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ABSTRACT

The attenuation of circularly polarized shear waves 
propagating in the (001] direction in copper was calculated for 
external magnetic fields up to 32 kG. The attenuation by electrons 
on different regions of the Fermi surface was identified. This 
study used the Fermi surface calculated from the studies of M. R. 
Haise by L. T. Wood.
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I - INTRODUCTION

The fact that circularly polarized shear waves could 

be used to obtain information about the momentum of conduction 

electrons in pure metals at low temperatures was proposed by 
Kjeldaas^ in 1959. The circularly polarized shear waves establish 

circularly polarized electromagnetic fields in the metal which interact 
2 with conduction electrons. Boyd and Gavenda first observed this 

interaction mechanism in pure copper and studied Doppler-shifted 

cyclotron resonance (DSCR).

The important feature of Doppler-shifted cyclotron 

resonance is that it predicts the existence of an absorption edge 

above which the shear waves are not attenuated. This absorption edge 

is determined by electrons which have the largest value of mcvz or 

'3S/3 kz, where mc is the cyclotron mass, is the average drift 

velocity of electron in the direction of the shear wave propagation, 

S is the cross sectional area of the Fermi surface, and kz is the 

electron wave number. For a simple Fermi surface it is easy to 

predict which electrons are responsible for the absorption edge. 

In the case of a. spherical Fermi surface, the electrons at the 

limiting point have the maximum mcvz and, hence, are responsible for 

the absorption edge. However, with more complicated Fermi surfaces, 

in particular, those which have necks such as copper, silver, or 

gold, it is a more complicated matter.

Boyd arid Gavenda reported an absorption edge in a 
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copper which was not a result of the limiting point electrons, but 

rather a group of electrons in the neighborhood of an extremal value 

of mcvz. This is perhaps the first indication that absorption edge 

can occur by electrons with k„ less than the maximum value 

on the Fermi surface. They reported an absorption edge by electrons 

with kz=0.45 x 10® cm""-*- for shear waves of frequency = 110 Mc/sec 

propagating in the 001 direction for an applied magnetic field up 

to 10 kG. They interpreted their experiment by considering electrons 

in the region I (kz < 0.6 x 10^ cm--*- in figure 1) . They treated the 

attenuation by electrons near the necks ( regions II and III, kz > 

0.6 x 10® cm-'*- ) as background noise.

Since the work by Boyd and Gavenda, Jericho and 

Simpson® have conducted similar measurements on copper and reported 

an absorption edge at a much higher field near 19 kG for about the 

same shear wave frequency used by Boyd and Gavenda. This absorption 

edge is possible, if one considers the electrons in the necks of Fermi 

surface since these electrons have higher mcvz or '5S/dkz than the 

maximum value for the region I. Since there was no detailed information 

of 9S/3kz near the neck regions, this large value of magnetic field 

for the absorption edge has been left unexplained.

Since the above studies with ultrasonic shear waves,
4Hui first conducted in 1969 studies of Doppler-shifted resonance 

with helicon waves in copper. His results were compatible with the 

ultrasonic attenuation measurements by Jericho and Simpson in that 

he also saw structure in the helicon transmission curves at fields 
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higher than the edge reported by Boyd and Gavenda.

The purpose of this study is to use the Fermi surface 
model of Halse^ to recalculate the attenuation of shear waves by 

electrons in the three different regions, and to see if the attenuation 

by the electrons in the regions II and III can explain the attenuation 

curve at high fields up to 32 kG as reported by Jericho and Simpson.



IT - THEORY

When an external magnetic field B is applied to a metal 

in the z - direction, the electrons execute an orbit with a cyclotron 

frequency uDc which is given by

to =-£^6.
C

c CD

where e is the charge of an electron and c is the velocity of light.

Since the electrons drift along the z - direction with an average 

pf v2, the effective frequency (a)^ in the sound field experienced 

by the electrons is

U)e= " 1 )
LS (2)

where cs is the velocity of the shear wave propagating through the 

metal. Equation (2) states the Doppler-shift effect.

In order to facilitate an energy transfer from a shear 

wave to conduction electrons in metal, the cyclotron frequency and 

the Doppler-shifted frequency must be the same, i.e..

(3)

For most electrons (vz/cs))>^ 1, therefore from equations (2) and (3)

caD’z e- B
C-s mnc c

(4)
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If subharmonic interactions are included, equations

(2) and (3) may be rewritten as

q Vz = 4n ± 1 , ( n = 0, tl,±2, ... ) (5)
WG

where <1 is the wave number of the shear wave equal to W/c . Equation

(5) has been called the Doppler-shifted cyclotron resonance condition.

An effective energy transfer from the shear wave to

electrons requires that the mean free path of the electron be

" long compared with the wave length of the shear wave:

<5.1 1 (6)

The resonance conditions for an effective energy 

transfer and hence for an attenuation of the shear wave is given in 

the expression for the attenuation A(kz) derived by Boyd and Gavenda.

A(kz>c<y" dkz, (7)

J i

where '7' is the relaxation time of the electron. The coefficients 

an are related to the interaction due to the electric field, collision 

drag, and the deformation potential. The exact calculation of an is 

very involved even if the Fermi surface if known. Therefore, following
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Boyd and Gavenda, it is assumed that the subharmonic resonances can

be neglected. and aQ varies only slowly with kz. Then equation (7)

reduces to

&ckz)oc( ------ •Wctdk,
)(k)

Since 1, only significant contribution to the attenuation

occurs around qv2 = u)c , or when the resonance condition is

satisfied.



Ill - CALCULATION TECHNIQUE

Harrison has shown that

m v c z
2TL

as \
) (9)

Figure 1 shows dS/9kz as a function of kz in the L0013" direction 
7for copper. This curve was obtained by Wood by using the Fermi 

surface parameters given by Haise. Figure 2 shows mc/mB as a function 

of kz, where ntg is the cyclotron mass for kz=0. For a given frequency 

of the shear wave and an external magnetic field, equation (8) can 

be integrated by using the numerical results of figures 1 and 2 to 

calculate the attenuation. Three regions are identified and designated 

as regions I, II, and III in figure 1.

The Simpson's rule was used to numerically integrate 

equation (8) on a computer. The values of ‘dS/3kz and mc/mB were 

read in at kz = 0.00239 A° Three calculations were carried out 

to compare with the results by Boyd and Gavenda and by Jericho and 

Simpson.

The first calculation was carried out for the following 

conditions.

V - uu 
2-71 = 110 Mc/sec.

c = 3.0 X ■> ^1° 110 cm/sec

cs = 3.0 X 10^ cm/sec.

e = 4.803 x lO-"1"^ esu
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-fi = 1.05 x 10-27 erg-sec.

't = 4.8 x IO--*-! sec.

itVg = 1.25 x 10~27 gram

Substituting the above quantities into equations (8) and (9), the 

following expression is obtained.

(Kg) \ r 1,1 x*T2'(10)
) 1 + 0.23 (3J03S 2.83 eM-AT
0 LX V J '* /

where B is in kG. It is noted that (kz)max =: 1-33 A° is devided 

into 518 equal intervals. The integration in equation (10) up to the 

first 244 intervals is the attenuation due to electrons in region I, 

and between 245 and 382 due to electrons in the region II, and the 

rest is due to the electrons in the region III.

The second calculation was carried out for Jl) = 100 

Mc/sec. and = 10“^® sec. Other constants are the same as above.

Equation (10) is modified as

(ID

The last calculation was carried out for t = 4.8 x
^-1010 sec. and 1? = 100 Mc/sec. and all other quantities are the 

same as the first calculation.



IV - DISCUSSION OF RESULTS

Figure 3 shows attenuation calculated for 2J = 110 Me 
/sec and T = 0.48 x 10-'L^ sec for B ranges up to 32 kG. The 

ordinate indicates only the relative magnitude of the attenuation 

because equation (10) only calculates a quantity which is proportional 

to some absolute attenuation which must be determined by experiment. 

There are three lines in Figure 3. The upper line indicates the total 

attenuation due to electrons in the whole regions I, II and III. The 

middle line shows the attenuation by electrons in the regions I and 

II, while the lower curve indicates the attenuation due to the 

electrons in the region I.

Figure 3 compares with the attenuation measured and 

calculated by Boyd and Gavenda shown in Figure 4. Both figures 3 and 

4 indicate a maximum attenuation around B = 4.6 kG. A sharp drop in 

attenuation after the peak indicates that the resonance condition is 

no longer satisfied by the electrons in the region I. This is the 

absorption edge mentioned by Boyd and Gavenda. However, as can be 

seen from figure 3, attenuation due to the electrons in the regions 

II and III is more than just background noise as presumed by Boyd and 

Gavenda. In fact, the attenuation at high magnetic fields is mostly 

due to electrons in the regions II and III, as these electrons are 

more favorably satisfying the resonance condition. The reason that 

Boyd and Gavenda were able to explain their experimental results with 

the electrons in the region I is due to the fact that up to the 
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range of magnetic field they considered (10 kG), the general shape of 

of attenuation curve due to the all electrons is quite similar to that 

due to the electrons in the region I alone.

Figure 5 shows the attenuation calculated for U = 100 
Mc/sec and = 1.0 x 10""10 sec. The maximum attenuation still occurs 

at B = 4.6 kG, however, a secondary peak seems to appear at higher 

magnetic fields. The general shape of the attenuation curve is more 

sharply peaked than that shown in figure 3. The frequency and the 

relaxation time used for figure 5 closely approximates the condition 

of Jericho and Simpson's experiment. Figure 6 shows attenuation curves 

obtained by Jericho and Simpson for two different experiments. The 

relaxation time for the sample designated by Cu^A is shorter by a 

factor of two than that for the case designated by Cu^. Note that the 

secondary peak shown in figure 5 is in general agreement with the 

secondary peak for the sample Cu . Even though the relative magnitudes 

are different, the position in magnetic field is qualitatively correct.

Figure 7 shows the result for 7? = 5.0 x 10""l° sec 

and = 100 Mc/sec. A number of secondary peaks appear in this curve 

which tends to agree with the experimental results for Cu^ by Jericho 

and Simpson. However, the magnitude of attenuation at these secondary 

peaks is not as pronounced as what was observed experimentally.. 

It is rather interesting to observe how sensitive the 

attenuation curve is to the relaxation time. This study also seems 

to support the fact that the secondary peaks reported by Jericho and 

Simpson are due to the electrons in the regions II and III. Since the 
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calculated attenuation at high fields is not as pronounced as what 

has been observed experimentally, further research will be necessary 

to refine the expression for attenuation by equation (9). This may 

include consideration of attenuation by higher harmonic resonance and 

more realistic description of the relaxation time rather than using an 

average value. The values of an may have to be determined by a more 

careful comparison of theory and experiment.



V - CONCLUSIONS

The attenuation of circularly polarized shear waves' 

by the electrons in the regions II and III is more than a background 

noise although the electrons in the region I are responsible for the 

main peak of the attenuation. Furthermore, the attenuation is mostly 

due to the electrons in the regions II and III of the Fermi surface 

at high magnetic fields.

The simple model proposed by Boyd and Gavenda for 

attenuation (equation (8)) is not sufficient to explain the secondary 

peaks in the attenuation curve observed by Jericho and Simpson. 

However, the general trend in the shape of attenuation curve could 

be constructed by choosing appropriate values of relaxation time. 

It is also fair to say that the secondary peaks are due to the 

electrons in the regions II and III.



APPENDIX I - BOYD AND GAVENDA APPROXIMATION

Boyd and Gavenda approximated the integration in equation (8) 

as follows: Since the denominator in equation (8) is very

large except near the resonance condition, si 1. The half width of this

resonance denominator is (60cT )-^ in terms of . In terms of 

the half width is

= 2.7Cinc

Ht
half width ^2-)

For a given external magnetic field B, the S/ kz value

corresponding to the resonance condition is given by

"d S = 27U e B cs
tuDC

resonance
(13)

Boyd and Gavenda assumed that the electrons in the region defined by 

d S/^kz ± 1.5 resonance x3S/Skz hal£ w:ldth contribute to the attenua

tion of shear wave. This region is then devided into three equal parts.

Each of these parts defines a region over kz from figure 1. Then the area 

under the curve of mc/mg in figure 2 is found for each of the three 

regions of kz. The integration of equation (8) is approximated by

A(kz) = 0.4 x (mcA kz)1 + 0.65 x (mcAkz)2 

+ 0.9 x (mc4kz) (14)
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where (m_Ak„)-, (m_Ak„)„, and (me4k )„ are areas under the curve in 

figure 2 for the three regions of kz in the order of decreasing distance 

from the resonance condition. The factors 0.4, 0.65, and 0.9 come from 

the resonance denominator integrated over three equal parts of 9 S/9 kz 

region.

This study used this approximation method to calculate the 

attenuation from figures 1 and 2. The result was essentially the same as 

that shown in figure 3 (or 5 and 7), which was obtained using more 

rigorous numerical integrations by equation (10) or (11).



APPENDIX II - ATTENUATION DUE TO SUBHARMONIC RESONANCE

In order to study the effect of subharmonic resonance on

the attenuation of shear wave, the coefficients an in equation (7) must 

be known. Since an could not be calculated explicitly, it was treated 

as the same constant for all subharmonics. Then equation (7) is reduced 

to 6

7ncA(kz) 2L
(15)

after factoring out an from equation (7).

° Integration of equation (15) gave an attenuation curve

which decreased monotonically with increasing magnetic field. The rate 

of decreasing attenuation was a little slowed down around b = 5 kG.

This exercise indicated that the coefficients in equation (7) can not be 

factored out, but must be evaluated correctly to obtain correct 

attenuation from equation (7), when one tries to include effects of 

subharmonic resonance on the attenuation.
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Fig, 1 -"3S/skz of the Fermi surface in the [.001] direction



Fig. 2 - Cyclotron mass normalized with respect to mg 
for kz = 0
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Fig. 3 - Attenuation of shear wave for V= 110 Mc/sec.

and T= 0.48 x 10~10 sec



AT
TE

NU
AT

IO
N 

(n
ep
er
s/
cm
)

Fig. 4 Attenuation observed by Boyd and Gavenda for 110 Mc/sec.
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Fig. 6 Attenuation curves obtained by Jericho and Simpson
for 100 Mc/sec.
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Fig. 7 - Attenuation of shear wave for V= 100 Mc/sec. and
T = 4.8 x 10~10 sec.
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