most operational LiDAR systems work in a modality usually termed 

linear-mode: here the amplitude of the output laser signal is linearly proportional to that 

of the received/reflected energy. However, a new generation of remote sensing LiDAR is 

currently being developed in which the detector is sensitive to even one received photon, 

and appropriately termed a single photon LiDAR (SPL) system. These SPL systems have 

a variety of benefits, but also require new data processing approaches. This dissertation 

aims to address one of the outstanding challenges with SPL point clouds: data filtering.   

1.1 Fundamental concept of airborne LiDAR 

LiDAR can be classified as terrestrial, mobile, airborne, spaceborne and marine 

based upon the platform on which it is deployed [9]. For example, an airborne laser 

scanning system (ALS) is an active acquisition system mounted on an aircraft. A typical 
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ALS system usually has the following main components: 1) a laser ranging unit and 

scanning assembly; 2) a combined GNSS (Global Navigation Satellite System)/IMU 

(Inertial Measurement Unit) position and orientation system; and 3) computer subsystem 

for data logging and control. 

The laser ranging unit transmits laser pulses and records backscattered laser 

radiation at a pulse repetition rate of tens or even hundreds of kilo hertz. The receiver 

records information on the time of flight (TOF) and the relative strength of the return 

echo. With accurate timing of the TOF at the picosecond level, the system can obtain 

centimeter level ranging by multiplying the TOF with the known speed of light. The 

GNSS and INS provide position and altitude information which can transform the local 

coordinate system of the laser measurements into a global reference frame. Data from the 

three components results in a globally geo-referenced 3-D point cloud. The users can 

therefore obtain accurate 3-D information of the targeted area from the resultant point 

cloud.  

Airborne LiDAR systems can provide versatile, accurate 3-D measurement of 

target areas with fast collection speed. They have been used as a complement or even as a 

replacement for other existing geo-data collection methods. Airborne LiDAR data has 

been employed for a variety of tasks including DEM (digital elevation model) generation 

[10], [11], agriculture monitoring [12], archeology discovery [13]–[15], ecosystem health 

monitoring [16]–[18] and geomorphology [9], [19], [20]. As the number of new LiDAR 

acquisitions increases, ALS data will continue to show its advantages and versatility for 

more and more fields of study.  
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1.2 Motivation for single photon LiDAR (SPL) 

Traditional linear-mode LiDAR uses either photodiodes or photomultipliers as the 

detector to convert incoming photons to electrical current. The output current is 

proportional to the number of incident photons, so these are normally referred to as linear 

mode sensors [21].  Because of residual systematic and stochastic noise sources in these 

detectors, such as electrical noise or solar background noise, a high electrical current 

magnitude is preferred to decrease the probability of recording false positive returns. 

Usually several hundreds of photons are needed for the system to record an event [21]. In 

this case, a high energy laser pulse is also needed; pulse energy for ALS is typically on 

the order of hundreds of micro Joules [22]. 

The basic design of a conventional ALS utilizes a simplified detection scheme 

that only works when high energy pulses are used so that the noise level doesn’t exceed 

the detection threshold.  However, high energy systems are not always desirable because 

of the size and cost of the system hardware. In some projects with a fixed power budget, 

for example, unmanned aerial vehicle (UAV) missions, the heavier system and battery 

will be a significant limitation. The complex electronics required also increases overall 

system cost. These high energy pulse systems do not make the most efficient use of 

transmitted laser photons [23]. It has been shown that for a given laser power-receiver 

aperture product, the maximum surface return rate is obtained by adopting a single 

photon detection threshold and a low mean signal strength [23]. Physically this implies 

using a high repetition rate, but low energy, laser transmitter.  

These problems have motivated an alternate way to detect low energy light, made 

possible by developments in semi-conductor detection techniques. Newer generation 
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detectors using Geiger-mode avalanche photodiodes (GmAPD) or microchannel plate 

photomultiplier tubes (MCP-PMT) are sensitive at the single incoming photon level. MIT 

Lincoln Laboratory (MITLL) has pioneered the development of single photon LiDAR 

using GmAPD [24]. MITLL developed their Gen-I 3-D LiDAR using a 4×4 Geiger-mode 

APD array [25]. This brass board LiDAR system was used to test the concept of using an 

array of GmAPD to capture high-resolution 3-D data. After the success of the Gen-I 

system, a larger 32×32 GmAPD array was tested in the Gen-III system [26]. Recently, a 

new model of the LL 3-D imaging LiDAR has been developed with a 32×128 detector 

array [27].      

New generation LiDAR using single photon detectors have many operational 

advantages over conventional linear-mode LiDAR. One of the benefits is fast data 

acquisition speed. Three factors contribute to the improvement in data collection speed. 

The first factor is the novel design of the detector; SPL can image terrain within the 

receiver FOV (field of view) for tens or hundreds of pixels of a photon detector array 

simultaneously and each of the pixels is fed into a separate timing channel [28], [29]. 

Therefore, SPL can collect data much faster than most conventional ALS that typically 

only record several returns for each fired laser pulse. Second, a higher acquisition altitude 

helps accelerate the collection. ALS data is collected by scanning the target area with a 

specific pattern. With a fixed maximum scan angle, the higher the aircraft flies, the wider 

the swath will be (for saw tooth and parallel line scan patterns) or the larger the radius of 

a circular scan pattern will be. Therefore with the same flight velocity the system can 

scan larger areas from a higher altitude. Of course, higher altitudes can also cause lower 

point density because the size of the imaged footprint is proportional to flight altitude. 
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For conventional ALS, the aircraft usually flies at lower altitudes to insure high point 

density. However, for SPL systems, this is compensated for because an array of detectors 

is employed. Finally, the faster speed of the aircraft enabled by the array of detectors is 

also an important factor. Again, considering the scanning mechanism of an ALS system, 

for a fixed swath, the faster the aircraft flies, the larger the area that is scanned in a unit 

time. These three factors enable SPL to collect data much faster than the conventional 

linear-mode ALS, without sacrificing point density.  

Additional benefits for SPL systems are their fast response to incident photons 

and their compact size. For GmAPD, when a small number of photons hit the detector, an 

avalanche current will be generated to stop the CMOS (complementary metal-oxide-

semiconductor) timer after ~100 picoseconds [30]. For a MCP PMT the rise time ranges 

from ~100 picoseconds to several hundred picoseconds [31]. The FWHM (full width at 

half maximum) of the emitted pulse width is usually on the order of hundreds of 

picoseconds whereas linear-mode LiDAR usually employs few nanosecond pulse width 

[32]. This fast response and narrow pulse width together enable a high range precision for 

SPL systems. However, the systems saturate with incident photons and therefore need 

time to recover after recording a return. The detectors record no intensity information due 

to the saturation and thus require no analogue gain circuits, which enables production of 

compact detector arrays.  

Finally, the new single photon detectors make long range light detection easier. 

For spaceborne laser altimetry, the pulse energy will severely attenuate because of 

atmospheric scattering and absorption during the long travel path. With the single photon 

technique, satellites can detect even a single return photon, which can provide ranges on 
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orbit. In 2018, NASA (National Aeronautics and Space Administration) will launch the 

ICESat-2 satellite to observe ice sheet elevation change and sea ice thickness, while also 

generating an estimate of global vegetation biomass. The sole instrument on ICESat-2 

will be the Advanced Topographic Laser Altimeter System (ATLAS). ATLAS utilizes 

single photon LiDAR to obtain a denser data profile of the ice sheet than its predecessor 

ICESat. The pulse energy of ICESat-2 will only be 25–100 µJ compared to pulse energy 

of ~100 mJ for its predecessor ICESat [23].  

1.3 Limitation of single photon LiDAR 

These new single photon LiDAR systems can collect data at very fast speeds, and 

provide dense point clouds with decreased collection costs. All these benefits seem to 

suggest that this technology will have a promising future. However, one severe limitation 

of SPL hinders the wide scale adoption of the technology until it is solved; the very high 

noise level and false detection rate in SPL point clouds. The high sensitivity of the 

detectors that enables SPL to detect single photon events can also cause the system to 

record false returns from sources such as solar energy and system dark count. Because of 

the detection mechanism employed in SPL, the number of incoming photons is irrelevant, 

which leads to the absence of estimates of return intensity, which in turn means there is 

no differentiator between signal and noise detections. The system is sensitive to photon 

events in a large range gate, usually several hundred meters, to ensure that all the signal 

points are recorded. Unlike conventional linear-mode LiDAR, which has few noise points 

in the data because of the high detection threshold, there are a large number of noise 

points in a SPL data set (as shown in Figure 1-1) and the data cannot be used until a filter 



7 

 

that effectively separates signal and noise returns is applied. For linear-mode LiDAR data 

processing, which is a much more mature field of research, there are a number of filtering 

methods that have been developed and applied. Typically, filtering of linear-mode data 

means removing non-ground points and obtaining an estimate of the ground DTM 

(Digital Terrain Model). The method works by considering one or several of the 

following ground surface characteristics [33]: lowest elevation [34], ground surface 

steepness [35]–[37], ground surface elevation difference [36], [38], [39] and ground 

surface homogeneity [36], [40]. The first characteristic, lowest elevation should always 

be considered when using other characteristics. For example, using elevation alone will 

wrongly label house roofs, which are usually very flat and smooth, as ground.  In SPL 

data processing, estimation of ground is also an important task. However, all the 

developed methods for linear-mode LiDAR mentioned above cannot be used. The signal 

points for either ground points or non-ground points are typically distributed in the 

middle of the range gate and there are therefore noise points both above and under 

ground (again see Figure 1-1). In this case, starting from an assumption of lowest 

elevation cannot be used as the primary criteria to filter ground.  

 
 

Figure 1-1 Two-second data sample of High Resolution Quantum LiDAR System (HRQLS) system raw 

point cloud (detail of this system are given in Chapter 2). The points are colored by elevation. 

Noise points can be seen both above and under the ground.    
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The characteristics of SPL noise makes SPL filtering a unique issue to be 

addressed, especially since current image processing or conventional LiDAR filtering 

algorithms do not work for SPL data. The study of SPL filtering algorithms is still in its 

infancy and only a few methods have been published to date [8], [41]–[46]. All of the 

algorithms take advantage of the fact that signal points cluster together while noise points 

are distributed sparsely in the space. From this point of view, the methods can be 

basically divided into two categories, image-based and density-based. The basic idea 

behind image-based methods is to rasterize the data into a 2-D image and use established 

image processing techniques to filter the noise. The density-based methods try to define a 

specific region around an investigated point and count the number of points within the 

arbitrarily defined region. The point will be considered as noise if the number of 

neighboring points is smaller than a threshold. These methods will be fully reviewed in 

Chapter 3.  While they address the filtering problem to some degree, they also suffer 

from significant deficiencies, for example based on some assumptions that are not 

universally applicable or relying on arbitrary thresholds. A better and adaptable filtering 

algorithm is still needed.  

1.4 Contributions 

Single photon technology provides many advantages over conventional linear-

mode LiDAR systems but also introduces new challenges for discriminating true returns 

within the point cloud. We are aiming to develop an effective filtering algorithm for SPL 

data. To achieve this goal, the following contributions are made in this dissertation: 
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1). A novel solar/dark noise filtering method for single photon laser altimetry data 

based on Bayesian decision theory is proposed and implemented. 

2). A novel solar/dark noise filtering method for 3-D imaging single photon 

LiDAR data is proposed and implemented to remove near-signal noise more effectively. 

3). An improved solar/dark noise filtering method is proposed and implemented to 

retain linear features during filtering process. 

4). A novel method to remove afterpulses based on robust regression is proposed 

and implemented. 

These filtering methodologies significantly improve the quality of the filtered 

point clouds by considering inhomogeneous noise distribution and local signal geometry 

which are not discussed by the current published methods. The afterpulse filtering 

method also demonstrates its efficiency in afterpulse removal which is rarely studied in 

current filtering research. 

1.5 Organization of dissertation 

Chapter 2 introduces the theory of single photon LiDAR and provides an 

overview of current SPL systems. 

Chapter 3 reviews state-of-art filtering algorithms for both laser altimeter and 3-D 

imaging LiDAR. 

Chapter 4 describes a novel algorithm for single photon laser altimetry data.  

Chapter 5 describes a novel algorithm for 3-D imaging single photon LiDAR 

data. 
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Chapter 6 describes an improved filtering algorithm for 3-D imaging single 

photon LiDAR data.  

Chapter 7 describes a method to remove afterpulses in single photon LiDAR data. 

Chapter 8 summarizes the conclusions of the work and outlines possible future 

research directions. 
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Chapter 2 

SPL Theory and SPL Systems 

2.1 Single photon LiDAR 

The equation describing the backscattered signal for SPL is similar to that for 

traditional linear-mode LiDAR. Assuming a collimated beam, the expression for the 

expected number of photon electrons sn  generated at the LiDAR detector is [47]  

    
2

,2
cos exp ,t r

s h q r e

E A
n R

h R
      

 
          (2.1) 

where h  is the hologram efficiency (in the case of an altered beam), 
q  is the detector 

quantum efficiency, r  is the receiver optical efficiency, tE  is the transmitted energy 

with units of joules, h  is Planck’s constant,   is the photon frequency in hertz,   is the 

wavelength-dependent surface reflectance coefficient,   is the local incidence angle on 

the surface, rA  is the collecting area of the receiver aperture, 
,e   is the atmospheric 

extinction coefficient in per meter, and R  is the range [23]. A narrow-band spectral filter 

is employed to reject incoming light outside a spectral band centered at the laser’s 

wavelength.  

One of the significant characteristics of SPL data is the high noise rate that is 

mainly a result of background solar noise and system dark current. The expected rate of 

noise photon electrons 
,b atmn  due to solar background illumination can be modeled as 

[47] 
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  (2.2) 

where N  is the input exoatmospheric solar irradiance at the laser wavelength  , B  is 

the spectral filter bandwidth, r  is the receiver field of view in steradians, s  is the solar 

zenith angle in radians relative to the local Earth surface, ah  is the LiDAR altitude, sch  is 

the atmospheric vertical scale height (vertical distance at which the energy is expected to 

attenuate by a factor of e ) and 0T  is the one-way atmospheric transmission defined as 

[23] 

    0 , exp ' ' ,
a

a
h

T T h dz z
    

     (2.3) 

 where  z  is the atmospheric extinction coefficient that is assumed to be a function of 

the vertical height only. 

Likewise, the expected rate of noise photon electrons due to Lambertian solar 

scattering at the surface can also be modeled by the following equation [47], 

 

    sec sec 1 exp

0
, .

a
s

sc

h

h

q r r
b surf

N B A T
n

h

 

   
  

 

  
     

  
    (2.4) 

An SPL system exhibits dark current events in the detector due to things such as 

photocathode thermoemission, cosmic rays, and spontaneous emission under transient 

electric potentials in the LiDAR sensor head [47]. Dark rates are typically reported by the 

manufacture. The total mean number of noise photon electron per range bin is given as 

[47]  

  , , , ,b b atm b surf b dark bn n n n       (2.5) 
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where 
,b darkn  is the dark noise rate in counts per second and b  is the length of a range 

bin in seconds.  

Poisson random processes are used to model signal and noise returns as [48], [49].  

The probability that there are tn  detected photon electrons is therefore given by [47] 

  , ,
!

tn n

t

t

n e
P n n

n


   (2.6) 

where n  is the expected number of generated photon electrons. The probability that at 

least one event occurs is an important metric since the system will record the event 

without considering the number of photons. The probability that there is an event 

occurring is simply the compliment of the probability that zero events occur. This 

probability is given by 

  0 1 .nP n e     (2.7) 

So, for each range bin, the recording of a photon electron is a binary event. Then along 

the whole range, the distribution of noise returns follows a uniform distribution.  

Using the derived ranges for both signal and noise returns, a point cloud can be 

generated for SPL in a similar manner to the geo-referencing process for a conventional 

ALS system. Airborne LiDAR systems output 3-D coordinates of target regions using the 

GNSS (Global Navigation Satellite System)/INS (Inertial Navigation System) trajectory, 

the mounting calibration parameters, rotational offset between the scanner and the 

GNSS/INS system and the range and angle measurements of the scanners. An ALS 

system integrates all these measurements through the ALS direct georeferencing equation 

[50], 
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  (2.8) 

where, ,X Y and Z  of the output vector are the coordinates of the target in a global 

coordinate frame and 0 0 0,X Y and Z  are the coordinates of the center of GNSS. The 

angles , and    are the roll, pitch and yaw of the sensor from the body frame to the 

local level frame determined by the INS and the angles ,d d and d    are the boresight 

angles which indicates the angular mounting differences between the INS and scanner 

coordinate frames. The scan angle   and range R  are measurements from the scanner. 

Finally, ,x y zl l and l  are the lever arm offsets, which are the physical offsets between the 

INS origin and the measurement origin of the laser scanner.  

For a single photon altimeter which fires lasers using a fixed angle without a 

scanning mechanism, equation (2.8) can be used directly; the only difference is that the 

scan angle   is fixed. However, for a 3-D imaging SPL, equation (2.8) needs to be 

modified because an array of detectors is used in the system with potentially different 

angles for each detector in the array. Figure 2-1 demonstrates a 10×10 2-D detector array 

as an example. For this configuration we have the following equation,  
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  (2.9) 

where, i and j are index of the pixel and 
pp  is the pixel to pixel rotation angle. The array 

on the ground may be rotated with an angle R , and so equation (2.9) can be modified as 
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  (2.10)  
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Figure 2-1 Example of a 10x10 2-D array. The laser shots at the intersection of lines are partially indicated 

by grey dots. 

 

The scan pattern used in modern 3-D imaging SPL systems is primarily a circular 

scan as demonstrated in Figure 2-2. The laser is refracted by an optical wedge [51] and 

leaves the scanner with a fixed cone angle. The wedge is rotated and the horizontal mirror 

angle is recorded by the system. Considering the effect of a varying scan angle, we can 

modify equation (2.10) to the following form, 
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where,   is the scan angle. Equation (2.11) describes the vector in the array plane.  We 

also require the central vector which is the vector from the sensor to the center of the 

array plane, and is calculated with the following equation, 

   
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 (2.12) 

where,   is the half cone angle and   is the range.  When 1   and with some 

simplification, we have  
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  (2.13) 

The point vector from the sensor to the laser footprint on the ground will be the sum of 

the central vector and the pixel vector given as 
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  (2.14) 

We can then obtain the normalized pointing vector and range from the sensor to 

each laser footprint with the following equations: 
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where, l  is the length of the pointing vector. With the range vector, the raw SPL data can 

be geo-referenced to form a point cloud using the same process as conventional airborne 

LiDAR data. 
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Figure 2-2 Overview of a circular scan pattern and definition of half cone angle and scan angle  

2.2 Single photon LiDAR photodetector 

One of the most significant differences between SPL and conventional LiDAR is 

the laser return detector employed. New detector technology enables SPL to be sensitive 

to a single photon event. In this section, two types of single photon detectors are 

introduced.  

2.2.1 Geiger-mode APD 

One of the two ways to detect single photon events is to use a Geiger-mode 

avalanche photodiode [52]. An APD is a variation of a P-N junction photodiode. When a 

P-N junction photodiode is reverse biased under a certain level, there will be an electric 

field in the vicinity of the junction that keeps holes to the P side and electrons to the N 
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side of junction. When an incoming photon of sufficient energy is absorbed in the region, 

an electron-hole pair is generated. Because of the existence of the electric field, the hole 

drifts to the P side and the electron drifts to the N side, resulting in a photocurrent. Note 

that electron-hole pair can also be thermally generated even without incoming photons 

and generate current, which is called dark current.  

An APD operates with the above principles, however, they are also designed to 

support high electric fields.  A high electric field will accelerate electron-hole pairs and 

provide them with sufficient energy after the incoming photon is absorbed. Then the 

electron (or the hole) collides with the crystal lattice and generates another electron-hole 

pair which can also generate new pairs. This process is called impact ionization. During 

this process, more and more electron-hole pairs are generated and this is the reason for 

the name “avalanche”. Each absorbed photon generates on average a finite number of 

electron-hole pairs. This finite number is the internal gain of the detector which is usually 

about 102 – 103. This working mode is called linear mode because the resultant 

photocurrent is linearly proportional to the number of incoming photons.  

If the reversed biased voltage is even larger than a limit, called the breakdown 

voltage, the electrons and holes multiply by impact ionization even faster than they can 

be extracted. The number of electrons and holes increases exponentially in time. In this 

case, a single photon event leads to an ‘infinite’ signal and a very high gain can be 

obtained, usually about 106  [29]. This working mode is called Geiger-mode and the 

output photocurrent is independent of the number of photons incident so that the 

magnitude of the input signal cannot be detected. After the detection of a photon event, 

the avalanche current needs to be shut off to re-arm the detector for the next detection. 
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This process is called quenching [48]. The reset time typically takes 10 to 100 ns and is 

called dead time. Figure 2-3 shows the photocurrent in these two working modes.  

 

Figure 2-3 Relationship between photocurrent and reverse bias [53].  

 

A recent advance in detection techniques using GmAPD is the silicon 

photomultiplier (SiPM) [54]. The basic structure of a SiPM is an array of microscopic 

APDs each working in Geiger-mode [55]. Each APD has an individual quench resistor 

and these pairs form a microcell. When a microcell responds to an incoming photon, a 

Geiger avalanche is initiated resulting in a photocurrent through the microcell. Then the 

voltage across the quench resistor drops and in turn reduces the bias voltage across the 

diode to a level lower than the breakdown voltage. During the avalanche process of one 

microcell, other microcells remain fully charged and are able to detect photons. The 

output of the detector is the sum of photocurrents from the individual microcells. 

Therefore, the magnitude of output photocurrent is proportional to the number of 

triggered microcells and is capable of providing information on the magnitude of 

incoming photon flux [56]. 
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2.2.2 Microchannel Plate-Photomultiplier Tube 

The other commonly used detector for single photon LiDAR is a microchannel 

plate-photomultiplier tube (MCP-PMT). A photomultiplier tube is a vacuum tube 

consisting of the following components: an input window, a photocathode, focusing 

electrodes, an electron multiplier and an anode which is usually sealed into an evacuated 

glass tube [57]. Figure 2-4 demonstrates the typical construction of a PMT. 

 
 
Figure 2-4 Construction of a photomultiplier tube [31] 

 

When light enters a PMT, it passes through the input window first and then 

excites the electrons in the photocathode so that photoelectrons are emitted into the 

vacuum. This process is also called external photoelectric effect [58]. Photoelectrons are 

accelerated and focused by the focusing electrode onto the first dynode. Each photo 

electron liberates a number of secondary electrons which are accelerated and focused 

onto the next dynode. This process is repeated and finally the secondary electrons from 

the last dynode are collected at the anode.  

With the emergence of microchannel plate (MCP), PMT have evolved into a more 

versatile device [31]. MCP-PMT employ a MCP to replace the conventional discrete 
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dynodes. This design makes the PMT able to measure wide-bandwidth down to the 

picosecond level and weaker incident light at the photon counting level. The schematic 

structure of an MCP is shown in Figure 2-5. An MCP is a thin disk with a two-

dimensional array of glass capillaries (channels) bundled in parallel onto it. One single 

channel of it is very small with an internal diameter of 6–20 microns. The inner wall of 

each channel has the proper electrical resistance and secondary emissive properties so 

that it acts as an independent electron multiplier. When an electron enters a channel and 

impacts the inner wall, secondary electrons are emitted. Accelerated by the voltage across 

the both ends of the MCP, the secondary electrons then impinge the wall and generate 

additional secondary electrons. This process is repeated along the channel, resulting in a 

larger number of electrons at the other end of the MCP.  

 

Figure 2-5 Schematic structure of an MCP and its principle of multiplication [31] 

 

The new design of the MCP provides several benefits compared with 

conventional discrete dynodes design: 

1) High gain despite compact size 

2) Fast time response 
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3) Two-dimensional detection with high spatial resolution 

4) Sensitive to charged particles 

GmAPD and MCP PMT share a lot in common. They both have high gain to 

ensure single photon sensitivity, can be produced in compact size and have fast response 

to the incoming photons. SPL systems based on both of these detectors are currently 

implemented. The biggest difference between these two detectors are their respective 

dead times. The dead time of a PMT is much shorter than that of GmAPD. So systems 

with MCP PMT are able to record multi-stop events. However, the short dead time 

inevitably increases the data volume at the same time, and the recording speed of the 

timing hardware limits the size of detector arrays for PMT systems. This is partially the 

reason why current PMT system’s detector array are only 10×10 [51] while GmAPD 

array can be as large as 32×128 [27]. For SiPM detectors, the biggest shortcoming is the 

high dark count rate which can make the final point cloud noisier than that from MCP 

PMT based systems [56].   

2.3 Introduction to current single photon altimeters 

2.3.1 NASA Multi-kilohertz Microlaser Altimeter 

NASA’s Multi-kilohertz Microlaser Altimeter (MMLA) was the first altimeter to 

use a single photon technique [22]. MMLA is an airborne multikilohertz microlaser 

altimeter developed by Goddard Space Flight Center under NASA’s Instrument Incubator 

Program (IIP). The system was developed in December of 1998 and was first used for 

one engineering and two science flights in 2001. The typical flight height for MMLA is 

from 3.5 to 6.7 km. MMLA was designed to detect single photon returns reflected from 
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targets of interest and determine their height. The MMLA instrument utilizes a Polysci 

3.5J , 532nm and 12 kHz microlaser. The beam and FOV (receiver field of view) are 

conically scanned at 20 Hz around a 2 degree cone to produce a swath along the flight 

path. MMLA is a proof-of concept instrument and the data collected by it demonstrated 

great potential for single photon techniques.  

2.3.2 NASA ICESat-2 

Satellite altimetry over the continental ice sheets has proven to be a valuable tool 

for studying decadal ice sheet elevation changes [59]. NASA launched the Ice, Cloud and 

land Elevation Satellite (ICESat) in 2003 to monitor interannual and long-term changes in 

polar ice-sheet volume [60]. ICESat has contributed significantly to human’s 

understanding of ice sheets [59], [61]–[63]. The ICESat mission’s primary instrument 

was Geoscience Laser Altimeter System (GLAS), which carried three 1064 nm Nd-YAG 

lasers. ICESat determined land surface vertical structure within laser footprints using 

received waveforms recorded by GLAS. The operating laser fired at a rate of 40 Hz and 

the laser illuminated a spot on the ground surface with a diameter of about 65 m. 

Successive spots were separated on the surface by 172 m [60].  Separation of the ICESat 

tracks is 15 km at the equator, 11km at mid-latitudes, and 2.6 km at 80 degrees latitude. 

ICESat finished its mission in 2009 and to continue this observation mission NASA will 

launch a new generation satellite, ICESat-2 in 2018 [64]. ICESat-2 will obtain point 

clouds of polar ice sheet elevations using the photon laser instrument from the Advanced 

Topographic Laser Altimeter System (ATLAS). ATLAS will split the outgoing laser 

energy into 6 beams, arranged in 3 pairs, with 3.3 km between pairs and 90m separation 



24 

 

between members of each pair (shown in Figure 2-6) [65]. The system will fire a green 

laser (532 nm) at a rate of 10 kHz.  

For ICESat-2, single photon sensitive detectors makes it able to provide a much 

denser point cloud than its predecessor.  With a repetition rate of 10 kHz at an altitude of 

200km, ICESat-2 will produce footprints of nominally 14m diameter at 70 cm intervals 

along track. ICESat-2 data with better resolution and coverage will provide more 

observations for ice sheet study.  

 

Figure 2-6 Ground track of ICESat-2 (left) and ATLAS instrument mounted on ICESat-2 (right) Credit: 

NASA Goddard Space Flight Center. 

2.3.3 NASA MABEL 

Given the different design of ICESat-2 compared with ICESat, the ICESat-2 

project needed simulated data to verify the new instrument model, provide a detailed 

error analysis of the ATLAS measurement strategy and develop algorithms for the new 

data [66]. Consequently, the Multiple Altimeter Beam Experimental LiDAR (MABEL) 

[67] was developed.  

The main instrument parameters for MABEL are shown in Table 2-1. MABEL 

uses a high-repetition-rate pulsed laser which can operate at repetition rates from 5 to 25 
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kHz; typical operations use 10 kHz to simulate ICESat-2. The systems fires both 1064- 

and 532-nm lasers to compare measurements at different laser wavelength.  Because only 

one laser is used in MABEL, a splitter box is employed to split the output beam. The 

receiver has 105 fibers and will utilize up to 16 for 532 nm and up to 8 for 1064 nm 

returns.  

 
 

Figure 2-7 MABEL viewing geometry as defined by fiber arrays. If the outermost fibers are illuminated, 

the swath width would be 1.05 km [67].  

 
Table 2-1 Main parameters for MABEL [67] 

Parameter Value 

Operational altitude 20 km 

Wavelength 532 and 1064 nm 

Telescope diameter 12.7 cm 

Laser pulse repetition frequency Variable 5–25 kHz 

Laser pulse energy Variable, nominal 5–7 µJ per beam 

Laser footprint (1/e2) 100 µrad (2 m) 

Telescope field of view 210 µrad (4.2 m) 

Filter width 532 : ~150 pm 

1064: ~400 pm 

Detector efficiency 532: 10%–15% 

1064: 1%–2% 

Swath width (variable) Up to ±1.05 km 
 

The electronics of MABEL were custom developed by Sigma Space Corporation. 

The time-tagging electronics have a measured resolution of 83 picoseconds which is 
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smaller than the ICESat-2 requirement of 150 picoseconds. A Novatel model HG1700 

inertial measurement unit (IMU) is used to ensure accurate determination of instrument 

pointing. The MABEL instrument was flown aboard the ER-2 aircraft on several 

missions above various earth surfaces between 2010 and 2014 at different times of the 

day [68]. MABEL datasets can be openly accessed from the NASA website 

(https://icesat.gsfc.nasa.gov/icesat2/data/mabel/mabel_docs.php). Each dataset contains 

one minute of data which corresponds to a ~12000 m profile. The data includes 16 

channels of 532 nm returns and 8 channels of 1064 nm returns. The geometry of MABEL 

data collection is shown in Figure 2-7. MABEL data will be one of the experimental 

datasets examined in this dissertation and used to test new filtering algorithms.  

2.3.4 NASA SIMPL 

The Slope Imaging Multi-polarization Photon-counting LiDAR (SIMPL) is a 

polarimetric, two-color, multi-beam push broom laser altimeter developed by NASA 

Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) [69]. The 

purpose of the development of SIMPL was to demonstrate new altimetry capabilities for 

combining elevation measurements and ground surface information.  

Figure 2-8 provides an overview of the functional block diagram of the SIMPL 

instrument. SIMPL utilizes a high repetition rate (11 kHz), short-pulse (1ns) laser with a 

wavelength of 1064 nm. Part of the near infrared (NIR) beam is frequency doubled to 532 

nm. The output of SIMPL is 4 linearly polarized beams with both NIR and Green lasers 

in each beam. The receiver filter divides the two wavelength returns into separate paths 

and produces 16 channels (four color/polarizations states on the four beams). The return 
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signal is fiber coupled into sixteen single-photon counting modules to determine range to 

the target.  

 
 

Figure 2-8 Pushbroom photon counting laser altimeter measurement approach using multiple fiber lasers, 

single photon counting detectors [70]. 

2.4 Introduction to current 3-D imaging SPL 

In this section, we will introduce the current state-of-art 3-D imaging single 

photon LiDAR systems. The common characteristics of such systems are the use of a 

single photon detector array and utilization of a scanning mechanism.  With this design, 

3-D imaging SPL can rapidly generate dense point clouds of the target area.  

2.4.1 MIT Lincoln Laboratory Jigsaw 

To meet the critical requirements for accurate target identification for successful 

battlefield management, the Defense Advanced Research Projects Agency (DARPA) 

initiated development of the Jigsaw program [71]. The goal of this program was to 

develop high-resolution 3-D imaging laser radar sensor technology and systems that can 

be utilized to detect hidden military ground targets. Lincoln Laboratory, Harris 
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Corporation and Sarnoff Corporation formed a team to develop the sensor system, data 

processing algorithms and visualization applications.  

The Jigsaw sensor uses Lincoln Laboratory-developed microchip laser 

technology. The microchip laser transmits short laser pulses at a pulse rate of 16 kHz and 

at a wavelength of 532 nm. The detector technology was also developed at Lincoln 

Laboratory. The focal-plane array is comprised of 32x32 silicon Geiger-mode APDs with 

digital time-of-flight counters at each pixel [72]. Figure 2-9 demonstrates the APD 

detector array and the detector-cooler combination. The system was mounted on a UH-1 

helicopter and tested for foliage penetration. Military ground vehicles hiding under 

foliage can be successfully detected with the collected data.  

 

Figure 2-9 The 32x32 Geiger-mode avalanche photodiode (APD) detector array, mounted on a 

thermoelectric cooler. This unit was hermetically sealed into a detector package to stabilize 

the detector’s operating temperature near 20 °C [72] 

2.4.2 MIT Lincoln Laboratory ALIRT 

Airborne Ladar Imaging Researching Testbed (ALIRT) is a medium altitude 

mapping LiDAR system developed and fabricated at MIT Lincoln Laboratory [73]. The 
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system utilizes a pulsed microchip laser and a 32×128 focal plane array of Gm-APDs to 

generate a 3-D point cloud. The system overview is given in Figure 2-10. ALIRT is 

mounted on a Sabreliner – 40 jet and typically collects data at 10 – 15 kft above ground 

level. Principal applications of ALIRT were first demonstrated during post-earthquake 

mapping in Haiti in January 2010 [74]. The ALIRT system rapidly mapped cities and 

towns after the earthquake providing humanitarian assistance teams valuable local 3-D 

information.  

 

Figure 2-10 The ALIRT 3-D laser radar system and associated hardware. Credit: MIT Lincoln Laboratory. 

2.4.3 CATS 

The Coastal Area Tactical-mapping System (CATS) was developed by the 

University of Florida along with Fibertek, Inc. and Sigma Space Corporation [47]. The 

long-terms goal of the CATS is to gain an understanding of Earth terrain and shallow 

bathymetry under very low energy laser probing. The CATS instrument works at low 

power and a low laser pulse rate while obtaining contiguous ground coverage at a 

resolution of a few decimeters.  
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CATS uses a frequency-doubled Nd:YaG laser, operating at 532 nm in order to 

obtain shallow water penetration for bathymetry and submerged target detection. Each 

pulse is separates into a 10×10 square array by a holographic diffraction element [75]. 

The return light is refocused by a telephoto lens before being imaged onto separate 

cathodes of a 10×10 segmented anode photomultiplier tube. CATS utilizes a micro-

channel plate photomultiplier tube (MCP-PMT) which can amplify single photon events 

with a gain of 105 with 200 picoseconds rise time and 200 picoseconds dead time [75]. 

The nominal flying altitude of CATS is 600 m and the expected horizontal spatial 

resolution of the system at nadir looking is 20 cm. The system is shown in Figure 2-11.  

 

Figure 2-11 CATS and related components. View of sensor mounted on tripod with laptop and power 

supply components (left). Output window, enclosed scanner, electronics cube, enclosed 

optical components (right) [75]. 

2.4.4 Sigma Space Corporation’s HRQLS/SPL100 

The High Resolution Quantum LiDAR System (HRQLS) was a self-funded 

development by Sigma Space Corporation [51]. The goal of the development was to 

provide a sensor capable of mapping larger areas more quickly via a combination of 

higher air speeds and wider swaths.  
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The main parameters of HRQLS are given in Table 2-2. Using an external dual 

wedge scanner at the output of the 3 inch telescope, HRQLS can scan the target area with 

full cone angles between 0 and 40 degrees. With a laser repetition rate of 25 kHz, 

HRQLS can acquire 2.5 million ground points per second. HRQLS employs multiple 

focused laser beamlets. A diffractive optical element (DOE) breaks the spatially Gaussian 

green laser beam into a quasi-uniform 10×10 array of Gaussian spots at the target [76]. 

The beamlets pattern is shown in Figure 2-12. Single photon returns from individual 

beamlets are imaged onto a 10×10 MCP-PMT detector. Each pixel output is input to an 

independent channel of a high resolution (<100 picoseconds), multi-stop timer. The laser 

operates at 532 nm, so that shallow water bathymetry can also be detected by HRQLS. 

The recovery time of MCP-PMT is as short as 1.6 ns (24cm), allowing multi-ranging 

capability from HRQLS [77].The fast recovery allows daytime operation with large range 

gates and improves penetration through partial obscurants such as ground fog, dust, 

vegetation and water columns.  

The SPL100 system is an updated version of the HRQLS. The SPL100 system 

uses a 10 by 10 array of SiPM detectors instead of the MCP PMT used in HRQLS. The 

parameters related to filtering for the new system remains the same as those of HRQLS. 

In Chapter 5, we will discuss filtering methods for 3-D imaging LiDAR. HRQLS and 

SPL100 data will be used as the experimental data to test the performance of the 

developed filtering algorithms.  
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Table 2-2 Main parameters for HRQLS Credit: J. Marcos Sirota 

Parameter Specification 

Beams 100 

Wavelength 532 nm 

Laser Repetition Rate 25 kHz 

Laser Pulse Width 200 picosecnds 

Laser Output Power 1 w 

Pixels/sec 2.5 Million 

Eye safety  Eye safe by FAA standards 

Multiple Return Capability  Yes 

Pixel Recovery Time 1.6 nsec 

RMS Range Precision ±5 cm 

Scan Patterns Linear, conical 

Scan Width 0 to 40 degrees (selectable) 

Operational Altitude  Range 6.5–10 Kft 

Swath vs AGL 1.3 to 2 km 

Areal Coverage vs AGL(200 Knots) 400 to 640 km2/hour single pass 

Mean Point Density  12 per sq meter, single pass 

Size 19 W×25 D×33 H inches 

Weight 80 lbs 

Prime Power 555 W 

 

 

 
 

Figure 2-12 Beam pattern of HRQLS. 100 beams in a 10×10 array illuminated on the wall Credit: Kristofer 

Shrestha. 
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Chapter 3 

Review of Current Filtering Algorithms 

The use of single photon techniques can be traced back to the 1960s with Lunar 

Laser Ranging [78], but SPL had not appeared in commercial LiDAR sensors until 

recently. Noise filtering methods for SPL have not been well studied to date, as 

evidenced by the very limited number of publications on this topic. In this chapter, we 

will review current filtering algorithms for single photon laser altimetry and 3-D imaging 

LiDAR. Note that the filtering methods for single photon laser altimetry can also be used 

in 3-D imaging SPL data. The only difference is that the clustered beamlets of a 3-D 

imaging SPL system can provide additional spatial correlation information that can be 

used to improve filter performance. We will describe algorithms for single photon laser 

altimetry and then introduce methods for 3-D imaging SPL.  

3.1 Filtering algorithms for laser altimetry 

3.1.1 Image-based filtering method 

Awadallah, et al. [79] proposed a method to extract ground and forest canopy 

curves from discrete laser altimeter data using an active contour model. This method first 

maps 3-D points onto a two-dimensional binary image and then two image processing 

algorithms are implied to the binary image. The first method is an open-curve model 

which transforms the initial curve repeatedly using an energy minimization process; a 

greedy algorithm is used to search for a solution. Two initial contours are used in this 

method, one from the top and the other one from the bottom, and ends with the top 
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contour converged to the top of canopy (TOC) and the bottom one converged to the 

ground surface. This approach has a very fast convergence speed and high computational 

efficiency. The other model used in this paper was a more robust algorithm known as the 

geometric active contour (GAC) model. Unlike the open-curve model, the output of the 

GAC model is a closed contour or possibly several closed contours. In the proposed 

approach, the upper most points from the contour at selected columns of the image are 

assigned to the TOC and the lowest points are assigned to the ground surface. In [65], an 

enhanced version of the GAC model is proposed. An additional process that refines the 

initial surfaces is introduced to ensure a more robust result.  

While converging fast, the open-curve model is very sensitive to noise. In areas 

with a high noise level, the open-curve model results are not very good. The GAC model, 

though not computationally efficient, is more robust to noise. However, there are still 

some other problems with these two approaches; first both of these models are image 

processing algorithms, which means that 3-D LiDAR data must be rasterized first; 

however, the influence of the rasterization is not discussed in [65], [79]. A large pixel 

size will include more noise points while a small cell size may cause discontinuous signal 

points resulting in several contours in the final product. This method also only extracts 

the top line of the canopy and the ground line. There are still noise points located 

between these contours. In applications where all vegetation points need extraction, this 

method will be insufficient.  

 Another image-based filtering algorithm is the Canny Edge Detection (CED) 

method proposed by Magruder et al. [45]. Canny Edge Detection is a classical algorithm 

for image processing [80]. It uses a Gaussian first derivative to filter data and locate 
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edges. In Magruder’s method, the 3-D point cloud is first rasterized to an image. The 

value of each pixel is assigned as the point density within each cell. The cell size is the 

square root of the number of points in the along-track flight direction. A Gaussian filter is 

applied to broaden the edges of the high density and the noise pixels. The gradient for 

each pixel is computed in both magnitude and direction, and with the resulting gradient 

map, an empirical threshold can be determined and used to remove noise pixels.  

For image processing, active contour and Canny algorithms are both used to 

detect edges in the image. In fact, the theory behind these two methods are similar, they 

both convert the point cloud to an image and try to find the boundary between signal and 

noise. One potential problem is that it is hard to find an optimal cell size to rasterize the 

data. An arbitrary choice may cause both signal points and noise points to be assigned to 

the same cell.  

3.1.2 Density-based filtering methods 

Herzfeld et al. [43] proposed a method using spatial statistics to detect the ground 

and canopy height. The first step was to generate a histogram of elevation values for all 

the detected photons. The histogram is grouped into 100 elevation bins for a total range 

of 100m. A low-pass Butterworth filter, 
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is used to smooth high-frequency wiggles in the histogram. From the filtered histogram, 

two hypermaxima can be extracted which will represent the ground and canopy elevation 

centers. After the ground and canopy elevation centers are determined, the data can be 

segmented into 3 classes, a canopy range set, a ground range set and a remaining class. 
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Then for the canopy and ground sets, density values for each point are calculated using a 

radial basis function. A histogram of the density values for photon events is generated 

and filtered with another Butterworth filter. Finally, the largest density count in the 

histogram is used as a threshold to filter noise. The proposed method also includes some 

other mathematical concepts and more details can be found in the paper. However, the 

basic idea is still to calculate the density of returns in a circle with a predefined radius. 

This will inevitably encounter problems in selecting an optimal circular radius and will 

have a high computational burden.     

Zhang et al. [41] proposed the modified density-based spatial clustering of 

applications with noise (mDBSCAN) algorithm to filter single photon laser altimetry 

data. For the conventional DBSCAN algorithm, the key idea is that for each point in a 

cluster, the neighborhood, determined by a given radius, has to contain a minimum 

number of points. In other words, for a circular area centered at the query point, the point 

density has to exceed some threshold. The proposed mDBSCAN method considers the 

fact that the ground surface and canopy returns are distributed more horizontally than 

vertically. Therefore instead of using a circle to examine point density, an ellipse is 

employed (shown in Figure 3-1). For this method, the estimation of the noise threshold is 

very important. In [41], a heuristic way was developed to estimate this parameter. Several 

ellipses were randomly selected from the data and the average point densities of each 

were calculated. The threshold was then set to be 4 times the average point density. The 

mDBSCAN method is very computationally efficient and provides good result in many 

cases. However, this method has several drawbacks. First, it is based on an assumption 

that the point density of the data is homogeneous, which might not always be true. This 
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will be discussed in detail in Chapter 4. Second, it is hard to prove that the threshold 

chosen is an optimal one; this is a common problem for density-based methods. Finally, 

mDBSCAN considers only the horizontal distribution of ground and canopy, using a 

horizontal ellipse for the nearest neighbor search. However, this assumption may not be 

valid in areas with high slopes such as mountains and urban environments.  

 

Figure 3-1 Modification of search area using DBSCAN. In the left image, by using a circular searching 

area, point q is used to estimate the local density of point p. On the other hand, in the right 

image, q is used to determine the density at point p, when an ellipse is used [41].  

3.2 Filtering algorithms for 3-D imaging LiDAR 

The return signal from a 3-D imaging LiDAR forms an array which can be 

regarded as a cluster of a large number of laser altimetry measurements. The 

corresponding illuminated area on the ground is usually small. In this case, there are 

strong spatial correlations between points in the area imaged by the 3-D array, which can 

be used to improve the performance of the filter. In this section, some filtering algorithms 

that consider the true 3-D nature of the SPL data are reviewed.  
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3.2.1 A real-time noise filtering strategy 

Zhang et al. [42] proposed a real-time noise filtering strategy for 3-D imaging 

LiDAR. The proposed method considers the fact that surfaces for most targets of interest 

are continuous; the ranges of the target surface corresponding to the adjacent pixels are 

very close and therefore the temporal differences of the echo signals on the adjacent 

pixels is small. However, noise will be randomly distributed everywhere. By calculating 

the return rate of these adjacent pixels, the echo signal will be distinguished from noise 

with a proper threshold.  

In [42], a 3×3 pixel array was used as a unit to detect signals, which means the 

threshold should be between 1 to 9. The selection of a proper threshold is discussed in the 

paper. The equation for the optimal threshold is derived, however, it is too complicated to 

obtain an analytical solution. A numerical result is provided instead to select a proper 

threshold for different signal and noise intensities.  

A box next to a wall was used in the experiment described in [42], and a clean 

point cloud was obtained with the proposed algorithms, which indicates that the method 

works well for flat well-conceived scans with only hard targets. However, in other areas 

such as tree canopies, this method may encounter problems. The return signal from the 

canopy top is not homogeneous and not as strong as that from the ground. So employing 

a constant threshold will result in a high probability of misclassifying signal points from 

the canopy.  
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3.2.2 Two-step classifier 

Cossio [81] proposed a two-step classifier. The local spatial correlation of signal 

events is first exploited to filter out noise, followed by classification of target points using 

a surface based scheme. In the filtering step, two parameters 
1 2,D D  are considered to 

determine spatial correlation with the following equations: 
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where  , ,k k kx y z  are the geo-centric coordinates for the query point kr , and  , ,l l lx y z  

are the geo-centric coordinates for the neighbor points of kr . The neighbor points which 

fit these two criteria are regarded as correlated points. The numbers of correlated points 

are then used to determine whether the query point is signal or noise. In reality, these two 

criteria form a cylindrical volume around the investigated point. This method can be 

regarded as an expansion of the density-based method for laser altimetry data in 2-D, a 2-

D circle extruded to a cylinder in 3-D.  

3.2.3 Differential cell count method 

Degnan [23], [51] proposed a differential cell count (DCC) method based on a 

post-detection Poisson analysis. The DCC method filters the SPL data by processing each 

shot individually. For each shot, the histogram of elevation of each point is generated 

with a 30 m bin. The bin with the highest count and the two adjacent bins are retained. 

Points in the rest of the bins are used to estimate a noise rate. Then in the second stage, a 
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smaller bin size (usually 5 m) is applied. With the estimated noise rate from stage 1, the 

optimum threshold is calculated by 

 
 

 

ln
,

ln




S bin

opt

S b

N N
K

N N
  (3.3) 

where, optK  is the optimum bin threshold. 
SN  is the number of signal points which is 

estimated as the mean number of points in the three candidate bins, bN  is the number of 

noise points and is calculated by subtracting SN  from the total number of points in the 

three candidate bins. binN  is the number of bins within the whole range gate. Then bins 

with point counts larger than the optimum threshold are retained. 

DCC method works on the level of each data bin thus it has a very high 

computational efficiency.  However, it regards all the points in one data bin as either 

signal points or false returns, which leaves near-signal noise unfiltered.  

3.2.4 Multi-level filtering approach 

Swatantran et al. proposed a multi-level filtering approach [82]. The method is 

based on two basic assumptions: 1) noise returns are randomly distributed in space while 

signal points are clustered together; and 2) signal points have higher point densities than 

solar noise returns. Three levels of filters are used in this approach. The first filter uses a 

30 m vertical range bin to extract the highest density signals which includes both 

topographic and canopy features. In addition, a 30 m bin both above and below this initial 

bin is selected to guarantee no structural features are missing. Therefore a 90 m vertical 

subset of the raw data along the topographic range is extracted for further processing. The 

second filter divides the subset of data into 3 m voxels. The returns in a voxel are 
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determined as noise if the total count in the cubic window surrounding it (27 voxels) is 

less than an empirical threshold (30 points). This step roughly filters most of the noise 

returns. In the last filter, a smaller voxel size of 1 m and a lower threshold are used to 

refine the filtering results. The use of the 1 m voxel can remove isolated noise points 

along boundary layers.  

3.3 Summary 

For single photon LiDAR, the data capture electronics poll the detector voltage 

output and record only binary events. There is no strict intensity measure in the basic SPL 

design, as is typically found in conventional LiDAR systems.  The only information in 

the dataset is the position of each point. All the methods introduced in this chapter try to 

distinguish signal from noise using point density. The basic idea of the image-based 

methods are to regard the point density as the intensity in an image. Density-based 

methods try to define a specific region around a query point and count the number of 

points inside the region. These methods inevitably encounter two problems. The first 

problem is rasterization, either rasterizing the data into 2-D pixels or a 3-D grid. The size 

of the pixel or grid is determined empirically and may not always work and periodically 

requires human intervention for filter tuning. The other problem is the assumption of 

static noise density. Both image-based and density-based methods require point density 

as an important parameter. However, the noise and signal density may change in some 

cases, for example, changing reflectivity, inconstant flying speed of the platform, changes 

in ambient background lighting or longer illuminated time on the target. The changing 

noise rate can cause false alarms and filter failure. In the next chapter, a novel filtering 



42 

 

method for SPL altimetry data is proposed which aims to solve these problems by 

compensating for varying noise levels in the raw point cloud.  

In the following chapters, Chapter 4 introduces a new filtering method dealing 

with single photon altimetry data. Chapter 5 and 6 focus on filtering 3-D imaging single 

photon LiDAR data. And in Chapter, afterpulse removal will be discussed.  
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Chapter 4 

A Novel Filtering for Single Photon Laser Altimetry Data 

In this chapter, we propose a novel filtering algorithm to remove noise points in 

single photon laser altimetry data. As discussed in Chapter 3, since there is no intensity 

information, only point density can be used to filter the SPL data. Most of the current 

filters are based on the fact that the signal points are clustered and noise points are 

distributed sparsely. However, the current filters work in a direct way: they define a 

region around the investigated point and count the number of neighbors. This method, 

however, is highly dependent on the local noise characteristics of the data set. To mitigate 

this limitation, we instead interrogate the point density-based filter using the distances to 

the k-th nearest neighbors (KNN) [83]. A probability distribution function for the noise 

photons is therefore developed instead of applying an arbitrary hard distance threshold.  

This chapter is a summary of the work published in [83].  

4.1 Algorithm 

4.1.1 Noise density scaling 

A noise density scaling of the raw single photon point cloud will enhance the 

application of the proposed algorithm. Varying noise density is common in a single 

photon LiDAR data set due to the following features: varying atmospheric conditions 

during the flight, changes in the topographic return surface reflectance, and variations in 

aircraft speed and elevation. The inconsistent noise density limits the effectiveness of 

density-based noise detection. Therefore, it is important to first adaptively scale the noise 
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level of the received photons according to its estimated temporal noise rate. Since it is 

hard to extract signal points from the raw data directly during data collection, the system 

usually records data with a longer time gate to make sure that all the signal points from 

the area of interest are recorded. Usually, a region where no signal points are located can 

be found and used as a sample region, for example, the top or the bottom part of the 

vertical data profile. We can then count the number of points, sN  inside this area. So the 

noise level can be estimated as 

 / ,w s sampleN N L L   (4.1) 

where L  is the length of the whole range gate and 
sampleL  is the length of the sample 

region along the range direction.  With the estimated noise level, the points can be 

rescaled proportionately by multiplying by the corresponding time varying noise rate 

estimate. There is no strict rule for the choice of
sampleL , however, as long as the sample 

contains no signal points, a larger sample should improve the estimation of noise level.   

4.1.2 Derivation of distribution of distance to KNN 

We use the distance from a query point to its KNN to discriminate noise photons 

after the adaptive noise scaling described in Section 4.1.1. Finding the nearest neighbors 

is a fundamental problem in a wide range of applications, including Bayesian classifiers 

and big data searches. There are several ways to derive the distribution of the KNN 

distance. Herein, we apply the method introduced in [84] to derive the distribution of 

distances between a point and its KNN in a 2-D space. Assuming that all points are 

distributed in the space evenly and randomly, the pdf (probability density function) of the 

distance r to the KNN  k

idealf r , can be derived with the following steps. Consider two 
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co-centric circles with radius of r  and r dr  centered at the query point as shown in 

Figure 4-1. 

 

Figure 4-1 Two co-centric circles with radius r and r+dr. The k-th neighbor should fall in the red area. 

 

The probability that the k-th nearest neighbor is located within the ring area from 

r  to r dr  is equivalent to the first  1k   nearest nodes being located within r  and the 

k-th nearest neighbor within r  and r dr .  From [84] equation (4.2) - (4.4) are given as 
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where A  is the area of the whole space, N  is the number of points, and 1,2, , 1k N  . 

Therefore, the pdf of the k-th nearest neighbor at a distance r is given as 
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For a large N , this equation can be approximated as 
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where /N A   is the average point density. The derivation can be validated by applying 

a Monte Carlo simulation (see Figure 4-2). 10000 points were generated randomly in a 10 

m×10 m square area. Both coordinates of a point are subjected to a uniform distribution 

ranging from 0 to 10. The distance from a query point to its first and second neighbor is 

calculated and binned into 20 groups. The frequency of each bin, which is calculated by 

dividing the count in a bin by the whole number of points, is then converted to the 

probability density by dividing by the bin size. The red line in Figure 4-2 is plotted using 

equation (4.4) using k values of 1 and 2. We can see that the simulated probability density 

matches the theoretical one very well. 

 

Figure 4-2 Simulation results of distribution of distances to 1st and 2nd nearest neighbor.  
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4.1.3 Data filter based on Bayesian decision theory 

To filter the data into signal and noise returns we apply a Bayesian decision 

technique after the determination of the probability of the k-th nearest neighbor. 

Assuming that there are Nn  noise points in the datasets already identified, then the prior 

probability of noise photons is given as  1 /N totP n n   , where totn  is the total number 

of points in the dataset. The prior probability of the signal photons is given by 

   2 11P P   . The noise photon density is determined as /N Nn A  , where A  is 

the total area. The density of signal points cannot be estimated directly because the area 

of the signal is unknown a priori. Usually a number of areas can be selected to estimate 

signal to noise ratio. For each detected return, kR  is the distance to the k-th nearest 

neighbor return, and the posterior probability can be determined with the following 

equations: 
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where  |k k jp R   is obtained from equation (4.4) using distance kR . To enhance the 

capability of detecting noise photons, we examine the posterior probability of the nearest 

20 neighbors. Selection of the number of neighbors is data driven and empirical. Usually, 
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a number from 12 to 20 is suggested. We then get a combined posterior 
,N iP  of the i-th 

point in the dataset using the following equation: 
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     (4.6) 

With the known estimated number of signal photons, we select the smallest Sn  signal 

photons to adaptively filter out the noise photons.  

4.2 Experimental data set 

 A NASA MABEL dataset is used to test the performance of the proposed 

filtering algorithm. As mentioned in section 2.3.3, the dual MABEL laser beams at 1064 

and 532 nm are split into eight 1064-nm and sixteen 532-nm beams, each with a separate 

single photon detector. The time and position of each individual received photon are 

recorded. With the travel time of each photon and the positional information provided by 

the onboard Global Navigation Satellite System and inertial navigation system, we can 

obtain 3-D locations of each recorded return. We used two MABEL data sets obtained on 

August 2, 2014, near San Luis Obispo, CA, and on September 26, 2013, near New 

Madrid, MO. Two linear-mode airborne LiDAR data sets were downloaded from 

OpenTopography (www.opentopography.org) as ground truth for the final filtered 

MABEL datasets. The reference data sets were collected in March 2011 for the CA data 

and in September 2010 for the MO data, each with a point density of nine points per 

square meter. The terrain types for the CA and MO data are mountainous and bare 

ground, respectively. While the MABEL and airborne LiDAR collections were not at the 

same time, they were in remote regions, and therefore, we would expect no significant 

http://www.opentopography.org/
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differences between the terrain profiles. A profile of the raw CA and MO MABEL data is 

shown in Figure 4-3. 

 

 

Figure 4-3 Raw MABEL CA data (top) and raw MABEL MO data (bottom). Each dataset is one minute 

long. Channel 16 of both datasets (the first infra-red channel) are shown.The flight height is ~20 

km above the ground. 

 

4.3 Results and discussion 

The noise in the raw MABEL data set needs to be rescaled before we apply the 
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filter. The standard MABEL data product includes an estimate of the instantaneous noise 

rate which is determined by applying a window to acquire the potential noise photons 

using a Global Multiresolution Terrain Elevation Data digital elevation model [85]. 

Normally, a window composed of returns from 1000 m above ground to 500 m under the 

ground is defined for possible topographic photon records. In contrast to this signal 

window, the range window from 300 to 5300 m underground is defined as the noise 

window (because no signal photons would be expected there) to estimate the noise rate 

by counting the number of returns in this range [85]. The MABEL data provides an 

estimated noise rate for every 0.02 second data tile.  The profile data was gridded into 

0.02 second pieces to match the noise rate record. The grid width is then multiplied 

proportionally to the noise rate for each specific grid to create an artificial profile of 

consistent noise density (shown in Figure 4-4). The rescaled data is shown in Figure 4-5. 

 

Figure 4-4 Sketch of the scaling process. The corresponding noise rate is 3, 1 and 2. So for the points in the 

first data bin, we multiply the time difference between two neighbor points by 3. For the points 

in the second bin, we multiply the time difference by 1 and by 2 for the points in the last bin.  
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Figure 4-5 Comparison of raw MABEL CA data (top) and the noise density scaled result (bottom).  

 

As we can see from Figure 4-5, regions with fewer noise photons (e.g., 4000–

5000 m) are concentrated and more likely to be detected due to the increased signal 

density. In contrast, regions with a high noise rate (e.g., 8000–9000 m) are diluted, and 

only the returns with significantly high density will be determined as signal photons. 

Noise scaling benefits density–based noise filters because a relatively consistent noise 

density is present in the resultant pseudo-distance profiles. The distribution of signal 

points is also changed during rescaling. The filtering process outputs the index of signal 

points and returns their actual coordinates before rescaling. Thus the rescaling process 

does not result in an erroneous filtered profile.   

The proposed algorithm was applied to the two MABEL data sets. The filtered 

results for the CA data set are shown in Figure 4-6. To quantitatively validate the 

performance of the Bayesian algorithm, we compared the CA MABEL extracted ground 

surface to the coincident airborne LiDAR data set. We show a scatter plot of MABEL 

versus airborne laser scanning (ALS) topographic elevation in Figure 4-7 (a) and (b) for  
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Figure 4-6 Filtered result for the CA dataset with the proposed method. Top figure shows results for 

channel 3 (green) and bottom figure shows result for channel 16 (infra-red). 

 

the MABEL green and near-infrared LiDAR channels, respectively, and obtained a 

regression fit R2 of 0.9897 for the green channels and 0.9989 for the near-infrared 

channels. In Figure 4-7 (c), we show RMSE for each of the MABEL channels 

individually. Channels 1–15 are green laser channels, and channels 16–23 are near-

infrared channels which have consistently lower RMSE. The maximum and minimum 

green channel RMSE is 3.15 m for channel 4 and 5.47 m for channel 10, respectively. 

The maximum and minimum infra-red channel RMSE is 2.83 m for channel 17 and 4.43 

m for channel 22, respectfully. The lower RMSE in infra-red channels is because the 

near-infrared channel has a higher return strength from vegetation and natural ground 

targets. As a result, we will have more signal returns, i.e., higher signal to noise ratio 

(SNR). This is supported by the results because we see more signal returns in Figure 4-7  

(b) than in Figure 4-7 (a). Overall, given that the horizontal positioning accuracy of 

MABEL is estimated to be 30 m [86], and the data were collected in terrain with 

significant relief, this elevation agreement is quite good.  
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(C)

 

Figure 4-7 Scatter plot of airborne LiDAR elevation and MABEL green channel 3 elevation(a), near-

infrared channel 16 elevation (b) using our algorithm. RMSE between airborne LiDAR and 

MABEL elevation in each channel are shown in (c)  

 

As a final validation of our proposed filtering approach, we compare our 

algorithm with another point density method, the mDBSCAN proposed by Zhang and 

Kerekes [41]. The estimated topographic profiles from both methods for the CA data set 

are shown in Figure 4-8 and the RMSE comparison is shown in Figure 4-9. From Figure 

4-9, we see that the mDBSCAN results for the green channels have a large RMSE of 25 

m. This is because mDBSCAN does not consider the inconsistent noise level of the data. 

In Figure 4-6, we find that between 8000 and 9000 m along the profile, the noise rate is 

very high, which makes the signal in that area difficult to detect. mDBSCAN does not 

consider this higher noise rate and therefore detects many noise points as signal. 

However, in our method, we scaled the noise first to have a consistent noise level for the 
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whole data set. Then the high noise rate area does not have photon detection events 

incorrectly classified as terrain returns. To provide a common basis of comparison, we 

also applied the mDBSCAN algorithm on the adaptive noise scaled data set.  The results 

are improved and this RMSE is shown in Figure 4-9 as the blue line. Although the 

adaptive noise scaling improves the mDBSCAN results, it is still outperformed by the 

Bayesian method; the overall mean RMSE on all the channels for the scaled mDBSCAN 

is 5.1 m versus 4.2 m using our method.  

 
Figure 4-8 Comparision of results of mDBSCAN and the proposed method. Green channel (channel 3) 

result (Top) and infre-red channel (channel 16) result (Bottom).  
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Figure 4-9 Comparision of RMSE for mDBSCAN, scaled mDBSCAN and the proposed method. 

 

Finally, we also tested our proposed filter algorithm on the Missouri dataset and 

again compared with mDBSCAN. The filtered results are shown in Figure 4-10, and 

again demonstrate that the proposed algorithm can provide reliable results with lower 

rates of misclassification. The mDBSCAN method incorrectly classifies more near-

ground noise than our algorithm.  We compared the extracted ground surface from all 

MABEL channels of the Missouri dataset to the coincident airborne LiDAR dataset. We 

display the RMSE for each channel in Figure 4-11, and observe that the mDBSCAN 

results have a similar RMSE with or without the noise scaling process. The reason is that 

for this dataset, there is no drastic change in noise rate like the CA dataset. Our proposed 

algorithm improves the RMSE by about 0.5m over mDBSCAN, which is significant 

considering the overall RMSE is only about 2.5m. 

Higher SNR of infra-red channels makes their filtering results more robust to 

varying noise rate. And this is why the rescaling process made little improvement for 

infra-red channel filtering results or sometimes made it a little worse (see Figure 4-9). For 

green channels, the low SNR makes them susceptible to the inhomogeneous noise rate 
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and the results benefit from the rescaling process, which can be seen clearly from Figure 

4-9. The motivation for the MABEL system and acquisitions was to test algorithms for 

ICESat-2 which utilizes a green laser. Thus the rescaling process is of great importance in 

any density based filtering algorithm.  

 
 
Figure 4-10 (Top) Filtering results for representative green channel using (blue) mDBSCAN and (red) the 

proposed algorithm on the Missouri data set. (Bottom) Filtering results for a near-infrared 

channel using (blue) mDBSCAN and (red) the proposed algorithm 
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Figure 4-11 RMSE of airborne LiDAR elevation and Missouri MABEL elevation in each channel with 

mDBSCAN, scaled mDBSCAN and the proposed algorithm.  

 

4.4 Conclusions 

In this chapter, a novel point density based algorithm was proposed for filtering 

single photon counting LiDAR profiles. Instead of using a simple threshold method, the 

algorithm considers the probability distribution function of distances to the k-th nearest 

neighbors and then applies Bayesian decision theory to calculate the probability of a 

point being signal or noise. Before filtering we also adaptively scale the noise level based 

on the estimated noise rate provided in the MABEL data records. This proposed noise 

scaling significantly improves the performance on green channels when using point 

density based methods. Validation of the algorithm on MABEL data using high accuracy 

airborne laser scanning showed that the ground surface can be reliably extracted. The 

RMSE between the filtered CA MABEL profile and the ALS is ~6 meters for MABEL’s 

green channels and ~4 meters for the near-infrared channels. The RMSE for comparison 

between the MABEL profile and ALS data for the MO test dataset is ~2 meters. We also 
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compared our algorithm with another point density based algorithm, the modified 

DBSCAN. The results showed that our algorithm was able to extract more signal points 

than mDBSCAN and performed better in steep areas of relief. 
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Chapter 5 

An Adaptive Ellipsoid Searching Filter for Airborne Single 

Photon LiDAR 

In the previous chapter, the single photon altimeter data was filtered considering 

only 2-D profiles in the along-track and vertical direction. In this chapter, we expand the 

proposed method to three dimensions to filter 3-D imaging SPL point clouds. Compared 

to single photon altimetry, three-dimensional imaging single photon LiDAR are able to 

produce point clouds for the entire illuminated area because they also contain a scanning 

mechanism. The scanning process makes the altimetry filtering method introduced in 

Chapter 4 unsuccessful for 3-D SPL data. Thus, a novel adaptive ellipsoid searching 

(AES) method is proposed for 3-D SPL data filtering. This chapter is a summary of the 

work published in [87].  

5.1 Background 

Research on 3-D SPL data filtering is still at an early stage. All the currently 

published filtering methods take advantage of the fact that SPL data noise points are 

sparsely and randomly distributed in space, while signal points are much more 

clustered [82]. The current filtering methods can be divided into two categories: 

histogram-based and voxel-based. Both of them work at the resolution of the data bin and 

thus have very high computational efficiency.  

However, there are two significant limitations for the current methods. The first 

issue is that solar background noise is not spatially homogeneous; it varies based on 
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factors such as return surface spectral reflectance and the laser scanning geometry. 

Higher spectral reflectance surfaces reflect more solar energy, and thus, more solar noise 

photons are detected by the SPL detector [23]. Scanning geometry is determined by 

various factors, such as flying altitude, aircraft speed, topography, and so on, and can 

vary significantly within a data set. The resultant inhomogeneous noise density causes 

significant false alarms during filtering [83]. A noise scaling method was proposed in 

Chapter 4 for 2-D profile data by stretching the profiles horizontally, which significantly 

improved filtering results by making the background noise more homogenous. However, 

the application of this noise scaling method to a 3-D point cloud is not straightforward. 

The performance of current filtering methods is also limited by the spatial resolution; 

photons falling into one specific voxel or data bin are classified as either signal photons 

or noise returns, and therefore, it is hard to remove near-signal noise returns in larger data 

bins or voxels. 

In this chapter, a novel method to filter the 3-D imaging SPL data by adaptively 

searching spatially neighboring returns is proposed. Querying by individual returns 

instead of grouping them into voxels enables us to filter the background noise photons at 

the highest spatial resolution of the data set. A method to compensate for the varying 

background noise level using a varying estimation of noise rate is also introduced in this 

chapter. 

5.2 Algorithm 

The proposed methodology includes two steps. In the first step, most of the solar 

noise is removed based on a novel noise density estimation model, which is a 3-D 
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extension of the method introduced in Chapter 4 for 2-D profiles. In the second step, an 

adaptive ellipsoid is used to examine each remaining point. Instead of using a fixed size, 

local principle component analysis (PCA) [88] is used to adaptively change the size and 

orientation of the ellipsoid to account for local point cloud geometry. 

5.2.1 Noise density estimation model 

 In this section, we introduce a new model to estimate noise density at the location 

of each point to allow compensation for inhomogeneous noise density. First, the 

individual line noise density for each outgoing beamlet, which is only related to 

reflectance, is estimated. We generate an elevation histogram with 1-m resolution in 

the z -axis for all points. The peak of the histogram represents the approximate location 

of the signal return. A buffer area is determined ± 50 m around the peak location. All of 

the signal points are assumed to be located in the buffer area and the rest of the data 

should contain only noise points; we will refer to this as the noise region. In the noise 

region, we count the number of points N for every 60 outgoing laser shots, which 

corresponds to approximately 0.001 s of acquisition. We assume that overall the noise 

level of an area scanned over such a short interval should be similar. Then, the line noise 

point density of all the beamlets over this interval is calculated as 

  6000 ,l N R    (5.1) 

where, N  is the total number of points in the interval, R  is the range of the laser and 

6000 is the product of the number of laser shots (60) and the number of beamlets in each 

laser shot (100).  
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Next, the influence of scanning geometry is estimated. First, we consider the point 

on the top of each beamlet vector. All these points will approximately form a plane H ,  

because data from all the beamlets are truncated with the same range gate. For each point, 

we define a sphere with a search radius r  and count the number of beamlet vectors 

passing through the sphere and the length of the vector inside the sphere. This concept is 

shown in Figure 5-1 where O is the examined point, v is a beamlet vector passing through 

the sphere, q is the intersection point of beamlet vector v and the plane P and F is the 

location of the laser scanner. The length of the portion of the vector inside the sphere d  is 

given as  

  
2

22 .d r OF OQ FQ     (5.2) 

Then the estimated noise density of one beamlet, E  , is calculated as follows: 

 

3

1

4

3

100 / ,

   





 
  

 




n

i

E l i

i

u

d r and

n n

  (5.3) 

where   is a correction coefficient, un  is the number of laser shots in the sphere, and n  is 

the total number of beamlet vectors. The correction coefficient is the ratio of the number 

of laser shots fired to the number of beamlets in the sphere. There might be no return 

recorded for a single beamlet, and therefore, the correction coefficient is needed to scale 

the number of noise points. Typically, the correction coefficient is ~2, but can be as large 

as 10 in some areas.  

The estimated noise density is assigned to all the points on the beamlet. It should 

be noted that this methodology allows the density of noise points for each beamlet to be 

different. The points with higher elevation will have a higher density because of the 
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influence of scanning geometry. We conservatively estimate the point density from the 

top point within each beamlet. 

After estimating the noise density for each point, an initial filtering is applied, 

which is similar to the application of a voxel-based method. We first count the number of 

neighboring points for each interrogated point in a sphere. However instead of using this 

number as a direct threshold, we use the quotient of the number of neighbors and the 

estimated noise density. Then, we estimate the number of noise points totN  using the 

same method described in Chapter 4. The totN  points with the smallest quotient are 

labeled as noise points. After this, most solar noise has been removed, leaving only noise 

points located near the signal returns.  In the next section, an adaptive ellipsoid searching 

method will be introduced to remove these near-signal noise points.  

 

Figure 5-1 Overview of the spherical model. (Left) Data set and one beamlet vector. (Right) Details on the 

computations for each vector. In this example, three vectors intersect the sphere and the red 

portions are inside the sphere.  
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5.2.2 Adaptive ellipsoid searching method 

In this section, a morphing ellipsoid that adapts to the local scene geometry is 

utilized to filter near-signal noise. Near-signal noise returns have more neighbors within a 

voxel or data bin than other noise points, which make them more difficult to remove 

using point density as the only criteria. To solve this problem, we consider the geometric 

distribution of the signal points using a local PCA estimation. After the first step of 

filtering (Section 5.2.1), we examine each point in the remaining point cloud. A selection 

of 25 nearest neighbors to a query point is used to form a local subset, upon which PCA 

is applied. The number of neighbors selected is empirically determined based on the point 

density of the data. The result of the PCA is a 3×3 matrix P  of three eigenvectors in 

column, and three eigenvalues 1e , 2e  and 3e .  The adaptive search ellipsoid is defined 

using these values and the following equations: 
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where, a  , b   and c  are the length of three axis of the ellipsoid and r  is the radius used 

in the first filtering step. The ellipsoid has the same volume as the initial sphere, and 

therefore with the same point density the number of points in the ellipsoid should be 

equal. The center of the ellipsoid is at the query point. To simplify the calculations, 

instead of rotating the ellipsoid, we rotate the neighborhood points using the following 

equation 
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where,  , ,i i ix y z  is the coordinate of the i th neighbor point. We can then determine 

which neighbor points are still in the ellipsoid by substituting the rotated coordinates into 

the equation of the ellipsoid using 
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If flag is less than one, the point is inside the ellipsoid. Finally, we count the 

number of neighbors of the query point in a sphere, sn  and the number of neighbors in an 

ellipsoid en  is also obtained. We then consider the change of these two numbers and use 

the ratio, /e sn n  , as the metric to label noise; if the ratio is less than a threshold, the point 

will be removed. Figure 5-2 shows the change of the search voxel from a sphere to an 

ellipsoid. The star is the interrogated point. The circles are its 25 nearest neighbors. The 

circles are evenly random distributed on a 2 x 2 plane with an RMSE of 0.2 m. The star is 

0.5 m away from the plane. In the top figure, a sphere with the radius of 1.5 m is used and 

all the neighbor points are inside the sphere. In the bottom figure, an ellipsoid generated 

with local PCA is considered and only 5 neighbors are inside the ellipsoid. Points outside 

the ellipsoid are colored blue and points inside are colored red. Here, the change ratio 

(threshold) is empirically determined as 20%, which is used in this work. Selection of the 

threshold is empirical and 20% was effective for the experimental data. This parameter 

can obviously be tuned to better fit the point cloud based on the instrument specifications 

and collection parameters of the data set.  
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Figure 5-2 Overview of the search ellipsoid. The bottom figure is scaled to demonstrate detail more clearly. 

5.3 Experimental data set 

The SPL dataset analyzed was collected by the HRQLS system developed by 

Sigma Space Corporation. As introduced in Chapter 2, HRQLS is a moderate altitude 

SPL system that employs multiple laser beamlets. HRQLS is a circularly scanning system 

and a diffractive optical element breaks a green laser beam (532 nm) into a 10×10 array 

of spots at the target. Returns from each output beamlet are imaged onto an independent 

channel of a high resolution multi-stop timer [28], [76]. The dataset was collected on 

August 3rd, 2016 in Easton, MD USA. HRQLS was operated at ~3.5 km above ground 

level (AGL) and produced a swath of ~2 km. The imaged point density is ~12 points/m2. 

Reference data was collected by a conventional linear-mode LiDAR on June 14th 

2016 with a Leica ALS 80 sensor operated at 1.3 km AGL. The nominal point density is 

~25 points / m2. The time gap between the experimental SPL data and the reference 
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linear-mode data is ~1.5 months and is short enough that few differences in the imaged 

scene would be expected.  

5.4 Results and discussion 

Figure 5-3 shows the results of the spherical noise estimation. (A) is an overview 

of the spherical noise estimation model where the points are colored by estimated noise 

density (points/m3). (B) shows a filtered point cloud using noise estimates from the 

spherical model. The points are colored by elevation (meters). (C) demonstrates the result 

of a voxel-based filtering method and again the points are colored by elevation. We can 

clearly see a yellow strip with high noise density [shown with an arrow in Figure 5-3 

(A)]. High density areas of noise have similar spatial characteristics as points from weak 

reflective targets, such as vegetation. Using a single fixed threshold without considering 

the varying noise rate is not sufficient to accurately filter the noise. Figure 5-3 (B) shows 

the filtered result using only the noise density estimation step of the proposed method, 

and we can clearly see that there are no remaining noise points in the region identified 

in Figure 5-3 (A) as having high noise rates. While with the voxel-based results, given 

in Figure 5-3 (C), there are some residual noise points left because of the localized 

variations in noise density. The final filtered result of the data with both proposed steps is 

shown in Figure 5-4. 

Next, we compared the filtered result from our proposed method to both a voxel-

based method and reference linear-mode data. The voxel-based method used a cube size 

of 3×3×0.3 m (Length×Width×Height) as suggested in [89] and the threshold for noise 

removal was the mean point density. Further details on the voxel-based method can be 
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found in [89]. We selected three types of terrain: rooftops, bare ground, and the top of the 

vegetation canopy to compare the performance of the proposed filtering method with the 

voxel-based approach. For each type of terrain, five regions were selected for 

comparison. The area of each region is ~200 m2. The root mean square error (RMSE) of 

the filtered results is given in Table 5-1. 

 

Figure 5-3 Comparision of results from the proposed method and voxel-based method. The horizontal 

extent of the data is about 150 m. 

 

To determine a noise level for signal returns for the HRQLS data sets, and to get 

an idea of the difference in the number of noise points removed by the two filtering 

methods, we manually classified eight rooftop regions as a benchmark for comparison. 

The eight roofs were selected from strong reflective surfaces, where the roof definition 

was very evident in the SPL data. The results are shown in Table 5-2. 
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Figure 5-4 Filtered point cloud of study area. The points are colored by ellipsoidal elevation. Fifteen test 

areas are labeled: R1–R5 are rooftop targets, G1–G5 are bare ground areas, and C1–C5 are 

vegetation canopy. 

 

Table 5-1 Statistical comparison between the proposed method and the voxel-based method. Root mean 

square error (RMSE) in meters between the filtered results and the reference linear mode 

LiDAR data is shown. 

 
 Type Region 1 Region 2 Region 3 Region 4 Region 5 Max Min Mean 

Roof 
AES 0.10 0.10 0.09 0.09 0.08 0.10 0.08 0.09 

Voxel 0.14 0.11 0.11 0.10 0.10 0.14 0.10 0.11 

Ground 
AES 0.16 0.14 0.10 0.08 0.10 0.16 0.08 0.12 

Voxel 0.19 0.16 0.12 0.10 0.12 0.19 0.10 0.14 

Canopy 
AES 1.85 1.95 2.79 1.98 1.79 2.79 1.79 2.07 

Voxel 2.08 2.21 3.24 3.12 2.11 3.24 2.08 2.55 
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Table 5-2 Number of noise points removed by the proposed method and voxel-based method compared to 

manual classification along with RMSE of the plane fit from the manually filtered point cloud. 

Roof 1, 6, 7 and 8 are tilted rooftops and all others are flat. 

 Total Proposed Percentage Voxel Percentage RMSE 

Roof 1 89 61 69% 30 34% 0.10 

Roof 2 333 296 89% 168 50% 0.09 

Roof 3 335 268 80% 127 38% 0.09 

Roof 4 508 415 82% 192 38% 0.08 

Roof 5 120 110 92% 59 49% 0.08 

Roof 6 183 137 75% 85 46% 0.07 

Roof 7 108 75 69% 29 27% 0.07 

Roof 8 119 105 88% 63 53% 0.08 

 

From the table, we can see that the proposed method filtered about twice as many 

near-signal points as the voxel-based method did. For hard planar surfaces (rooftops), the 

proposed method RMSE compares very closely with that of the manually filtered point 

cloud. For a qualitative analysis, we selected two representative profiles to show the 

difference between the two filtered results. Figure 5-5 (A) and (B) shows vertical profiles 

of rooftops: one tilted roof and one horizontal roof. We can see that the proposed method 

profiles are very clean, while the voxel-based result is noticeably noisier. The voxel-

based filter works better for the horizontal roof; this is because all of the voxels are of the 

same size and orientation (usually horizontal). For the tilted roof, a voxel will cover both 

roof and noise and misclassify the noise points as part of the signal. For the proposed 

method, the searching ellipsoid changes its size and orientation adaptively based on local 

geometry so that the signal points are kept and more noise close to the surface is 

removed. A majority of the remaining noise points underneath the rooftop are caused by 

the detector after-pulsing effect [75], which results in more clustered noise that cannot be  
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Figure 5-5 Comparison of results from the proposed method and voxel-based method. The width of all the 

vertical sections is 2 m. (A) tilted rooftop, (B) flat rooftop, (C) bare ground, (D) vegetation 

canopy. 

 

easily removed with a density-based method. These correlated noise points have 

different characteristics from solar noise and their removal will be discussed in Chapter 7. 

The RMSE of the tilted rooftop is 0.11 m for the proposed method and 0.16 m for the 

voxel-based method. For the flat rooftop, the RMSE is 0.12 versus 0.14 m for proposed 

and voxel-based, respectively. The RMSE difference of the two results is not very 

significant because of the small number of close-to-surface noise points present for the 
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rooftops. However, even though the RMSE is close, Table 5-2 shows that on average the 

proposed method removes significantly more of the near-signal noise points. 

Figure 5-5 (C) shows a vertical profile of bare ground. Result for the ground 

profile is similar to that of the flat roof top, except that the after-pulsing effect is not as 

evident because the ground surface is not a bright reflector. We can see some noise points 

remaining in the voxel-based result. The RMSE of AES method result is 0.12 m versus 

0.14 m for the voxel based method; the voxel-based method has difficulty in areas where 

the terrain is sloped; similar to the situation for tilted rooftops. 

Finally, we compared results in a vegetation canopy region as shown in Figure 

5-5 (D). For this region we compared top of canopy estimates. The RMSE of our 

proposed method is 2.07 m while the voxel-based RMSE is 2.55 m. The RMSE is higher 

for both methods in the canopy regions; when compared to solid surfaces such as 

rooftops and ground, the canopy shape is significantly more complex. Because there is no 

consistent canopy shape, even the use of an adaptively based ellipsoid cannot adequately 

model the rapidly changing surface model. As, a result, while the AES method improves 

the results over the voxel-based method it still struggles to accurately separate signal 

from noise in the tree canopy.  

As a final note, increased processing time is a drawback of the proposed method. 

For the filtering of one million points, the voxel-based method runs in 45 seconds versus 

269 seconds for the proposed method. All the algorithms were run with Matlab 2016a on 

the same computer (Intel E5-2603, 16 GB RAM). 
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5.5 Conclusion 

In this chapter, a novel AES method was proposed and tested for filtering SPL 

data. The AES method has two steps: in the first step, a spherical model for noise density 

estimation is established to balance the influence of inhomogeneous noise levels 

throughout the point cloud. Noise points, even in high noise rate regions can be removed. 

In the second step, an ellipsoid is used to filter near-signal noise points. Local PCA is 

applied to adapt the size and orientation of the ellipsoid to the local signal points. We 

applied the proposed method on an experimental SPL data set and compared with a 

published voxel-based filtering method. Artificial targets (rooftops), bare ground, and 

vegetation canopy were selected to compare the performance of the two methods. The 

results show that the AES method has a lower RMSE in all these regions and especially 

outperformed the voxel-based method in areas where the reflective surfaces (targets) 

were sloped. 
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Chapter 6 

An Improved Adaptive Ellipsoid Searching Method for 

Combined Single Photon LiDAR data 

In Chapter 5, an AES filtering method to effectively remove solar/dark noise in 

SPL data was introduced. In this chapter, an improved AES method is proposed to retain 

linear features in SPL data while still effectively removing noise returns. The improved 

method works on the combined SPL data sets (i.e. overlapping flight lines) to further 

utilize spatial correlation of signal points. Powerlines, an important linear feature in SPL 

data, are used to check the performance of the improved method. This chapter is a 

summary of the work in [90].  

6.1 Background 

Mapping and monitoring powerlines is of importance to power companies [91]. 

Airborne linear mode Light Detection and Ranging (LiDAR) has been proven to be an 

efficient and accurate tool to monitor powerlines. A great number of methods have been 

proposed to classify and reconstruct powerlines from LiDAR point clouds, for example: 

[92]–[97].   

SPL systems are able to detect weaker laser returns than its predecessor, linear 

mode airborne LiDAR (LMAL). This high quantum sensitivity affords SPL a tremendous 

efficiency advantage over LMAL systems because they are able to collect data with a 

wider swath and from a higher altitude [51]. Therefore, SPL has potential to be a more 

efficient tool for powerline monitoring. 
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 The AES method introduced in the last chapter is able to remove most solar/dark 

noise effectively. However, it does not fully utilize the spatial correlation between 

overlapping observations from different epochs of time because it filters SPL data from 

individual flightlines and epochs separately, without considering time or spatial overlap. 

During data collection, a majority of imaged areas are scanned repeatedly at multiple 

epochs and with differing view geometries. In these overlap areas the spatial correlation 

of noise returns is not enhanced due to their random distribution within the range gate. 

However, for signal photons, the returns locations from different observational epochs 

are correlated. The simultaneous analysis of all observations from a particular area results 

in more clustered signal points, which will enable improved filtering results. These 

clustered observations are more advantageous when considering weak signal returns from 

objects such as power lines than for larger targets with strong reflectance (e.g., rooftops).  

The filtering process required for a combined point cloud consisting of multiple 

time separated observations of an area differs from that used to examine raw SPL data on 

an epoch by epoch basis. For instantaneous epoch filtering the basic processing flow for 

the histogram-, voxel-based and AES methods is similar: extract the characteristics of the 

noise returns (e.g., distribution, point density etc.) in regions without signal points, and 

then use these characteristics to remove them in the entire data set according to expected 

instantaneous properties of the noise. However, for combined multi-look SPL data, the 

statistics and characteristics of the noise returns are not static because we are combining 

different observations from different points in time, and the noise density is known to 

vary substantially with both time and viewing geometry. Therefore, a new workflow for 

the combined SPL data filtering is required. 
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In this chapter we propose an improved AES method, called the voxel-spherical 

adaptive ellipsoid searching (VSAES) method, in which a voxel spherical (VS) model is 

adopted to estimate the point density of the combined point cloud, and an improved 

adaptive ellipsoid searching (AES) method is applied to remove the noise points. The 

new method is based on a probabilistic model instead of the direct ratio rule used in the 

original AES method presented in Chapter 5.    

6.2 Algorithm 

The filtering workflow for the combined point cloud is comprised of three steps: 

(A) tiling the raw data into data blocks, (B) estimating point density using the VS model 

and, (C) removing noise returns with an improved AES method. Details of each step are 

given in the following sub-sections. 

6.2.1 Data tiling  

The study area is rasterized with a square horizontal grid resolution of 100 m. A 

new data file is generated for each grid cell, and then all points within the cell are stored 

in the corresponding file based on their horizontal locations. In addition to three 

dimensional coordinates, the GPS time, channel number and line point density are also 

stored for each point. Line point density is calculated from the raw single range 

observation dataset by counting the average number of noise points per meter for each 

laser beamlet in the same way as introduced in Chapter 5. Figure 6-1 shows a 

representative data block and line noise density for each data point in the block.  
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Figure 6-1 An overview of a data block after tiling. (A) is colored by elevation and the (B) is colored by 

estimated line point density 

  

6.2.2 VS model 

As previously explained, the noise density varies both horizontally and along the 

laser line of sight. Therefore, the noise density for the whole data set needs to be 

estimated instead of computing a single noise metric based on the top part or the bottom 

part of the data block, which are usually regarded as noise region and used to compute 

unified noise metrics [87]. Herein, we first group points into voxels, estimate the voxel 

noise density and assign this value to all the points inside the voxel. It is safe to assume 

that the noise density does not change much in a small voxel, for example 10 × 10 × 10 

m, which is the voxel size used in this paper. A sphere located at the center of the voxel is 

then defined with the same volume as the voxel. Next, the expected number of noise 
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points in the sphere is estimated. For every point in the data block, the corresponding 

aircraft location can be interpolated using the post-processed GNSS/INS aircraft 

trajectory. The vector connecting the data point and the aircraft describes the direction of 

the outgoing laser beamlet. By calculating the distance between the line and the center of 

the sphere we can determine if the laser beamlet intersects the sphere. Given the spatial 

relationship between the query data point Q , the corresponding aircraft location F  and 

the sphere center O  as shown in Figure 6-2, the distance between the laser beamlet and 

the sphere center is calculated as 

 / .d OF OQ FQ    (6.1) 

The laser beamlets at a distance to the center of the sphere shorter than the radius 

intersect the sphere. The part of a laser beamlet inside the sphere is labeled red in Figure 

6-2 and its length  can be easily calculated using the Pythagorean Theorem. By applying 

this process to each data point in the block, we obtain all the laser beamlets intersecting 

the sphere and the corresponding length of the beamlet within the sphere. The estimated 

noise point density inside the sphere is then given as follows:  
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where,  is the line point density of the i-th laser beamlet which is calculated in step A, 

 is the length of the segment of the i-th beamlet inside the sphere,  is the sphere radius 

and  is a correction coefficient which is the ratio of the number of laser shots to the 

number of beamlets in the sphere. The correction coefficient compensates for channels 
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that do not have a return recorded [87]. Figure 6-2 gives an overview of the whole 

process for the VS model.  

 

Figure 6-2 The workflow for the VS model. The data block is first voxelized. Then for each point, a sphere 

with the same volume as the voxel is defined at the center of the voxel. Finally, the expected 

number of points is calculated. 

6.2.3 AES 

The AES application is similar to what was introduced in Chapter 5: 25 neighbors 

are selected to compute a PCA and then the ellipsoid based on the PCA is rotated and the 

number of points in the rotated ellipsoid are counted. In the last chapter, an empirically 

determined threshold is then used to classify the query point. Here, we expand the AES 

method with a more rigorous testing procedure by establishing a hypothesis test; H0: the 

query point is a noise return and H1: the query point is a signal point.  
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For a given query point and a region with any shape around it, the number of 

neighbor points inside the region conforms to a Poisson distribution; the proof is as 

follows. Consider a 3-D space with randomly distributed points. For any point, the 

probability of the number of its neighbor points inside the region is calculated as 
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where, k is the number of neighbors,  is the volume of the region,  is the volume of 

the whole space and   is the number of all points in the space. When  and  are 

very large, the equation can be approximated as 
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We can then define a point density  =  , and rewrite the equation as 
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The density is obtained from the VS model by dividing the expected number of 

points with the volume of the voxel. If the cumulative probability from zero to k  is less 

than 95%, then the null hypothesis H0 is true and the point is a noise return, otherwise the 

point is a signal photon.  

6.3 Experimental data set 

The experimental dataset was collected using the SPL100 system. Two datasets 

were used to examine performance of the proposed method. The first dataset was 

collected on November 10th, 2016 at Easton, MA and contains three overlapping 

flightlines. Data collection was from ~3.5 km above ground level (AGL) with a cone 
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angle of 9 degrees and a scan frequency of 60 kHz. The point density is ~18 points/m2 for 

a single flightline pass and the dataset was truncated with a range gate of 300 m around 

the expected signal return location. The other experimental dataset was collected on 

February 23rd, 2017 at Lufkin, TX and also contains three overlapping flightlines. The 

aircraft flew ~2 km AGL with a cone angle of 12 degrees and scan frequency of 50 kHz. 

The point density is ~20 points/m2 for a single flightline pass and the dataset was 

truncated with a range gate of 85 m.    

6.4 Results 

The VS model was first applied to each data block. Figure 6-3 displays the results 

of a representative VS model where we can see that the noise density is uneven 

throughout the whole data block. This demonstrates the importance of considering the 

scanning geometry when estimating noise level.   

The filtered result with both VS and AES applied is shown in Figure 6-4. For 

comparison the filtered result for the same area using a histogram method and the AES 

method are also shown. The histogram method proposed by Degnan was used; more 

details on this method can be found in [23], [51].  

The red linear feature crossing in Figure 6-4 from the top left to bottom right is a 

transmission line. We note significant differences in appearance of this transmission line 

when comparing the three filtered results. We have also manually classified the 

transmission line returns for comparison with the filtered results. Figure 6-5 shows the 

vertical profiles of the filtered and manually classified transmission line and Table 6-1 

gives a comparison of filtered and manually classified datasets. We define a 7x7 m 
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(Height × width) examination region around the transmission line and count the number 

of laser returns classified as signal from the transmission line within it. We then compare 

these points with the number of manually classified transmission points. The detection 

rate is calculated by dividing the number of correctly identified points with the number of 

manually classified signal points in the examination region. The false alarm rate is 

calculated by dividing the number of misclassified points with the total number of 

extracted points in the examination region. 

 
Figure 6-3 Estimated expected number of points for each voxel using VS model. The data is colored by the 

expected number of points. 
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Figure 6-4 Filtered results of the Easton area. Satellite image (A). VS-AES result (B). AES only result (C) 

and DCC result (D). Detailed view of the powerline (E) (F) (G) corresponding to (B) (C) and 

(D). The zoom in area is labeled in (B) with a white square. The results are colored by elevation. 

 
Table 6-1 Statistical result for the extraction of transmission lines with three filtering methods.  

 Number of 

correctly identified 

Detection rate Number of 

misclassified 

False alarm 

rate 

Raw data 57185 N/A N/A N/A 

VSAES 50925 89.1% 2884 5.4% 

AES 14802 25.9% 799 5.1% 

DCC 7666 13.4% 2016 20.8% 
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Figure 6-5 Vertical profile of the transmission lines from manually selected raw data and filtering result 

using VSAES, AES and DCC method. 

 

From Table 6-1, we can see that the proposed method retains 89.1% of the power 

line points with only a few incorrectly classified noise returns. For comparison, AES 

keeps only 25.9% of the transmission line points and DCC retains only 13.4%. From 

Figure 6-5, we can see that the transmission line points retained in the VSAES results 

discriminate the three separate cables clearly even though a few noise points remain 

misclassified close to the wires. For the AES result, the upper two lines are well defined 

but the extraction of the third line is not complete with a large number of gaps appearing. 

For the DCC result, clear gaps can be found in all three cables and more noise points 

appear close to the transmission lines. The optical image for the transmission lines are 

displayed in Figure 6-7. Both the visual check and statistical analysis show that the 

extraction of weak signal points is improved by combining the temporally spaced 

observations and using the VSAES filtering approach.  
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Next we check the results for a distribution line whose wires have an even smaller 

diameter than the transmission line.  As before, we manually extracted signal points for 

the distribution line. One thing to notice is that because of the low laser energy returned 

from distribution lines, even manual extraction is very hard and its accuracy is likely 

lower than that for larger transmission lines. Again, we define an examination region 

with the same size, 7×7 m (Height × Width) to evaluate the performance of the three 

filters; the statistics for distribution line extraction are given in Table 6-2.  

For the extraction of distribution lines, the proposed VSAES method detects only 

60% of the line points, but still significantly more than the 29.3% for the AES method 

and 11.1% for the DCC method. From Figure 6-6 we can see that the lowest wire in  

Table 6-2 Statistical result of extraction of distribution lines using three filtering methods. The meaning of 

each column is the same as Table 6-1. 

 Number of correctly 

identified 

Detection 

rate 

Number of 

misclassified 

False alarm 

rate 

Raw data 20793 N/A N/A N/A 

VSAES 12265 60.0% 1042 7.8% 

AES 6089 29.3% 594 8.9% 

DCC 2305 11.1% 639 41.6% 

 

 
 

Figure 6-6 Vertical profile of the distribution lines from manually selected raw data and filtered result using 

VSAES, AES and DCC method. 
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Figure 6-7 Ground view image of the Easton study area. The red line depicts the transmission lines and the 

black line shows the distribution lines. The north arrow shows an approximate north direction.  

 

VSAES profile is well detected with only a small gap. The top line has more gaps but 

there are still enough return points to accurately depict the distribution wire geometry. 

Results for the middle wire is the worst with larger areas containing gaps. However, the 

results are still markedly better than from the other two filtering methods, and appear to 

contain enough points to model the distribution line. The optical image for distribution 

lines is also displayed in Figure 6-7. 

Finally, we examine performance for an additional distribution line in the Lufkin 

flight area. The filtered result with VSAES, AES, and DCC are displayed in Figure 6-8. 

The detailed sub-figures in Figure 6-8 show a region at an intersection of two distribution 

lines. Results from the proposed method retain both lines and clearly shows two lines. 

Only one line can be seen clearly from the AES result while the other is difficult to see. 

For the DCC results, no linear features are visible. We also display vertical profiles and 

statistical analysis for the three filtered results in Figure 6-9 and Table 6-3. 
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The proposed method significantly outperformed both the AES and DCC methods 

by correctly classifying 85.9% distribution line points versus 37.9% and 6.1% 

respectively. The top line in the VSAES result is well extracted, while a few gaps can be 

found on the middle and bottom wire. By visual inspection of an oblique street view 

image (Figure 6-10), we see that there are 3 wires at the top level and only one line at the 

middle and bottom levels. Thus, the top line in the vertical profile is composed from 

signal returns from three distribution lines resulting in a clear line with no gaps in the 

figure. 

 
 

Figure 6-8 Filtered results of the Lufin area. Satellite image (A). VS-AES result (B). AES result (C) and 

DCC result (D). Detailed view of the powerline (E) (F) (G) corresponding to (B) (C) and (D). 

The zoom in area is labeled in (B) with a white square. The results are colored by elevation. 
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Table 6-3 Statistical result of extraction of distribution lines using three filtering methods. The meaning of 

each column is the same as Table 6-1. 

 Number of correctly 

identified 

Detection 

rate 

Number of 

misclassified 

False alarm 

rate 

Raw data 104542 N/A N/A N/A 

VSAES 89836 85.9% 5250 5.5 % 

AES 39367 37.9% 2622 6.2% 

DCC 6370 6.1% 980 13.3% 

 

 

Figure 6-9 Vertical profile of the transmission lines at Oncor area from manually selected raw data and 

filtered result using VSAES, AES and DCC method. 

 

 
 
Figure 6-10 Ground view image of the Lufkin study area.  The north arrow shows an approximate north 

direction. 
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6.5 Discussion 

From the comparison of filtered results from the 3 sets of powerlines, we can see 

a significant improvement in extracting powerline points using the proposed method. The 

improvements seen in the VSAES results are primarily because of two factors: the 

consideration of the local point cloud geometry during filtering and the combination of 

overlapping flight lines before filtering. Returns from the wires align two-dimensionally, 

which makes the calculated three dimensional point density for each wire point relatively 

small. The DCC method filters SPL data using the resolution of a one dimensional range 

bin and retains all the points in the data bin as signal points if the query data bin satisfies 

the filtering criteria. This 1-D filtering mechanism makes DCC have limited efficiency 

for powerlines. However, if we consider the two-dimensional nature of the powerline 

(adapting to the local point cloud geometry), then VSAES can more effectively extract 

power line points compared to methods that do not consider the local nature of the point 

cloud. 

In addition, due to the limited overlap between any power cable and the footprint 

of one laser shot, there are only a small number of signal photons bounced back to the 

SPL system. Because of the statistical nature of the sensor (i.e. relatively low photon 

detection efficiency), even fewer photons are recorded by the system, making them 

difficult to distinguish from noise in a single flightline. In this circumstance, even 

considering only local geometry information with the AES method is not sufficient to 

effectively retain enough powerline points; we need to consider all observations 

simultaneously, and the proposed VSAES method can fully utilize data from different 

observations and even different flightline collections. The powerlines are illuminated 
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from different directions and the probability that the sensor receives photons from each 

part of the powerline therefore is increased, which enhances the spatial correlation of the 

powerline points and therefore helps to improve the filtered result.  

An additional advantage of VSAES over AES is the mathematical robustness of 

the former method. Even though both VSAES and AES consider local geometry 

information through a PCA, they utilize different standards to differentiate signal from 

noise. In AES, we count the number of neighbors for a query point in a sphere and an 

ellipsoid determined by PCA; the difference of these two numbers is used as the decision 

variable and compared to an empirically determined threshold. The performance of the 

filtering results relies on a proper selection of this threshold. By contrast, the proposed 

VSAES method utilizes a filtering criteria based on a hypothesis test and the selection of 

a statistical 95% confidence threshold. Therefore, the selection of the threshold is more 

objective and the filtered result is more robust as a result. 

One thing to note is that even considering the enhanced spatial correlation and 

local geometry distribution from overlapping flight observations, there are still a number 

of powerline points missing, for example, the result of distribution line at Easton area 

(shown in Figure 6-6). By checking corresponding optical image (see Figure 6-7), we 

observe that the top and middle lines are thinner than the bottom one and this likely 

explains the higher number of missing points for them. For a direct comparison, we also 

evaluated a laser scanning data set for the same distribution line from a linear-mode 

airborne Lidar system. The data was collected on June 14th 2016 using a Leica ALS 80 

sensor operated at ~1.3 km AGL and the nominal point density is ~25 points/m2. The top 

view and vertical profile of the distribution line from the linear-mode data is shown in 
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Figure 6-11. From the vertical profile we can see that even though the bottom wire is well 

defined, the top and middle lines are missing in the linear-mode data. The energy of the 

return signal is too low for the linear-mode system to detect, and would require an even 

lower flight height to model these lines. However, in the SPL point cloud (flown at ~2 

km AGL), the top and middle lines are defined with enough points to model them. This 

also indicates that SPL has an advantage over LMAL for powerline monitoring because 

the data can be collected from higher flight heights.  

 
 

Figure 6-11 Top view of the distribution line area from linear-mode LiDAR data (top). Vertical section of 

the distribution line labeled in the black rectangle (bottom). Note that this profile is identical to 

the location given in Figure 6-6 for the SPL data.  

 

Finally, we compare the performance of VSAES and AES for strong reflectors, 

such as rooftops. We selected 5 rooftops and compared the filtered result using both AES 

and VSAES to that of LMAL data. We also manually filtered the SPL data as a 

benchmark. The results are shown in Table 6-4. 
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Table 6-4 Comparison between the AES and the VSAES method. RMSE in meters between the filtered 

results and the reference LMAL data is shown. 

 Manual AES VSAES 

Roof 1 0.05 0.06 0.07 

Roof 2 0.11 0.11 0.11 

Roof 3 0.12 0.12 0.13 

Roof 4 0.15 0.16 0.16 

Roof 5 0.07 0.09 0.09 

   

For the combined point clouds, the probability that noise points clustered near the 

targets is higher. As a result, the VSAES filter may have a higher probability of 

misclassifying these clustered noise points.  However, from Table 6-4 we can see that the 

VSAES results are as good as AES results, considering that 1 cm of difference should not 

be considered significant given the expected ranging accuracy of the sensor (usually 2-5 

cm). 

6.6 Conclusions 

In this chapter, an improved VSAES method was proposed to extract weak 

reflections from features such as powerlines from combined SPL point clouds. The 

proposed method first reorganizes the combined data by tiling it into data blocks, during 

which the spatial correlation of signal points is improved. Then the VS model is used to 

estimate the expected number of points in each voxel and solves the problem of uneven 

noise density while also balancing the computational load. At last, an improved AES 

method, based on a hypothesis test, is used to filter the data. The combined VSAES 

method used on a complete SPL data set (instead of on a flightline by flightline basis) 

makes a significant improvement for extracting weak signals such as returns from power 

lines. For the experimental dataset from the Easton area, 89% of the transmission line 

points are extracted versus 25.9% for the AES method and 13.4% for the DCC method. 
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For distribution line points, whose return signal is even weaker (smaller wire sizes), the 

proposed VSAES method extracted 60% of the signal points versus 29.3% for AES and 

11.1% for DCC. For the Lufkin, TX dataset, the extraction result is 85.9% versus 37.9% 

and 6.1% (VSAES, AES and DCC respectively). We also demonstrated that points from 

thin powerlines, though not recorded in a coincident LML dataset, can be extracted from 

SPL data. The high quantum sensitivity and high data collecting efficiency gives the SPL 

system great potential for future powerline monitoring. The VSAES method may be also 

beneficial at other applications, such as extraction of ground surface under dense canopy 

or low reflectance targets.  
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Chapter 7 

Afterpulse Removal in Single Photon LiDAR Data Using 

Robust Regression 

High quantum sensitivity makes SPL systems susceptible to false returns from 

two primary sources: dark/solar noise and afterpulses. In the previous chapters 4-6, 

methods for removing dark/solar noise have been discussed. Though these methods have 

been shown to remove dark/solar noise effectively, they have limited effect on afterpulse 

removal because of the correlated nature of afterpulse returns. In this chapter, a method to 

remove afterpulses is presented and discussed.  

7.1 Background 

An afterpulse is a secondary pulse emitted by the detector after the primary pulse 

related to the detection of a photon [98]. It is caused by amplification of secondary 

electrons originating from positive ions during the ionization of residual gases in a 

photomultiplier tube (PMT) [99]–[102], or by amplification of  carriers trapped by 

defects and impurities on deep levels in the multiplication layer of avalanche photodiodes 

(APD) [103], [104] . Unlike solar noise, afterpulses can only be recorded by the system 

after the detector has been triggered (by signal returns), and its point density is usually 

higher than that of solar noise; it is also not randomly distributed. Thus, in a SPL dataset, 

afterpulses are always found clustered beneath the signal returns from strong reflectors. 

Due to these unique characteristics current noise filtering approaches have limited 

success removing afterpulses. Afterpulses have been studied in the telecommunication 
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industry and mitigated using hardware solutions such as sine wave gating (SG) or self-

differencing (SD) techniques [105]–[109], but to date there have not been studies of 

methods for detecting and eliminating afterpulses for SPL systems. Afterpulses 

deteriorate the quality of SPL data, especially for hard surfaces such as architectural 

features and ground that are commonly of highest interest for data users. Therefore, an 

effective way to remove afterpulses is desirable.  

7.2 Algorithm 

Herein, we propose an individual shot-based afterpulse removal method, in which 

robust regression is applied to define surface structure, and then points below the defined 

surface are removed. Robust regression is a form of regression analysis used to 

circumvent some limitations of other conventional methods such as ordinary least square 

(OLS) which are highly sensitive to outliers [110], [111]. Afterpulse points and possible 

vegetation points are difficult to effectively remove as outliers when applying methods 

such as OLS to surfaces, and can easily cause these approaches to fail. In these 

circumstances, robust regression is an effective tool to define the true signal return 

surface. Robust regression first defines an objective function and then iterates with varied 

weights applied to each of the observations. This approach enables outlier points to have 

little influence on the final regression results because they will have small weights 

applied. More details on robust regression can be found in [110], [111].  As a pre- and 

post-processing step to afterpulse removal, two different solar noise filtering methods: 

DCC [23] and VSAES [90] are also applied separately. The processing workflow is 

shown in Figure 7-1.  
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Figure 7-1 Overall flowchart of the proposed afterpulse removal method. The flowchart demonstrates the 

processing chain for each laser shot. 
 

The data in each laser shot is first coarsely filtered using the DCC method. This 

method is chosen because it retains nearly all the signal and afterpulse points and is also 

computationally efficient. Two parameters are required for the DCC method: a coarse 

filtering bin size to determine the filtering threshold and a fine filtering bin size to 

remove the noise points. The coarse filtering bin size was set to 30 m as suggested in [23] 

and the fine filtering bin size was set to 5 m. After a manual verification of the data, we 

found that most of the afterpulse noise appears to be in a band up to 2-3 meters beneath 

the surface (this is demonstrated in the results section).  Therefore, to guarantee retaining 
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all possible afterpulse points, we selected a 5 m fine bin size; this parameter can be easily 

modified based on the source of the input dataset.  

Most of the solar noise returns are removed by the DCC process, leaving 

primarily signal points, afterpulse points and a few unfiltered solar noise returns. Robust 

regression is then applied to the filtered data from each laser shot with an initial weight of 

1 for each data point, during which each point is assigned a new weight iteratively. Points 

with weight larger than 0.1 are selected as candidate hard surface points. This threshold 

was determined empirically and can be tuned by application. From the results of the 

iterative robust regression, it is expected that afterpulse points will be excluded and only 

hard surface points used to fit a planar surface.  However, in some situations, when there 

are a large percentage of signal points above the surface, for example from the tree 

canopy or structures on the rooftop, the regression algorithm will assign both the surface 

points and the additional high signal points a high weight and then fit the plane to all of 

them. Thus the performance of the regression result needs to be validated before the fitted 

surface is used to remove possible afterpulse points. To automate this assessment we 

check the 68 percentile of the sorted point-to-plane distances, if it is smaller than an 

empirically determined threshold (0.5 m is used in this paper), the regression results are 

deemed to be reliable. Here we assume the distribution of the point-to-plane distances are 

subject to a Gaussian distribution and examine data below the one standard deviation 

range resulting 68 percentile of sorted distances. If the regression results fail to pass the 

percentile examination, the current shot is left as indeterminate and the filter continues to 

process the next shot. The frequency of percentile test failures depends upon the scene 
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contents for the scanned area. For bare ground and building areas, the test usually passes 

while failure is more common in heavily vegetated areas.  

If the percentile test is passed, then all the returns from the shot that are 0.3 m 

lower than the fitted plane are labeled as afterpulse points. The 30 cm threshold is 

determined based on the dead time of the sensor and the diffusion of the dataset. For the 

SPL100 system, the dead time is quoted as 1.6 ns which corresponds to 24 cm in range. 

Due to ranging errors, geolocation errors and timing jitter the SPL signal points for hard 

surfaces generally form a plane with a thickness of ~10-20 cm. Therefore, a conservative 

estimate of 30 cm is selected as the threshold used herein. This threshold can obviously 

be tuned based on the SPL dataset characteristics. Finally, the labeled afterpulse points 

are removed and the whole dataset is then filtered using the VSAES method.  

7.3 Experimental data set 

The SPL data used in the experiment was collected with an SPL100 system 

manufactured by Sigma Space Corporation, a division of Leica Geosystems. The SPL100 

is an updated version of the HRQLS system. The experimental dataset covers the main 

campus of the University of Houston (Houston, TX, USA) and was collected on February 

25th, 2017. The system was operated at ~4200 m above the ground level (AGL) and the 

imaged point density is ~30 points per square meter.  

A linear-mode airborne LiDAR (LMAL) dataset collected by an Optech Titan 

system was used as ground truth to examine the performance of the proposed SPL 

filtering method. The Titan system is a multispectral airborne LiDAR system 

manufactured by Teledyne Optech Inc. which emits laser pulses in a zigzag pattern at 
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wavelengths of 532, 1064 and 1550 nm with a field of view of ±30° [112]. The 

acquisition occurred on February 16th, 2017 at ~500 m AGL with a raw point density of 

~12 per square meter. The combined three color laser point cloud was used as a reference 

to check the spatial performance of the proposed SPL filtering method, and the green 

(532 nm) LMAL laser data alone was also used to explore the relationship between target 

reflectance and the presence of afterpulse noise. Figure 7-2 shows an overview optical 

image of the study area.  

 
 

Figure 7-2 Overview optical image of the study area. 

7.4 Results 

We applied the proposed afterpulse removal method and VSAES filtering to the 

experimental dataset described earlier. The point cloud after removal of solar/dark noise 
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and afterpulses is shown in Figure 7-3. To evaluate the effectiveness of the afterpulse 

removal routine, we first check performance on building rooftops. A vertical profile of 

two representative rooftops is shown in Figure 7-4. We can see that the afterpulse points 

are removed effectively. To quantitatively examine the results, we selected 20 rooftops 

(each with an area of ~ 75 m2) from the study dataset (labeled in Figure 7-3) and 

compared the number of filtered afterpulse points removed to a manual count of the 

number of afterpulses. The results are given in Table 7-1. Since there is no difference 

between a solar noise point and an afterpulse point, herein, we regard all the noise points 

within a 5 m range beneath the rooftop as afterpulse points from manual inspection.  

From the results in Table 7-1 we can see that the proposed method effectively 

removes ~90% of the afterpulse points. Also, we can see that even though the area of 

each rooftop is the same, the number of afterpulse points varies by a couple orders of 

magnitude. A detailed discussion of this variability will be provided in next section.   

Next we evaluate the performance of the afterpulse filter for terrain modeling. 

First, we classify ground points for the two filtered results: one using only the VSAES to 

remove solar noise and the second using both the proposed afterpulse removal method 

and VSAES. The classification was performed using the Terrascan (www.terrasolid.com) 

embedded ground classification routine and the parameters used were: 88° for terrain 

angle, 10° for iteration angle and 1.4 m for iteration distance. No manual corrections to 

the filtered point cloud were applied. A digital terrain model (DTM) was generated from  
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Figure 7-3 Filtered point cloud of study area. The points are colored by elevation. 20 representative 

rooftops examined for a quantitative assessment of filter performance are labeled.  

 

 

Figure 7-4 Two representative rooftop profiles to demonstrate afterpulse removal. Red points are the 

filtered result when using VSAES only and green points are when VSAES and the proposed 

afterpulse removal method are both applied. The width of both vertical profiles is 2 m. 
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the classified ground points. We also generated a reference DTM using the reference 

LMAL data which was automatically classified and manually validated by the National 

Center for Airborne Laser Mapping (www.ncalm.org). We then generated elevation 

difference between the DTM products from the experimental data and the reference 

DTM, with the results presented in Figure 7-5. 

In Figure 7-5 we can clearly see the difference between the two results. With 

afterpulses removed, the elevation differences in most areas have a mean close to zero. 

The larger differences mainly appear around buildings because of occlusions caused by 

scanning geometry and the interpolation algorithm applied to fill gaps in the DTMs.  

Table 7-1 Statistical comparison between the results from the proposed method and manual classification. 

We manually labeled all the noise points within a 5 m range beneath each rooftop as afterpulse 

points. The area of each rooftop is ~75 m2. 

 

Rooftop 

ID 

Manually 

removed 

Algorithm 

removed 
Rate 

1 650 591 90.9% 

2 455 407 89.5% 

3 612 550 89.9% 

4 989 927 93.7% 

5 230 220 95.7% 

6 174 134 77.0% 

7 664 636 95.8% 

8 587 476 81.1% 

9 337 314 93.2% 

10 599 579 96.7% 

11 210 181 86.2% 

12 178 139 78.1% 

13 361 341 94.5% 

14 75 67 89.3% 

15 430 357 83.0% 

16 180 169 93.9% 

17 588 536 91.2% 

18 1558 1464 94.0% 

19 542 453 83.6% 

20 243 213 87.7% 

Overall 9662 8754 90.6% 

Mean 483 438 89.2% 
.    
  

http://www.ncalm.org/
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Figure 7-5  Absolute elevation difference to the reference ground DEM from the result with (right) and 

without (left) removal of afterpulse points using the proposed method. The figure is colored by 

elevation difference and only shows differences from 0 to 5 m.  

 

(A)  (B)

 
 
Figure 7-6 Distribution of elevation differences shown in Figure 7-5. (A) is for results with VSAES only 

and (B) is for results with afterpulses removed. Also, we only plot elevation difference ranging 

from 0 to 5 m to demonstrate the distribution of elevation differences.  
  

There are two remaining areas with large elevation differences, one in the 

northwest corner due to a stadium; because of the large footprint of the stadium bleachers 
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interpolation causes large elevation difference. The other area is in the southeast corner 

where there is a bridge over a river; the automatic classification from Terrascan didn’t 

properly classify these features. 

The distributions of the elevation differences were also analyzed and the results 

are shown in Figure 7-6. For the VSAES only result, the mean difference is 1.95 m while 

the mean difference for the afterpulse filtered result is only 0.23 m.  We can also see that 

for the VSAES only result there are clearly many areas with large elevation differences. 

This is because of the large number of afterpulse points under the primary return surfaces 

that confuses the Terrascan classification routine leading to a big elevation differences 

when compared to the reference ground model.  Most ground filters typically start by 

gridding the data coarsely and then using the lowest points in each bin as ground points 

[33]. This works well for LMAL because there are no afterpulses but for SPL this means 

that all of the initial ground candidate points are likely afterpulse points which will cause 

a bias to the final ground model as the candidate points are not likely to be removed.  

7.5 Discussion 

The filtered result from the proposed method for afterpulse removal shows good 

agreement with the reference linear-mode LiDAR data. The proposed method is able to 

remove ~90% of afterpulse points on buildings. The remaining undetected afterpulses are 

mainly a result of the following conditions: heavily vegetated areas, complex structures 

on top of buildings and building corners. These all make it difficult for the proposed 

method to fit a reliable plane to signal returns and effectively remove afterpulse points.  
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Examining Figure 7-6 (A) again, we see that the elevation difference distribution 

can be divided into two parts, one from 0 to 0.5 m and the other from 0.5 to 5 m. The 

latter part is clearly elevation errors caused by unfiltered afterpulse points as discussed in 

the results section. The first portion indicates that in some areas, there are either very few 

afterpulse points or that the afterpulse points are removed using VSAES only. Many 

density based filtering methods may be able to remove afterpulse points to some degree, 

especially if they are sparse. However, removal relies on time-consuming parameter 

tuning and also risks misclassification of signal points if the filter is set to aggressively 

remove clustered afterpulses. The proposed method aims to remove afterpulses based on 

local geometry instead of point density. Thus it is effective in removing afterpulses while 

still retaining signal returns.    

The relationship between the number of afterpulse points, the number of signal 

points, and return intensity were also examined. In the previous section, we mentioned 

that even though all the rooftops examined had the same approximate area, the number of 

afterpulse points varied widely between rooftops. To better demonstrate the change in the 

number of afterpulses, we examined each laser shot and counted the number of signal 

points and the number of classified afterpulse points. The results are shown in Figure 7-7. 

For each laser shot, we obtain a data pair: the number of signal points and the number of 

afterpulse points. The color scale in Figure 7-7 indicates the number of data pairs that fall 

on each integer coordinate location. We can see that there is most commonly ~10-20 

afterpulse points and ~80-100 signal points for each laser shot (of 100 beamlets). There is 

also a clear trend that shows with an increase in signal points, afterpulse points are more 

probable to appear. The statistical analysis displayed in Figure 7-7 was conducted on the 
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coarsely filtered result (applying the DCC method only) to ensure that a majority of the 

afterpulse points were included. It should be noted, that while the number of afterpulse 

points is reliable, the number of signal points may be less accurate because the DCC 

method does not remove all of the solar/dark noise points; the result is some noise in the 

statistical analysis, however this should not affect the overall trends shown in Figure 7-7. 

To better understand the characteristics of afterpulses better, we compare the number of 

afterpulse points to the average intensity recorded for the coincident linear-mode LiDAR 

data.  

 

Figure 7-7 Relationship between the number of afterpulses and number of signal points for each laser shot. 

Each coordinate indicates a data pair consisting of number of afterpulses (y) and number of 

signal points (x) colored by the number of data pairs falling at each integer coordinate location. 
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Figure 7-8 Relationship between number of afterpulses and average return signal intensity for the 20 

selected rooftops 
 

Figure 7-8 shows the relationship between the number of afterpulses and the mean 

LMAL return intensity for the same area for the rooftops depicted in Figure 7-5. Intensity 

from the Titan green laser point cloud for the rooftop areas was obtained and the mean 

intensity for each sample area was calculated.  This mean intensity was then plotted w.r.t. 

the number of afterpulse points identified. We fitted the resultant points with a linear 

model, obtaining an R2 of 0.77. This linear regression clearly shows number of afterpulse 
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points increases with increasing return signal strength. The stochastic detection process of 

an SPL system is a Poisson process [47]. Therefore, we would expect an exponential 

relationship between the number of incident photons and detections, and thus we then 

also fitted the data with exponential functions as shown in Figure 7-8 bottom figure. The 

exponential model fits the data at a moderate level with R2 of 0.77. Several reasons may 

explain this. First, the LMAL intensity data is not calibrated, although it was corrected 

for range and incidence angle effects. The different scanning geometry between LMAL 

and SPL may also introduce some errors. Finally, we regarded all the noise points within 

5 m range beneath the plane as afterpulses while some of them might be solar/dark noise 

returns – it is impossible to discriminate between the two.  

It should also be noted that the SPL100 system operates at a green wavelength, 

thus enabling the possibility of bathymetric mapping.  There were several small water 

bodies outside the study area that were examined and they clearly showed that a 

shortcoming of the proposed afterpulse removal method is that it incorrectly removes 

bathymetric returns because they appear as afterpulses to returns from the water surface. 

For water body areas, the surface of the water reflects most of the laser energy and forms 

a good planar surface that can easily be identified by the afterpulse removal algorithm. 

Thus bathymetric areas should be processed separately without afterpulse removal if 

benthic layer retrieval is desired.  

7.6 Conclusions 

Afterpulse noise points are one of the significant sources of error in SPL datasets, 

but have received little attention in the current literature. The clustering of afterpulses 
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beneath strong reflectors gives them a different statistical pattern from solar/dark noise, 

and thus makes them difficult to remove using existing SPL filtering methods. In this 

chapter, we proposed and tested a new method of removing afterpulse points from SPL 

data. The method utilizes local geometry information based on robust regression and was 

effective at removing most afterpulse points while still retaining signal points. In the 

experiment, around 90% of afterpulse points beneath rooftops were removed. For terrain 

areas, the proposed method decreased the mean elevation difference to reference linear-

mode data from 1.95 m to 0.23 m using a conventional automated ground filtering 

algorithm. However, the proposed method does still have some shortcomings; for heavily 

vegetated areas, complex structures and water bodies, the proposed method has either 

limited effectiveness or misclassifies bathymetric signal points. Future work will attempt 

to improve the performance of afterpulse removal for these special situations.   
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Chapter 8 

Conclusions and Future Work 

8.1 Contributions of the dissertation and conclusions  

New generation single photon LiDAR systems are able to collect data much more 

effectively than linear-mode LiDAR systems due to their high quantum sensitivity. 

However, this high quantum sensitivity also leads to a much higher noise rate, which can 

deteriorate the quality of SPL datasets if not properly classified. In this dissertation, 

filtering methods for SPL data were studied and the following contributions have been 

made.  

In Chapter 4, a novel point density based algorithm was proposed for filtering 2-D 

single photon LiDAR profiles. The algorithm considers the probability distribution 

function of distances to the k-th nearest neighbors. Then Bayesian decision theory is 

applied to calculate the probability of a point being signal or noise. We also adaptively 

scaled the noise level based on the estimated noise rate provided in the MABEL data 

before filtering to ensure a homogeneous noise rate within the whole dataset. This 

proposed noise scaling significantly improves the performance on green channels when 

using point density based methods. The proposed method was applied to two MABEL 

datasets of CA and MO. The extracted ground surfaces were compared with high 

accuracy airborne laser scanning data. The RMSE between the filtered CA MABEL 

profile and the ALS is ~6 meters for MABEL’s green channels and ~4 meters for the 

near-infrared channels. The RMSE for comparison between the MABEL profile and ALS 

data for the MO test dataset is ~2 meters. The results showed that the profiled ground 
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surface can be reliably extracted by the proposed method.  The proposed method was also 

compared with mDBSCAN, a point density based algorithm. mDBSCAN with and 

without noise rescaling was applied to the same datasets, both of which removed fewer 

noise points than the proposed method did. Also the proposed method outperformed 

mDBSCAN at steep areas since mDBSCAN works with only horizontal interrogation 

regions.  

In Chapter 5, a novel AES method was proposed to filter the 3-D imaging SPL 

data. The AES method was designed to solve two problems: inhomogeneous noise 

distribution and near-signal noise removal. The AES method has two steps. In the first 

step, a spherical model for noise density estimation is established to balance the influence 

of inhomogeneous noise levels throughout the point cloud. Then the quotient of the 

number of neighbors and the estimated noise density is used as the rule to initially filter 

the input data. In the second step, a morphing ellipsoid is used to filter near-signal noise 

points. Local PCA is applied to adapt the size and orientation of the ellipsoid to the local 

signal points. The change in the numbers of points in the original sphere and the 

morphing ellipsoid is regarded as the metric for noise classification. The AES method 

was tested on a SPL point cloud from Easton, MD collected by the HRQLS system. A 

voxel-based filtering method was applied to the same dataset for comparison. Linear-

mode ALS data was used as a reference, and the filtered results from the two methods on 

different types of targets were evaluated. We found that the RMSE on solid planes was 

0.09 m versus 0.11 m, 0.12 m versus 0.14 m for bare ground and 2.07 m versus 2.55 m 

for vegetation canopy for the AES and voxel methods respectively. We also manually 
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selected several solid planar reference surfaces and found that the proposed method 

successfully removed twice as many noise points as the voxel-based method.  

Then in Chapter 6, an improved VSAES method was proposed to retain weak 

signals from combined SPL point clouds (i.e. overlapping in space and/or time) during 

the filtering process. The proposed method first reorganizes the combined data by tiling it 

into data blocks, during which the spatial correlation of signal points is improved. Then 

the VS model is used to estimate the expected number of points in each voxel. By 

employing this VS model, our proposed method can simultaneously process a combined 

SPL data set containing multiple flightlines, in which the noise density is unevenly 

distributed throughout the whole data set. Finally, an improved AES method, based on a 

hypothesis test, is used to filter the data more robustly than the original version. The 

combined VSAES method used on a complete SPL data set (instead of on a flightline by 

flightline basis) makes a significant improvement for extracting weak signals such as 

returns from powerlines. For the experimental dataset from the Easton area, 89% of the 

transmission line points were extracted versus 25.9% for the AES method and 13.4% for 

the DCC method. For distribution line points, whose return signal is even weaker 

(smaller wire sizes), the proposed VSAES method extracted 60% of the signal points 

versus 29.3% for AES and 11.1% for DCC. For the Lufkin, TX dataset, the extraction 

result was 85.9% versus 37.9% and 6.1% (VSAES, AES and DCC respectively). We also 

demonstrated that the points from thin powerlines, though not recorded in a coincident 

LMAL dataset, can be extracted from SPL data. The high quantum sensitivity and high 

data collecting efficiency gives the SPL system great potential for future powerline 

monitoring.   
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Finally, in Chapter 7, a new method of removing afterpulse points from SPL data 

was discussed. Afterpulses have different characteristics from solar/dark noise and thus 

can not be removed effectively by density-based solar noise filters. The proposed method 

utilizes robust regression to define target surfaces in each laser shot and removes points 

beneath it. The regression result is validated by checking point-to-plane distances. The 

validation process ensures that the regression result is not influenced by signal points 

above the target surface such as returns from vegetation. The proposed method was tested 

on SPL dataset of the University of Houston main campus. The VSAES method was also 

applied to remove solar/dark noise for comparison. Performance of the afterpulse 

removal method for buildings and ground were evaluated. For buildings, 20 

representative rooftops were examined and it was found that 90% of the afterpulse points 

on average were removed. For the ground surface, we examined the RMSE between 

DSM’s generated from the SPL dataset and the reference LMAL dataset. The proposed 

method successfully reduced the RMSE from 1.95 m to 0.23 m. In addition, positive 

correlation between the number of afterpulses and return intensity was found, and fitting 

of the number afterpulses versus return intensity gave an R2 of 0.77 with both a linear 

model and an exponential model.  

8.2 Future work 

Recommendations for future work include the following two major areas: 

improving computational efficiency of the filter and retrieving intensity information for 

targets.  
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8.2.1 Improved computational efficiency 

The filtering algorithms introduced in Chapter 5 and 6 are point-based, which 

means the algorithm has to iterate on each point in the dataset. Other published methods, 

histogram- or voxel-based for example, operate by iterating on each data bin or voxel. 

Thus, the proposed methods have lower computational efficiency than these other 

methods. Herein, we propose two possible ways to improve the computation efficiency. 

One way is to implement the proposed methods in C/C++. In this dissertation, all 

the methods were developed with Matlab. Though efficient for matrix computations, 

Matlab is not optimized for complex calculations. One of the novelties of the proposed 

method is to accommodate local point geometry with a morphed ellipsoid defined by a 

local PCA. However, calculating PCA for all the points requires iteration in Matlab, 

which lowers the overall computational efficiency. Iteration is not as significant a 

bottleneck in C/C++ and thus the methods will run in a much more effective manner.  

Another computational efficiency could be realized by using Mahalanobis 

distance to neighbors for each point instead of calculating PCA. Mahalanobis distance 

utilizes standard deviation as the metric instead of absolute distance and thus has 

potential to help remove near-signal noise. Mahalanobis distance can be computed with 

matrix computation. Therefore, even with Matlab, application of Mahalanobis distance is 

capable of significantly improving computational efficiency.  

Also, multiple-thread computation with GPU (graphics processing unit) is a 

potential way to improve computational efficiency. GPUs have recently been used in 

many different fields such as artificial intelligence, data mining, and scientific 

simulations. The proposed filtering methods implies simple operations on each point 
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individually, and the results for each point does not influence operation of other points. 

This mechanism is therefore an excellent fit for parallel computation and thus 

implementation with GPU multiple-thread computations will help improve computational 

efficiency.  

8.2.2 Intensity retrieving 

As introduced in Chapter 2, SPL detectors operate in a binary mode which means 

that the number of incident photons does not make any difference on the magnitude of 

output photocurrent, and thus no intensity information is available. However, with some 

processing, intensity information might be retrieved using properly filtered SPL data. 

Detection events modeled as a Poisson process and the probability of triggering the 

detector is one minus the probability of zero. If the number of incoming photons 

increases, detection probability goes up too. And the number of incoming photons is 

correlated to target reflectance, or in other words, intensity of target photons. A higher 

detection probability indicates larger number of returns from the target are recorded. 

Therefore, it is possible to establish a relationship between the point density and the 

intensity. And the relationship is expected to be exponential.  

The experiment might start with examining only hard surfaces, such as building 

rooftop areas and the ground surface. Targets with a large range of reflectance 

distribution are preferable. Then the mean point density of each target can be calculated. 

The point density should be normalized with respect to number of flight lines, overlap 

between continuous shots and other related factors so that point density is only related to 

the target reflectance. A reference data with intensity information is required, either 

hyperspectral data or LiDAR data with the same wavelength. Finally, an exponential 
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regression model can be applied to the point density and the corresponding intensity 

value.  

It should be noted that for SiPM-based SPL systems, intensity can be estimated as 

a proportion of the output voltage. However, the accuracy of this measurement has not 

been fully investigated and still requires validation. If this estimated intensity is not 

sufficient, combining it with detection probability estimation may be a better choice.  
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