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ABSTRACT

The attenuation of circularly polarized shear waves
propagating in the [001] direction in copper was calculated for
external magnetic fields up to 32 kG. The attenuation by electrons
on different regions of the Fermi surface was identified. This
study used the Fermi surface calculated from the studies of M. R.

Halse by L. T. Wood.
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I - INTRODUCTION

The fact that circularly polarized shear waves could
be ﬁsed to obtain information about the momentum of conduction
electrons in pure metals at low temperatures was proposed by
Kjeldaas1 in 1959. The circularly p;larized shear waves establish
circularly polarized electromagnetic fields in the metal which interact
with conduction elgctrpns. Boyd and Gavenda2 first observed this
interaction mechanism in pure copper and studied Dopplér—shifted
_cyclotron resonance (DSCR).

The important feature of Doppler-shifted cyclotron
resonance is that it predicts the existence of an absorption edge
above which the shear waves are not attenuated. This absorption edge
is determined by electrons which have the largest value of mcﬁé or

9S8/3 k,, where mg isvthe cyclotron mass, Vv, is the average drift

z
velocity of electron in the direction of the shear wave propagation,
S is the cross sectional area of the Fermi surface, and k, is the
glectron wave number. For a simple Fermi surface it is easy to
predict which electrons are responsible for the absorption edge.

In the case of a spherical Fermi surface, the electrons at the
limiting point have the maximum mc;z and, hence, are responsible for
the absorption edge. However, with more complicated Fermi surfaces,
in particular, those which have necks such as copper, silver, or

gold, it is a more complicated matter.

Boyd and Gavenda reported an absorption edge in a



copper which was not a result of the limiting point electrons, but
rather a group of electrons in the neighborhood of an extremal value
of m.V

7 This is perhaps the first indication that absorption edge

can occur by electrons with k, less than the maximum value (kz)maX
on the Fermi surface. They reported an absorption edge by electrons
with k,=0.45 x 108 cmml for'shear waves of freguency Y = 110 Mc/sec
propagating in the 001 direction for an applied magnetic field up
to 10 kG. They interpreted their experiment by cénsidering electrons
in the region I (k,; < 0.6 x 108 cm~l in figure 1). They treated the
attenuation by electrons near the necks ( regions II and III, kzj>
0.6 x 108 cm™! ) as background noise.

Since the work by Boyd and Gavenda, Jericho and
Simpson3 have conducted similar measurements on copper and reported
an absorption edge at a much higher field near 19 kG for about the
same shear wave frequency used by Boyd and Gavenda. This absorption
edge is possible, if one considers the electrons in the necks of Fermi

—

surface since these electrons have higher nm.v, or 'BS/EBkz than the
maximum value for the region I. Since there was no detailed information
of 3S5/93k, near the neck regions, this large value of magnetic field
for the absorption edge has been left‘unexplained.

Since the above studies with ultrasonic shear waves,
Hui4 first conducted in 1969 studies df boppler~shifted resonance
with helicon waves in copper. His results were compatible with the

ultrasonic attenuation measurements by Jericho and Simpson in that

he also saw structure in the helicon transmission curves at fields



higher than the edge reported by Boyd and Gavenda.

The purpose of this study is to use the Fermi surface
model of Halse5 to recalculate the attenuation of shear waves by
electrons in the three different regions, and to see if the attenuation
by the electrons in the regions II and III can explain the attenuation

curve at high fields up to 32 kG as reported by Jericho and Simpson.



II ~ THEORY

When an external wmagnetic field B is applied to a metal

in the z -~ direction, the electrons execute an orbit with a cyclotron

F

frequency (Dc which is given by
w=_68
c MCC
(1)
where e is the charge of an electron and ¢ is the veloéity of light.
Since the electrons drift along the z = direction with an average
of V5, the effective frequency “%3 in the sound field experienced

by the electrons is

w,

e"'w(_%i—_l)

(2)
where ¢y is the velocity of the shear wave propagating through the
metal. Equation (2) states the Doppler-shift effect.

In order to facilitate an energy transfer from a shear

wave to conduction electrons in metal, the cyclotron frequency and

the Doppler-shifted frequency must be the same, i.e.,

W, = Wy

c
: (3)

For most electrons (VZ/CS)>> 1, therefore from equations (2) and (3)

wl, ~ ¢eB
Cs m. C
(4)




If subharmonic interactions are included, equations

(2) and (3) may be rewritten as

— z =4nt 1, (n=0,%£1,%2, ...) (5)

where 4 is the wave number of the shear wave equal to UJ/cs. Equation

(5) has been called the Doppler-shifted cyclotron resonance condition.
An effective energy transfer from the shear wave to

electrons requires that the mean free path of the electron jl be

‘long compared with the wave length of the shear wave:

al > 1 (6)

The resonance conditions for an effective energy
transfer and hence for an attenuation of the shear wave is given in

the expression for the attenuation A(k,) derived by Boyd and Gavenda.

Ka)max

A(kz)OCZ qzlc T—laml O(kz > (7)
| | + T LgUp-@am+1) ]

~(ks Mmox

where ?’ is the relaxation time of the electron. The coefficients
an are related to the interaction due to the electric field, collision
drag, and the deformation potential. The exact calculation of a, is

very involved even if\the Fermi surface if known. Therefore, following



Boyd and Gavenda, it is assumed that the subharmonic resonances can
be neglected, and a_ varies only slowly with k,. Then equation (7)

reduces to
(kz)m«x i )
m, T dk,

A (kg) < ‘ —E—— =
1+ T [g0 - w.]

(8)

Z(Ke) 1ox .
Since &%;E>'l, only significant contribution to the attenuation

occurs around qv, = W, , or when the resonance condition is

satisfied.



IIT - CALCULATION TECHNIQUE

Harrison6 has shown that

mc’\iz=— jﬂ (gi ) (9)
_ z

Figure 1 shows as/;akz as a function of k, in the LoolYy direction
for copper. This curve was obtained by Wood7 by using the Fermi
surface parameters given by Halse. Figure 2 shows mc/mB as a function
of k,, where my is fhe cyclotron mass for k,=0. For a given frequency
of the shear wave and an external magnetic field, equation (8) can
be integrated by using the numerical results éf figures 1 and 2 to ‘
calculate the attenuation. Three regions are identified and designated
as regions I, II, and III in figure 1.

The Simpson's rule was used to numerically integrate
equation (8) on a computer. The values of BS/EBkZ and mc/mB were
read in at "k, =_0.00239 a° -1, Three calculations were carried out
to compare with the results bf Boyd and Gavenda and by Jericho and
Simpson.

The first caléulation‘das carried out for the following

conditions.

Pa-_W _

2T 110 Mc/sec.
c = 3.0 x 1010 cm/sec.
Cg = 3.0 x 10° cm/sec.
e = 4,803 x lO"10 esu



A = 1.05 x 10”27 erg-sec.
T = 4.8 x 10711 sec.
U = 1.25 x 1027 gram

Substituting the above quantities into equations (8) and (9), the

following expression is obtained.

.33 ( qﬂg/gﬂs ) d kz

(10)
+o.25[ 25 /M N _ @/_er T
A l 3.103 52 ,ma) Q.z83 ,ma)

where B is in kG. It is noted that (kz)max = 1.33 AO—l is devided

A (Kz) oc.

into 518 equal intervals. The integration in equation (10) up to the
firsf 244 intervals is the attenuation due to electrons in region I,
and between 245 and 382 due to electrons in the region II, and the
rest is due to the electrons in the region III.

The second calculation was carried out for L = 100
Mc/sec. and T = 10710 gec. Other constants are the same as above.
Equation (10) is modified as

.33

(,m°/’ms ) dk,

Sy /%)~6.283B/%)]2

The last calculation was carried out for T = 4.8 x

A (k;) o< (11)

10—lO sec. and ) = 100 Mc/sec. and all other quantities are the

same as the first calculation.



IV - DISCUSSION OF RESULTS

Figure 3 shows attenuation calculated for Q) = 110 Mc
/sec and T= 0.48 x 10710 sec for B ranges up to 32 kG. The
ordinate indicates only the relative magnitude of the attenuation
because equation (10) only calculates a quantity which is proportionai
to some absolute attenuation which must be determined by experiment.
There are three lines in Figure 3. The upper line indicates the total
attenuation due to‘electrons in the whole regions I, II aﬁd III. The
middle line shows the at£enuation by electrons in the regions I and
11, thle the lower cufve inaicates_the attenuation due to the
electrons in the region I.

Figure 3 compares with the attenuation measured and
calculated by Boyd and Gavenda shown in Figure 4. Bo£h figures 3 and
4 indicate a maximum attenuation around B = 4.6 kG. A sharp drop in
attenuation after the peak indicates that the resonance condition is
no longer satisfied by thg electrons in the region I. This is the
absorption edge mentioned by Boyd.and Gavenda. However, as can be
seen from figure 3, attenuation due to the eléctrons in the regions
IX and III is more thgn just backgroﬁhd noise as presumed by Boyd and
Gavenda. In fact, the attenuafion at high magnetic fields is mostly
due to electrohs in the regioné II and III, as thgse electrons are
more favorably satisffing the resonance conditign. The reason that
Boyd and Gavenda were.able to explain their experimental results with

the electrons in the region I is due to the fact that up to the
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range of magnetic.field they considered (10 kG), the general shape of
of attenuation curve due to the all electrons is quite similar to that
due to the electrons in the region I alone.

Figure 5 shows the attenuaﬁion calculated for )M = 100
Mc/sec and T = 1.0 x lO"10 sec. The maximum attenuation still occurs
at B = 4.6 kG, however, a s;condary peak seems to appear a; higher
magnetic fields. The general shape of the attenuation curve is more
sharply peaked than that shown in figure 3. The frequency and the
relaxation time used for figure 5 closely approximatés the condition
of Jericho and Simpson's experiment. Figure 6 shows attenuation curves
obtaiﬁed by Jericho and Simpson for two different experiments. The

relaxation time for the sample designated by Cu is shorter by a

1A

factor of two than that for the case designated by Cul. Note that the
secondary peak shown in figure 5 is in general agreement with the

secondary peak for the sample Cu,_. Even fhough the relative magnitudes

ia

are different, the position in magnetic field is gqualitatively correct.
Figure 7 shows the result for T = 5.0 x 10710 sec

and P = 100 Mc/sec. A number of secondary peaks appear in this curve

which tends to agree with the experimental results for Cu, by Jericho

1
and Simpson. However, tbe magnitude of-attenuation at these secondary
peaks is not as pronounced as what was observed experimentally..

It is rather interesﬁing to observe how sensitive the
attenuvation curve is to the relaxation time. This study also seems

to support the fact thaf the secondary peaks reported by Jericho and

Simpson are due to the electrons in the regions II and III. Since the
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calculated attenuation at high fields is not as pronounced as what

has been observed experimentally, further research will be necessary
to refine the expression for attenuation by equation (9). This may
include consideration of attenuation by higher harmonic resonance and
more realistic description of the relaxation time rather than using an
average value. The values of ap may have to be determined by a more

careful comparison of theory and experiment.



V - CONCLUSIONS

The attenvation of circularly polarized shear waves’
by the electron§ in the regions II and III is more than a background
noise although the electrons in the region I are responsible for the
main peak of the attenuatioh. Furthermore, the attenuation is mostly
due to the electrons in the regions II and III of the Fermi surface
at high magnetic fields.

The simple model proposed by Boyd and Gavenda for
attenuati&n (equation {8)) is not sufficient to explain the secondary
peaké in the attenuation curve observed by Jericho and Simpson.
However, the general trend in the shape of attenuation cur&e could
be construqted by choosing appropriate values of relaxation time.

It is also fair to say that the secondary peaks are due to the

electrons in the regions II and III.



APPENDIX I ~ BOYD AND GAVENDA APPROXIMATION
Boyd and Gavenda approximated the integration in equation (8)

as follows: Since (wc"(')»l, the denominator in equation (8) is very

large except near the resonance conditic;n, q_(;.régj_. The half width of this
(9
resonance denominator is (wW.T )1 in terms of _quv . In terms of IBS/'akzl
c

the half width is

28 - 2T M

Sk, R T

half width

(123

For a given external magnetic field B, the S/ k, value

corresponding to the resonance condition is given by

258 : _ 2WeBG
2k, hwc

resonance

. (13)
Boyd and Gavenda assumed that the electrons in the region defined by
+ -
,a S/Bkzl resonance - 1.5 lx 3S/3 kzl half width contribute to the attenua
tion of shear wave. This region is then devided into three equal parts.
Each of these parts defines a region over k, from figure 1. Then the area

under the curve of mc/mB in figure 2 is found for each of the three

regions of k,. The integration of equation (8) is approximated by

A(k;) = 0.4 x (maky); +0.65x (meAk,),

+ 0.9 x (m.Akz) (14)
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where (m;4 kz)l, (m. 4 kZ)Z’ and (chkz)3 are areas under the curve in
figufe 2 for the three regions of k, in the order of decreasing distance
from the resonance condition. The factors 0.4, 0.65, and 0.9 come from
the resonance denominator integrated over three equal parts of BS/akz
region. -

This study used this approximation method to calculate the
attenuation from figures 1 and 2, Thé result was essentially the same as -

that shown in figure 3 (or 5 and 7), which was obtained using more

rigorous numerical integrations by equation (10) or (11).



APPENDIX II - ATTENUATION DUE TO SUBHARMONIC RESONANCE

In order to study the effect of subharmonic resonance on
the attenuation of shear wave, the coefficients a, in equation (7) mustj
be known. Since a, could not be calculated explicitly, it was treated

as the same constant for all subharmonics. Then equation (7) is reduced

to
*ﬁznuy

50
mC dgz
A(ky) :
(k) o< Z l-I-T‘[%V;-(an)wc]z'

Ly mak ’ (15)
after factoring out a, from equation (7).

Integration of equation (15) gave an attenuation curve
which decreased monotonically with increasing magnetic field. The rate
of decreasing attenuation was a little slowed down around b = 5 kG,

This exercise indicated that the coefficients in equation (7) can not be
factored out, but must be evaluated correctly to obtain correct
I

attenuation from equation (7), when one tries to include effects of

subharmonic resonance on the attenuation.
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