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ABSTRACT 

Subsea explorations are a major contributor to the global energy balance. A lot 

of research has been put into action to enhance all aspects of this industry despite the 

complexity faced. Therefore, developing tools with reduced computational time efforts 

while maintaining high accuracy levels is a crucial engineering and scientific challenge 

to maintain such position.  

Presented in this dissertation is an autonomous model-based simulation and 

optimization approach intended to be deployed during the pre-Front-End-Engineering-

Design (pre-FEED) study phase of a subsea field development project. The proposed 

methodology is developed so subsea engineers use it as an asset to perform subsea field 

architecture design optimization. Based on a multi-objective optimization, experts can 

identify and select solutions satisfying pre-defined financial and technical targets. 

Additionally, the presented work is aimed to achieve tasks beyond its pre-FEED study 

utility. Specifically, deep-dive analysis is enabled to deal with real-time production 

system properties tracking, health monitoring and integrity assessment via model’s self-

adaptation routines. 

By integration of different reduced-order physics-based models, a digital twin 

for a subsea production system is created. Hence, low-dimensional models have been 

developed to describe several aspects of a subsea system. A crucial part of the developed 

platform is illustrated via a multiphase flow reduced order model. A model developed 

as a steady-state multiphase mechanistic model in series with a dissipative distributed 
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single-phase transient model, coupled via estimation of equivalent fluid properties. 

Additionally, flow assurance and structural integrity are serious issues within the subsea 

industry. A contribution to the presented matter, a data-driven parameter varying 

corrosion rate prediction model is presented as an amelioration of the existing prediction 

packages.  

Integrating the developed models along with several other reduced-order models 

within a hybrid optimization process, optimal layout scheme of a subsea field under 

production and flow assurance constraints can be determined. A digital twin of a subsea 

production system has been developed to mimic the operating process of a complete 

subsea production field starting from a newly discovered reservoir and ending at a 

terminal, thus, used as a virtual simulation environment of a subsea field overall life 

cycle within all compartment: upstream, mid-stream and downstream. 
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NOMENCLATURE 
 

 
Variable Description Unit 

𝒂 Fugacity Coefficient Pa 

𝑨 Pipeline cross-section area m2 

𝑪 API 14E erosion C-factor ------ 

𝒄𝒆𝒒 Fluid equivalent speed of sound m/s  

𝑪𝟎 Base cost USD/m 

𝑪𝑳  No-slip Liquid holdup ------ 

𝑪𝒄𝒐𝒓𝒓 Correction cost USD 

𝑪𝒎𝒊𝒔𝒄 Coating cost USD 

𝑪𝒑, 𝑪𝒑,𝒌, 𝑪𝒑,𝑴
𝒊  Specific heat capacity, specific heat capacity at node k, specific heat capacity of fluid from well w i to 

manifold M 
J/kg.C 

𝑪𝑶𝑺𝑻𝑴𝒊
 Cost of manifold Mi in ith well set USD 

𝑪𝑶𝑺𝑻𝑴𝒂𝒏𝒊𝒇𝒐𝒍𝒅𝒔 Cost of all installed manifolds USD 

𝑪𝑶𝑺𝑻𝑻,𝒊𝒏𝒊 Initial design overall cost USD 

𝑪𝑶𝑺𝑻𝑻 Overall cost USD 

𝑪𝑶𝑺𝑻𝒊 Cost of all installed pipelines in ith well set USD 

𝑪𝑶𝑺𝑻𝒎𝒂𝒏𝒊𝒇𝒐𝒍𝒅𝒔 Vector of manifolds costs USD 

𝑪𝑶𝑺𝑻𝒑𝒊𝒑𝒆𝒍𝒊𝒏𝒆𝒔 Cost of all installed pipelines USD 

𝑪𝑹, 𝑪𝑹𝒂𝒄𝒕, 𝑪𝑹𝒎𝒂𝒔𝒔 Corrosion rate, kinetics activation Corrosion rate, Mass transfer corrosion rate mm/year 

𝑪𝑹𝑵𝑶𝑹 NORSOK Corrosion Rate mm/year 

𝑪𝑹𝑹𝒆𝒄𝒂𝒍𝒊𝒃𝒓𝒂𝒕𝒆𝒅 Recalibrated DeWaard, Lotz and Dugstad Corrosion Rate mm/year 

𝑪𝑹𝒎 DeWaard, Lotz and Dugstad Mass Transfer Corrosion Rate mm/year 

𝑪𝑹𝒎𝒆𝒔 Measured Corrosion Rate mm/year 

𝑪𝑹𝒓 DeWaard, Lotz and Dugstad Activation Kinetics Corrosion Rate mm/year 

𝑪𝑹𝑹
∗  Recalibrated Activation Kinetics Corrosion Rate mm/year 

𝑪𝑹𝒓
𝑬𝑿𝑷 Reference Activation Kinetics Corrosion Rate mm/year 

𝑪𝑹𝒓
𝒇𝒊𝒏𝒂𝒍

 Final Recalibrated Activation Kinetics Corrosion Rate mm/year 

𝑫, 𝑰𝑫, 𝑶𝑫 Pipeline diameter, pipeline inner diameter, pipeline outer diameter m 

𝑬 Longitudinal weld-joint factor ------ 

𝑬𝑳 Liquid holdup ------ 

𝑬𝒓𝒂𝒕𝒊𝒐 Erosional ratio ------ 

𝒇𝟎 Basic Cost of a Subsea Manifold USD 

𝒇𝟏 Tree type cost factor ------ 

𝒇𝟐 Pressure rating cost factor ------ 

𝒇𝟑 Bore size cost factor ------ 

𝒇𝑪𝑶𝟐 Carbon Dioxide Fugacity bar 

𝒇𝒆𝒒 Equivalent Darcy friction factor ------ 

𝒇(𝒑𝑯) NORSOK pH dependent function ------ 

𝒇𝒔 Flowline size cost factor ------ 

𝒇𝒕 Flowline type cost factor ------ 

𝒇𝒕𝒑 Two-phase friction factor ------ 

𝑭𝒔𝒄𝒂𝒍𝒆 Corrosion scale layer correction factor ------ 

𝒈 Gravitational acceleration (=9.81) m/s 

𝒈𝒄 Conversion factor (=1) kg.m/N/s2 



 

 xiii 

𝒉𝒕𝒑 Two-phase heat transfer coefficient W/(C.m) 

𝒉𝟎 External convection heat transfer coefficient W/(C.m) 

𝒌 Isentropic exponent (k=1.4) ------ 

𝑲𝒕 NORSOK Temperature Constant ------ 

𝑳 Pipeline length m 

lifespan Pipeline lifespan year 

𝒎̇, 𝒎̇𝒌, 𝒎̇𝑴
𝒊  Fluid mass flow rate, fluid mass flow rate at node k, mass flow rate of fluid from well wi to manifold M kg/s 

𝒎𝒊 ith well set size ------ 

𝒏 Total number of wells ------ 

𝒏𝒄 Number of well clusters ------ 

𝑵𝒃𝒓𝒎𝒂𝒏𝒊𝒇𝒐𝒍𝒅𝒔 Vector of manifolds number ------ 

𝑵𝒃𝒓𝒔𝒍𝒐𝒕 Vector of manifolds slots number ------ 

𝑷 Allowable internal pressure Pa 

𝑷𝒊𝒏, 𝑷𝒐𝒖𝒕 Inlet, outlet pressure Pa 

𝑷𝟎 Atmospheric pressure Pa 

𝑷𝒂𝒗𝒈 Fluid average pressure Pa 

𝑷𝑪𝑶𝟐 Carbon Dioxide Partial Pressure bar 

𝑷𝒌 Pressure at the kth node in the graph for shortest path search Pa 

pH Fluid pH ------ 

𝑸 Fluid volumetric flow rate m3/s 

𝑸𝑳 Liquid phase volumetric flow rate m3/s 

𝑸𝑮 Gas phase volumetric flow rate m3/s 

𝑸𝒊𝒏, 𝑸𝒐𝒖𝒕 Inlet, outlet volumetric flow rate m3/s 

𝑺 Pipeline shear stress bar 

𝑺𝒑 Allowable internal pipeline stress Pa 

𝑻 Temperature °C 

𝑻𝑴 Temperature at manifold M °C 

𝑻𝒔𝒄𝒂𝒍𝒆 Corrosion scale layer appearance temperature °C 

𝑻𝒊𝒏, 𝑻𝒐𝒖𝒕, 𝑻𝒂𝒎𝒃𝒊𝒆𝒏𝒕, 

𝑻𝒌 

Input, output, ambient temperature, and temperature at node k in the graph for path search 
°C 

𝑻𝒐𝒍 Manufacturer allowable percent tolerance % 

𝒕 Pipeline wall thickness m 

𝒕𝒆 Maximum corrosion allowance m 

𝒕𝒑 Penetration depth m 

𝒕𝒕𝒉 Thread or groove depth m 

𝑼, 𝑼𝒌 Overall heat transfer coefficient, overall heat transfer coefficient at node k W/(C.m2) 

𝑾𝑨𝑻 Wax appearance temperature °C 

𝑽𝒎 Mean Flow Velocity m/s 

𝑽𝑺𝑮 Gas superficial velocity m/s 

𝑽𝑺𝑳 Liquid superficial velocity m/s 

𝑽𝑮𝟎  Entrained air average superficial velocity in liquid at atmospheric pressure m/s 

𝑽𝑳𝟎  Average liquid superficial velocity at atmospheric pressure  m/s 

𝑽𝒆𝒓𝒐𝒔𝒊𝒐𝒏 Erosional velocity m/s 

𝑽𝒎𝒊𝒙𝒕𝒖𝒓𝒆 Mixture velocity m/s 

𝒙𝒄,𝒚𝒄,𝒖𝒌,𝒗𝒌,𝒑𝒌,𝒒𝒌,𝒛𝒌
𝟎  Fitting parameters ------ 

𝒙,𝒚,𝒛,𝒙𝑾𝒊
,𝒚𝑾𝒊

,𝒛𝑾𝒊
 Space coordinates m 

𝒀 Derating factor ------ 

𝝁𝑮 Gas viscosity Pa.s 
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𝝁𝑳 Liquid viscosity Pa.s 

𝝁𝒆𝒒 Fluid equivalent viscosity Pa.s 

𝝆𝑮 Gas density kg/m3 

𝝆𝑳 Liquid density kg/m3 

𝝆𝒆𝒒 Fluid equivalent density kg/m3 

𝝆𝑵𝑺 No-slip density kg/m3 

𝜟𝑷𝑯𝑯  Hydrostatic pressure differential Pa 

𝜟𝑷𝑻,𝒊𝒏𝒊 Initial design overall pressure differential Pa 

𝜟𝑷𝒔𝒔 Steady-state pressure differential Pa 

𝜟𝑷𝑻 Overall pressure differential Pa 

𝜟𝑷𝒇 Friction pressure differential Pa 

𝜟𝑷𝒊 Pressure differential at ith well set Pa 

𝜶 Optimization weighting factor ------ 

𝜷𝑳 Liquid phase bulk modulus Pa 

𝜷𝑮 Gas phase bulk modulus Pa 

𝜷𝒆𝒒 Fluid equivalent bulk modulus Pa 

𝜽 Pipeline inclination angle degree 

𝜺 Pipeline inner surface roughness m 

𝝊 Poisson’s number ------ 
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1 INTRODUCTION: STATE OF THE ART, RESEARCH 

CHALLENGES AND OPPORTUNITIES 

 

1.1 Subsea Field Development Lifecycle 

 

Since the 1950s, the world energy demand has been rising steadily. Even though a 

lot of effort and a considerable number of initiatives and inventions in the field of 

renewable energy resources have reduced their use, fossil fuels such us crude oil, natural 

gas, and coal make up the majority of the global energy consumption, accounting for 

almost 84% as shown in Figure 1-1. Hence, the oil and gas production has become one 

of the major contributors to sustain the stability of the world’s energy supply. 

 

 

Figure 1-1: Global Primary Energy Consumption By Fuel In 2019 [1] 

 

Coal
27%

Natural Gas
24%Renewable

12%

Nuclear
4%

Oil
33%



 

 2 

Among the fossil fuels production industry compartments, offshore oil and gas 

industry has become to gain position as a global lead provider. Starting in early 1970s, 

the concept of developing offshore subsea fields has been considered as a focus point 

for many industry players. Hence, the start of the discipline of subsea engineering 

describing all type of configurations enabling the connection of a well and associated 

equipment below the water surface or what has been called “subsea production 

systems”.   

This industry was based in its early stages on subsea completions located in less 

than 1000 ft below water surface (shallow- water completions). However, in the past 50 

years, oil, and gas onshore and shallow-water reserves have been depleted. Therefore, 

as an alternative, supported with all the advancement, innovations and the new 

capabilities deployed to be able to remotely control and operate equipment, the subsea 

systems have advanced in an increasing pace from shallow-water to be developed at 

water depths of up of 10000 ft (deep-water completions). This advancement has been 

accompanied with many challenges and problems for the offshore industry naming 

water depth, weather conditions, ocean currents, critical operating conditions like high 

pressure and high temperature (HPHT), equipment reliability and integrity as well as 

subsea wells accessibility and sustainability. Such criticality and complexity make the 

offshore oil and gas production a highly specialized industry requiring specific 

engineering aspects. 

Due to the mentioned challenges described above, the task of Subsea field 

development is a long and complicated procedure. Typically, the subsea field 

development process consists of four major stages as described in Figure 1-2. As 
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presented the development process starts with the filed survey and ends with the 

reservoir total recovery and the field abandonment.   

 

 

Figure 1-2: Subsea Field Development Process 

 

These stages are precisely described as follows: the “Exploration” stage, includes 

all discovery and exploration activities of potential oil or gas geological reservoirs. 

Then, the second stage starts, referred to as the “Field Development phase. At this stage, 

engineers will be working on the concept of possible development plans involving the 

major key development milestones. Precisely, this phase can be conducted following 

three sequential studies: Appraisal/ assessment study, Development Planning, or pre-

FEED analysis and finally the Development phase or FEED analysis. Once a 

development plan has been selected and get approval for investment from the operator, 

the “Execution” stage is led to execute the Engineering, Procurement, Construction, and 

Installation (EPCI). From that point, the subsea field will enter the stage of “Life of 

field”.  
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More details about the specification of each of the subsea field development 

lifecycle is presented in Figure 1-3. 

 

Figure 1-3: Offshore Oil and Gas Development Value Chain [2] 

 

As mentioned above, a broad range of topics is involved on the FEED studies 

including construction materials, proven health monitoring technologies, environmental 

conditions such as depth and seabed topology, drilling costs, oil prices, and operation 

and production requirements. The inclusion of all these factors makes the FEED studies 

of subsea field architecture optimization a mega-system engineering challenge. 

1.2 Subsea Production Systems 

 

A subsea production system is presented as the arrangement scheme different subsea 

components in order enabling the exploration and the transmission of fossil fuels from 
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an under-water reservoir to a floating production, storage and offloading (FPSO) facility 

or directly to an onshore terminal. Mainly, a subsea production system is presented as 

multi-physics systems carrying non-Newtonian fluids from the seabed to a tieback. 

Different configurations can define a subsea production system, depending on the nature 

of the subsea field. Hence, different types of individual subsystems comprise a subsea 

production system. These subsystems can include wellheads, Christmas tree (X-trees), 

Pipeline End Manifold (PLEM), Pipeline End Termination (PLET) systems, manifolds, 

risers, flowlines and jumpers (Figure 1-4).  

 

Figure 1-4: Subsea Production System Schematic [3] 

 

Owing to its expected service life spanning decades of production, FEED studies 

are performed to ensure that the subsea field architecture is optimal for its specific 

location, depth and production requirements, thus balancing capital expenditures 
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(CAPEX) and operational expenditures (OPEX) and maximizing net present value 

(NPV) using the most reliable, safe, and cost-effective solution available at the time.  

1.3 Subsea Layout Optimization  

1.3.1 State of the Art 

 

The complexities and challenges in the subsea field architecture design process have 

received a variety of mathematical approaches and solutions. Numerous investigations 

concerning subsea field architecture optimization have produced solutions that address 

various aspects of the design. Many of these investigations focused on maximizing the 

production rate within a subsea production system as well as reducing the installation 

and facilities cost. Proposed in [4] is a solution based on a mixed integer linear problem 

model (MILP) to optimize the NPV within a subsea gathering system. The method of 

solution integrated a set of constraints dealing with the reservoir nonlinear performance, 

surface pressure and drilling rig resources. Presented in [5] is a mixed integer 

programming (MIP) model that maximizes the NPV by considering the pressure of each 

reservoir. In [6], a solution was developed using a multi-period non-convex mixed-

integer nonlinear programming (MINLP) model seeking to maximize the NPV for the 

different stages of the field life cycle.  

More detailed solutions have also appeared in the literature with the focus of 

optimizing connections (pipeline routing layout and sizes) among the subsea 

components. Precisely, these investigations seek solutions to optimally interconnect the 

various fixed facilities subject to design requirements. Developed in [7] and [8] are 

genetic algorithms (GAs) based solutions identifying optimal pipeline sizes for a natural 
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gas network subject to flow rates, pressure differential and costs requirements. An 

offshore production field optimization methodology was derived in [9] optimizing the 

piping routing among the different facilities. This solution included diverse subsea field 

architecture features such as its hydraulic and technical properties, its economic 

production flowrates, and its separation process involving existing production facilities. 

Other similar studies have been proposed in [10-12]. In these investigations, optimal 

solutions are created that extend existing gas piping networks. The extension was 

accomplished by introducing solutions that balance the trade-offs among the overall 

system hydraulic performances, the topological profile of the seabed and the operating 

and installations costs. Although the focus on the effect of the reservoir performances 

on the overall subsea field architecture layout, the proposed methodologies have not 

considered the different issues that can result from the complexity of the fluid behavior 

within the piping system. Hence, the effect of this complexity on the overall system 

robustness and integrity have not been taken into consideration. Omitting these issues 

can result on an underperforming system especially if the system is operating under 

conditions where structural problems can occur namely corrosion erosion and wax 

deposit.  

A body of knowledge exists in the literature for facilities locations optimization 

approach. One solution introduced in [13] used the binary approach of 0s and 1s within 

a linear programming model. The model was used to identify an optimal network 

connecting the reservoir to the topside terminal through optimal locations of the 

manifolds and the FPSO units. Another model-based approach was presented in [14] 

based on the concept of the “clustering manifold”. The motivation for this work was to 
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develop a method based on partitioning the subsea wells into groups, especially 

applicable to large subsea fields. The result of this grouping phase produced an efficient 

optimization process identifying locations of the cluster manifolds and their connections 

with the wellheads. Another method optimizing the number and location of pipeline end 

manifolds (PLEMs) and its connections with the cluster manifolds and FPSO was 

proposed in [15]. This method was successfully applied in [16] to design the subsea 

layout using 4-slot and 6-slot manifolds. An MILP optimization method to design 

subsea production networks was provided in [17] accounting for the number of 

manifolds and platforms, appropriate locations, well assignment and pipeline diameters 

as well as the reservoir properties. In these presented works, the overall optimization 

problem has been treated as a 2D problem where no study concerning the effect of the 

topological profile of the overall field has been evaluated. Since the major component 

of a subsea system is presented by the hydraulic properties of the flowing fluid, then 

understanding its pattern represents an essential requirement into having a well-

designed system. These properties are directly related to the variation of the topological 

profile. This is precisely justified by the fact that any variation in pipes elevation can 

result in a major change in the fluid pattern and behavior. Hence, patterns such as 

slugging flow can be observed within the system which is remarkably a big issue within 

the oil and gas industry that is preferably be treated at the design phase of a subsea field 

development to avoid any catastrophic scenarios during the production stage.  

Another major challenge during the development of a subsea field is related directly 

to nature of the seabed where the different components of a production system are 

located. In fact, combining topographic constraints and infrastructure optimization is 
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the problem to solve as it represents a high-fidelity translation of the real situation. 

Included in [18] are seabed constraints in addition to the pipelines structural properties 

within an optimization process in order to find the best pipeline routing scheme. This 

idea was enhanced in [19] for the case of a single pipeline and [20, 21] for a piping 

network, where solutions to minimize the total length of the piping system were 

proposed. This was achieved by discretizing the pipeline into several branches of 

straight lines and curves and by considering more constraints such as presence of 

obstacles within the field as well as on-bottom stability. 

1.3.2 Challenges and Opportunities 

 

Although, many solutions have been presented in order to demonstrate efforts and 

methodologies deployed for the purpose of a subsea field architecture layout 

optimization, we can observe that all the proposed solutions do not cover all the aspects 

that can interfere with this process such us flowing fluid properties and flowing 

conditions, flow assurance issues as well as field deployment environment 

characteristics and challenges .  

1.3.2.1 Multiphase Flow Hydraulic and Thermal Modeling in Subsea Pipelines 

 

In real case subsea fields, the flowing conditions are not constant and highly 

sensitive to the changes of the overall system layout and configuration. This is mainly 

related to the fact that hydraulic and thermal properties are directly correlated with the 

changes of both pressure and temperature as well as seabed topology and elevation 

variations.  
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Hence, a major addition to the overall optimization process is the ability to track 

the variation of both pressure and temperature at any level of the subsea system. Such a 

task requires a good and accurate tool to predict both pressure and temperature along 

complex piping systems configurations and translate that into updating the fluid 

properties respectively.  

Deploying such self-adapting process can give more elaborated insights on the 

changes of the fluid behavior and properties and flowing patterns. This represents an 

essential asset especially for structure and operations condition-based monitoring along 

with flow assurance issues prediction and analysis. 

1.3.2.2 Flow Assurance Challenges 

 

 Producing subsea reserves has been always accompanied by critical flow assurance 

challenges. Such analysis is considered as an essential part during the design and 

operation phases of a subsea production field. Flow assurance issues are related to all 

the problems interfering with the integrity of any of the subsea system components 

contributing to disturbing the continuous and economical flow of the hydrocarbons from 

subsea wells into the hosting facility. This capability can be altered, or degradable due 

to solid deposits concerns such us plugging due to wax, asphaltene, and gas hydrate plug 

formation. In addition, equipment and flowline integrity issues are mainly related to the 

occurrence of corrosion, erosion, chemical incompatibility issues and/or mechanical 

stresses induced by unexpected fluid slugging or harsh flowing conditions which also 

fall within the flow assurance umbrella.  

Therefore, being able to accurately quantify and assess these phenomena discussed 

above is a crucial task to predict; mitigate; control or prevent any of the listed issues.   
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1.3.2.3 Optimization Problem Complexity  

 

Subsea field layout development is based on an optimization problem defined via 

highly non-linear sub-models. Hence, the convexity of the optimization space is not 

guaranteed, which make the search for a global solution a hard task to achieve. Some 

attempts have been developed toward this goal and this has been illustrated by the 

deployment of genetic algorithm-based solutions. However, solving such problems 

requires a large computational effort. To avoid such issue and be able to approach the 

global solution as possible as it can be, a simplified scatter search methodology has been 

incorporated within the presented work in order to reduce the optimization time without 

altering the accuracy or the convergence of the overall solution. Such approach offers a 

lot of potential to deploy the proposed methodology as a modeling environment for tasks 

that requires fast calculation efforts as well as real-time prediction and monitoring 

analysis. 

1.3.3 Research Objectives 

 

The objectives of the proposed research are focused on the development of 

reduced-order models deployed for the purpose of simulation, optimization, and design 

of subsea systems. Precisely, the focus of the presented thesis is the integration of 

reduced-order multi-physics models to develop an automated model-based environment 

for the optimization design of subsea field layout under production and flow assurance 

constraints during the pre-FEED stage of a subsea field development project. 

In a subsea field, whether in the upstream, mid-stream or downstream 

compartment, the fundamental parts constituting any of the subsea equipment are 
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pipelines. Therefore, it is crucial to develop reliable, accurate and fast tools to describe 

both hydraulic and thermal dynamic responses in a pipeline. Having such capacity, will 

also allow more accurate assessment of flow assurance related issues, precisely internal 

carbon dioxide pipeline corrosion, flow patterns tracking as well as fluid properties 

variation assessment.  

The main objective of the proposed research is to present a reliable, 

computationally affordable and engineering efficient methodology that can be used by 

experts during the design phase of subsea fields. This methodology is presented as an 

improved alternative approach for traditional design and optimization practices in the 

subsea industry giving the fact of being developed as an automated process that can 

offer a wide range of results and present an environment that can automatically simulate, 

test, and analyze different types of design scenarios subject to diverse optimization 

objectives. 

The integrated model-based methodology is developed by coupling different 

reduced-order, physics-based models. Precisely, several models are deployed, namely, 

a multiphase flow model coupled with a thermal model to capture the hydraulic and 

thermal behavior of a steady state multiphase flow within pipelines network. Both 

hydraulic and thermal models are coupled via a properties adaptive block, assuring an 

estimation of the hydraulic and thermal properties of the fluid as a function of the 

operating conditions (temperature and pressure). Different constraints are introduced to 

cope with flow assurance and environmental challenges. The overall network is 

designed and optimized by considering erosion, corrosion, and wax appearance 

acceptable thresholds.  
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Being a system-based simulation environment, the developed platform offers the 

possibility to include extra constraints as well as additional modules describing different 

type of equipment, depending on the studied problem and the user preferences. In 

addition, such modeling environment can be used as a digital-twin to virtually simulate 

subsea operation activities allowing a wide range of engineering applications including 

hydraulic properties tracking, flow assurance issues forecasting and mitigation, integrity 

management and real-time condition-based  monitoring of subsea equipment, 

production process, etc...  

1.4 Thesis Outline 

 

Following is the outline of the presented thesis. In chapter 2, an experimental 

validation of a low-dimensional two-phase flow transient model is presented. The 

proposed reduced-order model predictions are compared to the commercial package 

“OLGA” results for different gas-volume fraction (GVF) levels. Then, the performances 

of both models are compared to transient experimental data collected at the multiphase 

flow loop facility at the National University of Singapore (NUS), accessing how 

accurate the low-dimensional and the OLGA model can capture the two-phase flow 

dynamic behavior at both low and high GVF levels. 

In chapter 3, based on the steady-state results from the multiphase flow modeling 

approach presented in chapter 2, a newly data-driven model for CO2 corrosion 

prediction is introduced. Precisely, a “Parameter Varying” (PV) corrosion rate model is 

developed by introducing varying model coefficients illustrating the effect of flowing 

conditions on corrosion rates. Such influence is presented as a nonlinear correlation 
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between the pH and the flow velocity, which are not derived from physics, instead being 

the result of a data driven approach based on a system identification methodology.  At 

the end of this chapter, a study case is introduced to highlight the possibility of 

deploying the proposed data-driven corrosion rate model as the basis for subsea 

architecture optimization design. 

Integrating the described modeling approaches listed above, along with others flow 

assurances issues assessment tools such us erosion and wax appearance descriptive 

models has been the basis for the work presented in chapter 4. Precisely, a deep-dive 

description of the automated model-based approach developed for subsea field layout 

optimization is presented. A well detailed illustration of the different sub-models 

coupled to develop the proposed methodology along with the hybrid optimization 

process is included. Additional sections have been incorporated to highlight the 

approach used to describe the different other element interfering with the optimization 

routine, namely the 3-D seabed representation as well as the algorithm used for the 

piping layout determination (in this case the Dijkstra algorithm). At the end of this 

chapter, a study case is included to illustrate the potential of using such model-based 

design optimization methodology for subsea field layout design along with several 

analysis such us subsea wells clustering scenarios, insulation properties variations and 

optimization trade-off configuration to emphasize their effect on the overall 

optimization results.   

Finally, in Chapter 5, the main findings and conclusions of the proposed research 

are summarized. Several outstanding issues are identified and suggestions for future 

investigations are given. 
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2 LOW PRESSURE EXPERIMENTAL VALIDATION OF 

LOW DIMENSIONAL ANALYTICAL MODEL FOR 

TWO-PHASE TRANSIENT FLOW IN HORIZONTAL 

PIPELINES 

 

2.1 Introduction 

 

Multiphase flow is the simultaneous flow of two or more phases/components of 

gas, liquid, and/or solids. This category of flow has a wide range of applications ranging 

from medical and biological to automotive, aerospace, power generation and oil and gas 

industries. In this chapter, an experimental evaluation of the transient response of the 

dynamic model developed by [22] is introduced. The studied model is presented as a 

two-phase flow model using a steady-state flow model in series with a transient model 

that are coupled using equivalent fluid properties. An accuracy evaluation of the two 

widely used steady-state multiphase flow models, namely the Beggs and Brill model 

[23] and the Petalas and Aziz mechanistic model [24], is introduced along with a 

comparison of both models against the Stanford Multiphase Flow Database [25]. The 

experimental evaluation is achieved using air-water two-phase transient flow in 

horizontal pipelines with data provided using the NUS flow loop for low pressure 

experiments. Both the Low-D model [22] and OLGA simulations [26] are evaluated and 

compared to the NUS laboratory data. The accuracy and sensitivity of the Low-D model 

is investigated by varying the number of modes in the model. The consequences of small 

amount of entrained air on the pipeline dynamic response are studied confirming 

entrained air within the 0% GVF case. Finally, the consistency of the Low-D and OLGA 

models are assessed for different GVF levels. 
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2.2 Multiphase Flow Modeling: State of the Art 

 

Multiphase flow models fall in the categories of empirical and mechanistic 

models. Empirical models for gas-liquid flow, such as the work of Beggs and Brill [23], 

and Hagedorn and Brown [27], are based on correlations established using data gathered 

from experimental test facilities. Those models offer a simulation tool capable of 

predicting the multiphase flow regime based the superficial velocities of the gas and 

liquid. The accuracy of empirical models may be limited to the range of dataset 

considered. The second category includes analytical/mechanistic models, derived from 

the fundamental laws of fluid mechanics coupled with data driven correlations. The 

impact of this class of models is its applicability to different pipeline geometries and 

fluid properties beyond the tested conditions. Taitel and Dukler [28] determined such a 

mechanistic model using stability criteria of the different gas-liquid flow patterns for 

both horizontal and vertical pipelines. This work was then extended by Barnea [29], 

Xiao, Shoham, and Brill [30], Ansari [31] and Petalas and Aziz [24] offering greater 

depth of model accuracy and applicability. 

The development of transient multiphase flow models began within the nuclear 

industry [32, 33]. Multiple commercial transient multiphase flow packages followed 

these developments adding specificity for oil and gas applications such as OLGA [26] 

and LedaFlow [34]. Despite the level of accuracy, they offer, the previous multiphase 

flow models present some limitations. Especially by since such an industry is moving 

toward deploying advanced data acquisition systems offering more accessibility and 

controllability of their production systems. Hence, the need for accurate real time 

monitoring and prediction tools rises significantly. In this context, the authors in [22] 
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derived a Low-Dimensional (Low-D) reduced order model for transient multiphase flow 

in pipelines. The present work is a one-dimensional transient two-phase gas–liquid flow, 

combining the steady-state mechanistic model presented by Petalas and Aziz [24] in 

series with the single phase distributed lumped parameter model in [22] through the 

derivation of equivalent fluid properties. Precisely, the mechanistic model presented by 

Petalas and Aziz [24] captures the steady-state pressure drop and liquid holdup 

estimation for all pipe inclinations and flowing patterns. This information is combined 

with different gas-volume fraction values to develop equivalent fluid properties to be 

used as parameters for the transient portion of the model (transmission line modal 

model) developed in [22]. Such modular approach is able to offer a computationally 

efficient and accurate solution to estimate the dynamics of multiphase flow in pipelines, 

reducing the computational burden of prediction seen in other multiphase flow models, 

thereby enabling real-time ability to estimate of pressure and flow rate along a pipeline. 

To evaluate both analytical and numerical multiphase flow models, experimental 

data can be used to quantify the range of model applicability and accuracy. Multiple 

flow loops have pioneered the experimental investigations of multiphase flow systems 

within controlled environments. These flow loops have specific test section lengths, 

diameters, inclinations, and operating pressures to identify fluid characteristics. The 

SINTEF loop [35] is a large scale Multiphase Flow Loop with approximately 1,000 m 

of total pipelines length and 40 m vertical elevation. It can accommodate pressures up 

to 90 bar, gas flow velocities of 12 m/s and liquid flow velocities of 3.5 m/s through 4, 

8 and 12-inch pipelines. This flow loop served as an input to the development of the 

OLGA simulation package. Other flow loops emerged at multiple universities and 
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research institutes including the Southwest Research Institute (SwRI) flow loop [36], 

the TUFFP1 loop at Tulsa University [37], the CRAN loop at Cranfield University [38], 

the WASP loop at Imperial College London [39] and the Colorado School of Mines 

flow loop [40]. Another emerging flow loop was developed at the National University 

of Singapore (NUS). It is presented as the only one in the world offering three different 

flow loops (diameter 2”, 4” and 6”) integrated into one test facility. Research efforts 

realized at this facility supports a broad range of investigations related to modeling and 

sensor calibrations for infield applications. Specifically, the NUS multiphase flow 

facility offers the capability to generate complex flow regimes within oil, water, and gas 

mixtures by controlling the flow rates of the different phases flowing into the flow loops. 

Hence, various flow conditions and flow regimes can be investigated [41]. 

2.3 Reduced-Order Dynamic Transient Multiphase Flow Model 

Presented is a review of the low dimensional multiphase flow model provided in 

[22]. The parameters and modularity of the model are detailed as a primer. The steady-

state and transient two-phase flow models are individually presented along with the 

integration process. 

2.3.1 Low-Dimensional Transient Multiphase Flow Model 

The multiphase Low-Dimensional transient pipeline flow model in [22] is 

created using an in-series model. First, the steady-state mechanistic model from [24] is 

implemented. Next, equivalent fluid properties are derived using parameters derived 

from the steady-state model. Finally, a dissipative distributed-parameter model is 
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created using the equivalent fluid parameters to capture the flow transients. The details 

of the low dimensional model development follow.  

A liquid holdup-weighted parallel combination of the gas and liquid bulk moduli 

(𝛽𝐺 and 𝛽𝐿, respectively) is used to estimate the equivalent bulk modulus 𝛽𝑒𝑞 in (2-1). 

The equivalent density 𝜌𝑒𝑞 of the two-phase fluid is calculated as a holdup-weighted 

series combination of the gas and liquid densities ( 𝜌𝐺  and 𝜌𝐿 ) presented in (2-2) 

1

𝛽𝑒𝑞
=
𝐸𝐿
𝛽𝐿
+
1 − 𝐸𝐿
𝛽𝐺

 
(2-1) 

and  

𝜌𝑒𝑞 = 𝐸𝐿𝜌𝐿 + (1 − 𝐸𝐿)𝜌𝐺. 
(2-2)  

With these equivalent parameters, an equivalent fluid speed of sound 𝑐𝑒𝑞 is calculated 

as 

𝑐𝑒𝑞 = √
𝛽𝑒𝑞

𝜌𝑒𝑞
. (2-2)  

An equivalent Darcy friction factor 𝑓𝑒𝑞 is also calculated in (2-3) to match the 

steady-state frictional pressure gradient given by the mechanistic model. The Darcy 

friction factor calculation is based on the pipe geometry properties (diameter D and 

cross-section area A), the equivalent fluid density and the steady state flow properties 

(total flow rate Q and pressure drop  Δ𝑃𝑠𝑠), given by 

𝑓𝑒𝑞 =
2𝐷𝐴2Δ𝑃𝑠𝑠
𝜌𝑒𝑞𝑄

2
 . (2-3)  
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Once calculated, the equivalent fluid properties are used to determine the 

equivalent dynamic viscosity 𝜇𝑒𝑞 with the knowledge of flow type (laminar or 

turbulent). In the case of laminar flow, the equivalent dynamic viscosity is given as 

𝜇𝑒𝑞 =
1

64
𝜌𝑒𝑞𝑉𝑚𝐷𝑓𝑒𝑞 . (2-4)  

For turbulent flow conditions, the equivalent viscosity is given by 

𝜇𝑒𝑞 =
1

2.51
𝜌𝑒𝑞𝑉𝑚𝐷√𝑓𝑒𝑞 [10

−
1

2√𝑓𝑒𝑞 −
𝜀

3.7𝐷
], (2-5)  

where 𝑉𝑚 is the gas and liquid mean velocity and ε is the pipe roughness.  

The derivation of the dissipative distributed-parameter model used in this study is 

detailed in [22] and is experimentally validated in [42, 43]. The dissipative distributed-

parameter model viscous losses in the presence of turbulent flow is captured using a 

lumped turbulent friction resistance term as described in [22].  

For laminar flow with a Mach number less than unity with a high length to diameter 

ratio and a low normalized density variation, the Navier-Stokes equations, and the 

equation of state for the pipeline matrix model are 

[
𝑃𝑜𝑢𝑡
𝑄𝑖𝑛

] =

[
 
 
 
 

1

𝑐𝑜𝑠ℎ(Γ)
−
𝑍𝑐 sinh(Γ)

cosh(𝛤)

sinh(Γ)

𝑍𝑐 cosh(Γ)

1

cosh(𝛤) ]
 
 
 
 

[
𝑃𝑖𝑛
𝑄𝑜𝑢𝑡

], (2-6)  

where Γ is the propagation operator and Zc is the characteristic impedance. The added 

lumped turbulent frictional resistance is included as 

𝑅𝑇𝑢𝑟 =
𝑓𝑒𝑞𝜌𝑒𝑞𝐿𝑄

2𝐷𝐴2
− 𝑅𝐿𝑎𝑚, (2-7)  

where 𝑅𝐿𝑎𝑚 is the steady state frictional resistance of the pipeline assuming laminar 

flow. The final matrix representation of the pipeline dynamics is  
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[
𝑃𝑖𝑛
𝑄𝑜𝑢𝑡

] =

[
 
 
 
 

𝑍𝑐
𝑍𝑐𝑐𝑜𝑠ℎ(Γ) + 𝑅𝑇𝑢𝑟 sinh(𝛤)

𝑍𝑐
2 sinh(Γ) + 𝑅𝑇𝑢𝑟𝑍𝑐 cosh(𝛤)

𝑍𝑐𝑐𝑜𝑠ℎ(Γ) + 𝑅𝑇𝑢𝑟 sinh(𝛤)

−sinh(Γ)

𝑍𝑐𝑐𝑜𝑠ℎ(Γ) + 𝑅𝑇𝑢𝑟 sinh(𝛤)

𝑍𝑐
𝑍𝑐𝑐𝑜𝑠ℎ(Γ) + 𝑅𝑇𝑢𝑟 sinh(𝛤) ]

 
 
 
 

[
𝑃𝑜𝑢𝑡
𝑄𝑖𝑛

]. (2-8)  

Substituting the lumped turbulent resistance 𝑅𝑇𝑢𝑟 by zero results in recovering 

the dissipative transmission line model in (2-6). The pipeline dynamic model in (2-8) 

has been compared to the work of Johnston in [44] and shows agreement. 

The hyperbolic transfer functions in (2-8) are replaced with a modal 

approximation of the fluid line dynamics as defined in [45], and later in [46]. The 

resulting transfer functions 𝑇𝐹𝑗𝑘 in (2-8) become a finite sum of second order rational 

transfer functions, given as  

𝑇𝐹(𝑗𝑘) =∑
𝑎𝑖(𝑗𝑘)𝑠 + 𝑏𝑖(𝑗𝑘)

𝑠2 + 2𝜉𝑛𝑖(𝑗𝑘)𝜔𝑛𝑖(𝑗𝑘)𝑠 + 𝜔𝑛𝑖(𝑗𝑘)
2

𝑛

𝑖=1

, (2-9)  

where n represents the number of system modes and ‘s’ is the Laplace operator. The 

parameters 𝜔𝑛𝑖(𝑗𝑘) and 𝜉𝑛𝑖(𝑗𝑘) are the natural frequency and the damping ratio of the ith 

mode, respectively. The modeling approach presented by the three steps detailed above 

can be summarized by the following diagram. 

 

Figure 2-1: Multiphase Flow Reduced-Order Model Structure 
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2.3.2 Steady-State Multiphase Flow Models Comparison 

The Low-Dimensional model in [22] is given as a coupling between two distinct 

models: a steady-state model and a dissipative distributed parameter transient model. 

Because of this modularity, the individual subdomain models can be evaluated. For the 

steady-state mechanistic model, a comparison of the Beggs and Brill model [23] and the 

mechanistic multiphase flow model introduced by Petalas and Aziz [24] are performed. 

Both models are then compared to experimental data presented in the Stanford 

Multiphase Flow Database [25] and the steady-state module provided in the OLGA 

Multiphase Flow Simulator [26]. The outcomes from this investigation will be used to 

select the steady-state multiphase flow model for this study.  

The empirical correlation presented by Beggs and Brill [23] in  and the mechanistic 

model proposed by Petalas and Aziz [24] are compared to the results from the steady 

state OLGA multiphase flow model [26] and the Stanford Multiphase Flow database 

[25]. 

The Stanford multiphase flow experimental database contains 5,659 data points. 

This is the result of measurements performed from in-lab and from infield oil and gas 

tests. The datapoints were collected from 15 sources where a wide range of fluid 

properties and geometric characteristics are tested. In addition, the dataset offers a 

variety of inclinations and flow directions (from vertical downward to vertical upward). 

These variables are used as inputs to the steady state mechanistic model to estimate the 

liquid holdup and pressure drop within a pre-defined pipeline. A summary of the 

distributions of the different attributes presented in the Stanford Multiphase Flow 

database is shown in Figure 2-2. 
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Figure 2-2: Stanford Multiphase Flow Database Variables Distributions 

 

Several flowing conditions are identified within the Stanford Multiphase Flow 

database offering a variety of flow regimes. Specifically, the flow patterns presented 

include bubbly, plug, stratified, froth, slug, annular mist, and dispersed bubbly flow. 

Therefore, to compare the previously listed steady-state multiphase models (Beggs and 

Brill, Petalas and Aziz, and OLGA), an evaluation of the accuracy of each model on 
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calculating the liquid holdup and pressure drop for each flow regime is evaluated. The 

results of the comparison are shown in Table 2-1. 

Table 2-1: R2 for the Steady-State Multiphase Flow Models vs Stanford Dataset 

Flow Regime 
Pressure Drop Gradient Liquid Holdup 

Beggs & Brill Petalas & Aziz OLGA  Beggs & Brill Petalas & Aziz OLGA  

Bubble 0.775 0.856 0 0.870 0.932 0.887 

Plug 0.699 0.718 0 0.823 0.898 0.825 

Stratified 0.656 0.920 0 0.766 0.847 0.781 

Froth 0.766 0.899 0.323 0.560 0.947 0.857 

Slug 0.610 0.857 0 0.793 0.921 0.892 

Annular Mist 0.774 0.904 0.002 0.701 0.897 0.841 

Dispersed Bubble 0.935 0.861 0.512 0.890 0.922 0.812 

 

From Table 2-1, it is observed that the Petalas and Aziz Multiphase Flow model 

provides a more accurate prediction for different flow regimes and thus selected for this 

study. 

2.4 Dynamic Multiphase Flow Model Evaluation 

Presented in this section is an evaluation of the transient flow response predicted 

from the dissipative distributed parameter transient with independent predictions. 

Namely, a comparison of the dissipative distributed parameter transient simulation with 

transient experimental data and with the OLGA Multiphase Flow Simulator is 

performed. The experimental data used in this section is provided by the NUS 

Multiphase Flow Loop. Results are analyzed based on variation on the GVF level as 

well as the amount of entrained air present within the pipeline. 

2.4.1 NUS Experimental Facility 
 

The experimental data used for validation in this work have been collected at the 

Multiphase Flow Loop facility built in mechanical engineering department at the NUS. 
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The presented flow loop facility enables three phase flow analysis. Introducing an 

oil-water-air flow, this facility can be the hub for different studies regarding pipelines, 

separators, flow meters, pumps, etc. More details about the schematic of the used facility 

are presented in Figure 2-3. 

 

Figure 2-3: Schematic Views and Pictures of the Experimental Setup: A) Full 3D 

                    View, B) Separator Tank, C) Pipe Flow Loops, D) Specifications [47] 

 

To perform multiphase flow studies, indoor measured flow rates of air, water 

and oil phases are mixed at a pressure rate that can go up to 13 barg. The flow loop has 

been built using interchanged seamless stainless-steel sections with 3 m length. 

To be able to automatically control all variables within the flow loop facility, a 

compact RIO main chassis is used supplied by National Instruments. As described in 

[47] the control unit “consists of a real-time processor, a reconfigurable Field 

Programmable Gate Array (FPGA) and the IO modules” integrated within a supervisory 
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control and data acquisition (SCADA) software developed within the LabVIEW 

environment.  

To be able to achieve a broader range of flowing conditions, dried air, where 

humidity has been removed,  has been supplied through a parallel circuit containing 

“two compressors connected in parallel to a receiver tank” [47]. For flow rates 

measurement two flow meters types are used: for low flow rates (0 to 17Nm3/h) a 

differential pressure flow meter is used, although, for high flow rate (0 to 1115 m3/h) a 

vortex gas flow meter with uncertainty of 1% is employed. 

As mentioned above, the three phases flows are controlled using the control 

software implemented as a PID algorithm within the LabVIEW software. All the 

measurements sensors used to control and measure the different properties of the 

flowing phases (pressure, temperature and density) along the flow loop are presented in 

Figure 2-4. 

Within the flow loop,  airflow is calculated using ideal gas equation providing 

the inlet pressure 2inP1 (Figure 2-4). Inlet measurements of air pressure and temperature 

are also collected (T1 and P1-air respectively) as well as in pipe properties (2inP7 and 

2inT6). In the other hand, water is circulating from the three phase separator tank toward 

the flow loop via a control valve CV3 (Figure 2-4). Water flow rate and water density 

are measured using a Coriolis flow meter with “an uncertainty of  ±0.3% of the indicated 

value” [47]. Both phases are then mixed within a mixing section where phases exchange 

is prevented using check valves.  
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Figure 2-4: Experimental Setup Control Panel [47] 

 

As detailed in [47] “the test section consisted of a 40 m long loop in a rectangular 

shape”.  To assess the effect of both pressure and temperature, sensors have been placed 

at different locations along the flow loop as illustrated in Figure 2-4 and Figure 2-5.   

The NUS flow loop facility is consisted of a rectangular flow loop connected to 

a three-phase separator tank. This latter tank is used to separate phases in order to release 

the air phase to the atmosphere through valve CV6 as shown in Figure 2-4, while the 

liquid phase is redirected toward the flow loop again.  

Although being a three-phase flow loop facility, all the experimental studies 

shown in this work are mainly concerning air-water mixtures in horizontal pipelines.  
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Figure 2-5: Top View Schematic of the Physical Configuration of the 2-inch Test  

                        Loop, Mixing Section and Instrumentation [47] 

 

2.4.2 Dynamic Multiphase Flow Model Evaluation 

 

To minimize sensor noise, a filtering process is implemented. All measured 

variables were filtered using the weighted average smoothing approach giving by the 

following tricube function 

𝑤𝑖 = [1 − (
𝑎𝑏𝑠(𝑖)

(𝑛𝑝𝑡𝑠 − 1)/2
)
3

]

3

, (2-10) 

where i and 𝑤𝑖 are respectively, the position and the weight associated to the current 

data point within the sample window of size 𝑛𝑝𝑡𝑠. The resulting filtered signal is given 

by 

𝑦𝑖 =
∑ 𝑤𝑖+𝑘𝑦𝑖+𝑘
(𝑛𝑝𝑡𝑠−1)/2
𝑘=−(𝑛𝑝𝑡𝑠−1)/2

∑ 𝑤𝑖+𝑘
(𝑛𝑝𝑡𝑠−1)/2
𝑘=−(𝑛𝑝𝑡𝑠−1)/2

. (2-11) 

An example of the smoothing procedure for the case of 10% GVF is presented 

in Figure 2-6. 
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Figure 2-6: Smoothing Procedure Results, 10% GVF Case 

 

2.4.2.1 Effect of the Number of Modes on the Low-D Model Accuracy 

 

The authors in [22] investigated the effect of the number of modes based on the 

estimation given by (2-9) through a sensitivity analysis. The focus of this section is on 

validating the distributed dissipative low dimensional model predictions with the 

experimental results for different model orders denoted as n. 

As shown in Figure 2-7, a higher number of modes results in a better estimation 

of the transient inlet pressure. However, the higher number of modes requires greater 

computation demand albeit significantly less than that associated with a CFD 

investigation. Thus, a trade off exists between the number of model modes and 

prediction fidelity as suggested in [22]. 
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Figure 2-7: NUS Experimental Results vs. Low-D Model Predictions as Function of  

                     the Truncation Order n, 10% GVF Case 

 

Shown in Figure 2-8 are the computation time and the Mean Absolute Percent 

Error (MAPE) as a function of the number of modes considered in the Low-D model.  

 

Figure 2-8: Simulation Time vs. MAPE 
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The expression used to evaluate the Mean Absolute Percent Error (MAPE) for 

a vector X with N values 𝑋𝑖 is given as 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑|

𝑋𝑖
𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑋𝑖

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

𝑋𝑖
𝑎𝑐𝑡𝑢𝑎𝑙 |

𝑁

𝑖=1

, (2-12) 

where 𝑋𝑖
𝑎𝑐𝑡𝑢𝑎𝑙 is the actual value and 𝑋𝑖

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 is the estimated value. 

As the number of modes is increased, the MAPE diminishes as a function of the 

number of modes while the computation time slightly increases. This tendency is 

inverted when considering a higher number of modes where the computational time 

increases dramatically without a significant improvement in the model predictions. 

Hence, selecting the appropriate number of modes is important depending on the desired 

model application and available computing power. For the remainder of the paper, and 

based on the tradeoff analysis present in Figure 2-8, 4-modes will be used to 

approximate the transfer functions in (2-9). 

2.4.2.2 Effect of Entrained Air on the Pipeline Dynamic Response  

 

The transient single-phase flow in pipelines has been extensively studied in the 

literature [46, 48]. However, the effect of small amounts of entrained air on the pipeline 

dynamic response has not been established. Air pockets form inside the pipeline due to 

bubble entrainment through the action of pump suction or can be released as the pressure 

of the liquid decreases along the pipeline. Under standard conditions, water can contain 

up to 2% of entrained air per volume unit [49]. Depending on the application, the effect 

of entrained air can be either beneficial or detrimental. The presence of air in pipeline 

systems can result in numerous problems including loss of carrying capacity, disruption 

of the flow, reduced pump and turbine efficiency or create cavitation problems under 
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low-pressure conditions causing significant damage to the pipeline structure. The speed 

of waves propagation is also reduced substantially with the presence of air in the 

pipeline and the damping can be increased allowing a shorter length of the fortified zone 

required for the High Integrity Pressure Protection System (HIPPS). 

In this section, the National University of Singapore Multiphase Flow Loop, the 

Low-D two-phase flow model [22], and the OLGA multiphase flow simulator [26] are 

used to investigate the effect of the entrained air on the pipeline dynamic response. 

Three cases are investigated using the water pump to vary the flow in the loop by 

stepping the liquid superficial velocity from 0.1 m/s to a pre-specified value while 

keeping the air compressors constant. The summary of the three cases is listed in Table 

2-2. 

Table 2-2: Liquid Superficial Velocity Variation 

Case 

Number 

Initial Liquid Superficial Velocity 

(m/s) 

Steady-State Liquid Superficial Velocity 

(m/s) 

1 0.1 2 

2 0.1 3 

3 0.1 4 

 

The measured inlet pressure and the those predicted by the Low-D model and 

the OLGA simulations are given in Figure 2-9 – Figure 2-11. Both models show 

agreement of the steady-state predictions of the inlet pressure due to a step increase in 

the water flow with the experimental data. However, the Low-D model and the OLGA 

simulations are characterized by higher frequencies of oscillation associated with higher 

overshoot. 
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Figure 2-9: Experimental vs. Simulations (Liquid/Case 1) 

 

Figure 2-10: Experimental vs. Simulations (Liquid/Case 2) 

 

Note that the amplitude of oscillation decreases from Case 1 to Cases 2 and 3. 

This can be explained by a higher turbulent flow energy loss due to the increase of the 

liquid flow rate. Also, similarly to Case 1, both the Low-D model and the OLGA 

simulations predicted higher frequency oscillation and overshoot. Upon further 

investigation of Cases 1-3, the air velocity sensors are recording low flow rates, 
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suggesting the presence of entrapped air in the system. The presence of entrained air in 

the pipeline results in a significant increase in the fluid compressibility.  

 

Figure 2-11: Experimental vs. Simulations (Liquid/Case 3) 

 

 

The entrained air is modeled by altering the fluid equivalent bulk modulus. Two 

models are presented in the literature to account for the effect of the entrained air on the 

fluid bulk modulus. In [48] it was proposed that 

𝛽𝑒𝑞 = 𝛽𝐿
1 + 𝑟𝑣

1 + (
𝑃0
𝑃𝑎𝑣𝑔

)

1
𝑘
𝑟𝑣
𝛽𝐿
𝑘𝑃

,       𝑟𝑣 ≡
𝑉𝐺0
𝑉𝐿0
, 

(2-13) 

where 𝛽𝐿 is the liquid bulk modulus without entrained air, 𝑉𝐺0 is the entrained air 

average superficial velocity in the liquid at atmospheric pressure, 𝑉𝐿0 is the average 

liquid velocity at atmospheric pressure, 𝑃0 is the atmospheric pressure, 𝑃𝑎𝑣𝑔 is the fluid 

average pressure, and k is the isentropic exponent (normally, k=1.4). 

 In [22], the equivalent bulk modulus of a two-phase flow mixture was 

characterized as a function of the GVF level. The same equation can be adopted to 

account for the effect of entrained air (very low GVF) on the equivalent bulk modulus. 
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The pipeline compliance also affects the fluid compressibility [48] as 

𝛽′ = 𝛽
1

1 +
𝛽
𝛽𝑃
𝛾
, (2-14) 

where 𝛽𝑃 is the bulk modulus of the pipeline and 𝛾 is given by 

𝛾 =
2 (
𝑂𝐷
𝐼𝐷
)
2

(1 + 𝜐) + 3(1 − 2𝜐)

(
𝑂𝐷
𝐼𝐷
)
2

− 1

, 𝑖𝑓 
𝑡

𝑂𝐷
> 0.1 (𝑡ℎ𝑖𝑐𝑘 𝑤𝑎𝑙𝑙𝑠)

𝛾 =
𝐼𝐷

𝑡
, 𝑖𝑓 

𝑡

𝑂𝐷
< 0.1 (𝑡ℎ𝑖𝑛 𝑤𝑎𝑙𝑙𝑠),

 (2-15) 

where 𝑂𝐷 is the outer pipe diameter, 𝐼𝐷 is the inner pipe diameter, 𝜐 is the Poisson’s 

number (0.3 for steel) and 𝑡 is the pipe wall thickness. Shown in Figure 2-12 is the water 

equivalent bulk modulus as a function of the GVF level (up to 2%) using Model 1 

evaluated based on (2-14) and Model 2 (equivalent bulk modulus present in (2-1)). 

 

Figure 2-12: Equivalent Fluid Bulk Modulus 
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Figure 2-13: Equivalent Fluid Density 

 

The agreement between the two models in estimating the effect of entrained air 

on the water bulk modulus is noticed. Both models predict a decrease in the bulk 

modulus as the first air bubbles are introduced which results in an important increase of 

the fluid compressibility. The entrained air will also affect the fluid equivalent density 

as shown in [22]. Shown in Figure 2-13 is the equivalent density as function of the GVF 

level. 

The experimental average air and water superficial velocities measured in the 

flow loop are used to calculate the GVF. The updated equivalent fluid parameters are 

used as model inputs for the Low-D model for Cases 1-3 (Table 2-3). 

Table 2-3: Equivalent Fluid Properties 

Case No. GVF 
Equivalent 

Bulk Modulus (Pa) 
Equivalent Density (kg/m3) 

1 0.015 7.12e6 983.55 

2 0.016 6.85e6 982.94 

3 0.014 7.57e6 984.48 
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Figure 2-14: Experimental vs. Simulations (Liquid with Entrained Air/Case 1) 

 

In the OLGA simulator, an air feed corresponding to the average air velocity is 

introduced at the pipeline inlet to account for the entrained air. Figure 2-14-Figure 2-16 

are comparisons between the experimental data and model estimations assuming the 

presence of entrained air.  The introduction of entrained air in the system results in lower 

natural frequencies and higher damping ratios. This translates to time domain 

predictions better matching of the oscillation frequency and the overshoot when 

compared to the experimental dataset. 

 
Figure 2-15: Experimental vs. Simulations (Liquid with Entrained Air/Case 2) 
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Figure 2-16: Experimental vs. Simulations (Liquid with Entrained Air/Case 3) 

 

2.4.2.3 Effect of GVF on the Pipeline Dynamic Response 

 

The water pump and the air compressors control the superficial velocities 

achieving GVF levels between 10% and 90%. The measured liquid and air inlet 

superficial velocities at actual conditions and the outlet pressure are used as inputs for 

the Low-D model. In the other hand, OLGA simulations require the inputs to be present 

at standard conditions. 

Shown in Figure 2-17–Figure 2-25 are the measured and predicted inlet 

pressures for the cases of a GVF range from 10% to 90%. Comparing the 10% GVF 

case (Figure 2-17) to the low GVF dataset (GVF close to 0%) (Figure 2-14-Figure 2-16), 

the inlet transient pressure response is characterized by a smaller transient overshoot 

caused by higher viscous damping and a decrease in the fluid speed of sound. This 

feature was captured by the Low-D model and the OLGA simulation. Both OLGA and 

Low-D model predictions demonstrated agreement with the experimental dataset within 

a MAPE of 5%. There are noticeable differences in terms of the overshoot transients 
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and the settling time. These differences are attributed to the calculated damping ratio as 

supported in [22]. 

To evaluate and compare the overall prediction accuracy of the models, the 

MAPE with respect to the experimental dataset is provided for GVF levels varying from 

10% to 90% (Table 2-4). Note that only the pressure transients are considered for 

accuracy assessment.  

Table 2-4: Low-D Model and OLGA MAPE Comparison 

GVF (%) 
MAPE (%) 

Low-D Model OLGA 

10 1.96 2.82 

20 3.43 4.25 

30 2.91 3.41 

40 2.60 3.01 

50 3.32 3.82 

60 2.12 1.60 

70 1.87 1.91 

80 1.72 1.79 

90 1.63 1.65 

 

 
Figure 2-17: Pipeline Dynamic Response Evaluation (10% GVF, Slug Flow) 
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Figure 2-18: Pipeline Dynamic Response Evaluation (20% GVF, Slug Flow) 

 
Figure 2-19:Pipeline Dynamic Response Evaluation (30% GVF, Slug Flow) 

 
Figure 2-20:Pipeline Dynamic Response Evaluation (40% GVF, Slug Flow) 
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Figure 2-21:Pipeline Dynamic Response Evaluation (50% GVF, Slug Flow) 

 
Figure 2-22:Pipeline Dynamic Response Evaluation (60% GVF, Slug Flow) 

 
Figure 2-23:Pipeline Dynamic Response Evaluation (70% GVF, Froth Flow) 
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Figure 2-24:Pipeline Dynamic Response Evaluation (80% GVF, Froth Flow) 

 
Figure 2-25:Pipeline Dynamic Response Evaluation (90% GVF, Froth Flow) 

 

2.4.2.4 Discussion 

 

As a higher GVF level is imposed inside the pipeline, the time-averaged pressure 

drop varies due to the transition between different two-phase flow patterns, the 

interaction between phases and the friction losses effect. This phenomenon was equally 

captured by the Low-D and the OLGA models. Increasing the GVF results also in an 

overdamped system for the presented dataset. It has been noticed that the Low-D model 

gives for most of the experimental validation cases a better estimation of the system’s 
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overshoot when compared to the OLGA simulation. The accuracy of the OLGA 

simulator improves considerably for the higher-pressure dataset while the Low-D model 

is characterized by a relatively constant performance. This may be explained by the fact 

that the closure relationships used in the OLGA model are mostly calibrated using oil 

and gas high-pressure field data. 

Certain assumptions were applied in the presented study. The data presented and 

discussed in this paper are characterized by low-pressure levels (less than 6 bar) due to 

the equipment limitations and safety consideration of the NUS Multiphase Flow Loop 

(maximum pressure rated at 13 barg) whereas the pressure can exceed 500 bars for the 

case of high-pressure oil and gas production. Similarly, all the tests were performed at 

temperatures near standard conditions while multiphase flow production fluids can 

undergo considerable temperature variations especially in the subsea environment. The 

results were also limited to air-water mixtures. To capture the effect of the pressure, 

temperature and fluids properties variations on the pipeline dynamic response, the fluid 

properties are updated for each pressure and temperature condition using a 

(pressure/volume/temperature) PVT file. The use of physics-based relationships in both 

the Low-D and OLGA models will also ensure a reduced sensitivity to the operating 

conditions when compared to purely empirical models since these relationships are not 

correlated to a specific dataset and analysis can be achieved when investigating different 

operating ranges. Hence, the conclusions drawn from the comparison between the 

experimental data and the mathematical models should remain valid at different 

pressure and temperature conditions or fluids. To validate this assumption, the discussed 

models should be compared not only to experimental test results but also to field data. 



 

 44 

In Figure 2-18, for the case of 20 % GVF, significant slugging is observed in the 

test section, indicated by the sudden increase of the water flow rate and inlet pressure. 

This phenomenon is created by the accumulation of water at the bend upstream of the 

test section before being suddenly pushed by the air pressure. Hydrodynamic slugging 

is caused by the gas phase flowing at high velocities rate over a slow-moving liquid 

phase. This results in waves that form on the liquid surface that grow to bridge the entire 

cross-section of the pipe. Compared to terrain slugging, hydrodynamic slugging is 

characterized by higher frequency and lower amplitude pressure oscillations. While the 

terrain slugging is present in the simulated pressure by both models, the hydrodynamic 

behavior of slug flow is not captured as the Low-D and OLGA models only capture the 

area-averaged pressure seen by the pipeline. The OLGA Slug Tracking module, an 

additional extension for the OLGA multiphase flow model, can be enabled to track the 

hydrodynamic slugging behavior. 

As shown in Figure 2-26, a slug flow unit can be defined as a succession of a 

slug film (stratified or annular flow) and a slug body (dispersed bubble flow). 

 

Figure 2-26: Slug Flow Unit Schematic [50] 
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Like OLGA, a hydrodynamic slug-tracking module can be incorporated to the 

Low-D model as a future study, especially when extending the present work to cover 

inclined multiphase flows as well. This module will consider the slug flow structure and 

its effect on the pipeline’s dynamic response. First, the length of the slug film 𝐿𝑓, length 

of the slug buddy 𝐿𝑠, the liquid holdup distribution and the slug unit frequency are 

estimated. This will enable the derivation of a relationship between the slug flow 

structure parameters and the pipeline and fluids physical properties. The resulting slug 

flow structure estimations are then used as scheduling parameters to switch between a 

stratified flow model (slug film) and a dispersed-bubble flow model (slug body). This 

procedure enables the estimation of the pressure fluctuation due to the succession of 

slug units. The additional slug transient module can be easily disabled if only the 

average pressure is of interest. 

To validate the proposed slug-tracking model, additional transient data will be 

collected at the NUS flow loop to evaluate the model accuracy in predicting the slug 

flow structure parameters and the pipeline dynamic response for two-phase slug flows 

and/or inclined pipeline configuration. 

2.5 Conclusion 

 

The transient behavior of air-water two-phase flow mixtures in horizontal 

pipelines was studied through experimental data and mathematical models. The 

experimental data was collected from the National University of Singapore Multiphase 

Flow Loop, a facility that offers a modular structure enabling the study the different 

GVF levels and flow regimes encountered in the oil and gas production.  
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 The comparison between the experimental data with low pressure and the Low-

D model predictions permitted to quantify the effect of the number of modes on the 

Low-D model accuracy and the simulation time. As expected, increasing the model 

order (number of modes) results in an improved accuracy but will require a longer 

computation time. A tradeoff between accuracy and simulation time is therefore 

suggested by the modeling environment depending on the required accuracy and 

available computational power. The analysis of the single-phase flow experimental 

dataset established the existence of entrained or entrapped air in the system due to the 

action of the water pump. It has been shown that the presence of entrained air in the 

pipeline results in a significantly lower speed of sound of the fluid leading to a 

considerable increase in the pipeline damping and a decrease in the natural frequency. 

The Low-D model pressure predictions and the OLGA simulations were 

compared to the measured transient pressure for different GVF levels. Both models 

showed a good agreement with the experimental data with a Mean Absolute Percent 

error lower to 5%. While the Low-D model is characterized with a relatively constant 

performance for different pressure conditions, the OLGA model accuracy improved for 

higher-pressure conditions. Considering this level of accuracy and taking into account 

the difference between the OLGA multiphase flow model and the Low-D model in term 

of computational requirements, the proposed Low-D model can be deployed to achieve 

real-time tasks varying from production monitoring, prediction of pressure and flow rate 

along pipelines, instantaneous flow pattern tracking as well as coupling with flow 

assurance models for pipelines integrity management analysis. 
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As future step, field data will be collected, aiming at evaluating the effect of the 

fluid properties, pressure, and temperature variations on the model’s accuracy. A slug-

tracking module is also suggested for the Low-D model to simulate the hydrodynamic 

slugging conditions. 
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3 DATA-DRIVEN MODELING OF CARBON DIOXIDE 

(CO2) CORROSION FOR PIPELINES INTEGRITY 

MANAGEMENT APPLICATION 

 

3.1 Introduction 

 

A major concern in the oil and gas industry is the ability to design an 

environmentally safe and a reliable production system carrying organic fluids. The 

carbon dioxide (CO2) corrosion associated with oil and gas production systems is a 

major factor limiting both reliability and service life. Consider the design of a subsea 

architecture comprised of transmission lines, manifolds, trees, jumpers, compressors, 

and multiphase pumps. Accurately quantifying the CO2 corrosion rate provides a 

reliable estimation that can be used during the design phase to specify material and 

dimension selections while enabling real-time subsea architecture health monitoring. 

Regulatory requirements in standards such as ASME’s Managing System Integrity of 

Gas Pipelines [51] include corrosion estimates when specifying the pipe/jumper wall 

sizes, which in turn directly impact the production system CAPEX. Since CO2 gas is 

ubiquitous during the oil and gas extraction process, there is a need to mathematically 

quantify its interaction with the transmission line and other subsystems. 

Carbon dioxide corrosion is a complex multi-physics process that is dependent on 

the multiphase flow regime and patterns (separate flow, mixed flow, continuous and 

dispersed flow). Each flow regime has a unique surface wetting mechanism that strongly 

affects the corrosion process in the absence of protective scaling. Multiphase flow can 

lead fluctuating mass transfer rates (particularly in slug flow), which in turn, affects the 

corrosion rate. 
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Presented herein is a mathematical model predicting the CO2 corrosion rate.  This 

chapter begins with a review of the CO2 corrosion models investigated to develop the 

proposed model. Then, a parameter-varying (PV) model quantifying the CO2 corrosion 

rate is developed by modifying the corrosion rate model provided in [52] to have 

parameter varying coefficients. Validation of the proposed model and a discussion are 

also given in this section. The chapter concludes with summary of the model and 

conclusions. 

3.2 CO2 Corrosion Rate Modeling Review 

 

Internal corrosion of oil and gas pipelines made from carbon steel is a complex 

process involving a variety of corrosive species that interact and evolve following 

different physical-chemical mechanisms. The electrochemical CO2 corrosion process of 

carbon steel involves chemical equilibriums relating an anodic dissolution of the CO2 

along with its carbonate derivatives, and a cathodic evolution of hydrogen [53]. Many 

studies and experiments have been conducted to analyze the process of CO2 corrosion 

[54-56]. This allowed the researchers to investigate the effect of a variety of parameters 

on the corrosion process. Based on this work, certain parameters have been categorized 

as the major factors impacting the electrochemical exchange occurring during the CO2 

corrosion process. Namely these variables have been identified as: temperature, pH, 

flow velocity and the partial pressure of CO2. 

Fundamental investigations focusing on corrosion rate predictive models for mild 

steel in the presence of CO2 aqueous environment have been conducted since the 1970s. 

Numerous mathematical representations describing this process have been developed 
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providing a knowledgebase of models. These models can be categorized into three 

major groups: Empirical models that are independent from the physical and 

electrochemical background underlying this process, Hybrid models that are partially 

related to the theoretical fundamentals of the process, and Mechanistic models that seek 

to properly describe the electrochemical exchange describing the CO2 corrosion in oil 

and gas systems [53]. 

The distinction among these categories is based on the strategy used to identify 

the model.  Mathematical models based on the physics/chemistry governing the CO2 

corrosion process are mechanistic models. This class of corrosion rate models 

eliminates the need for interpolation since each model is an explicit function of 

fluid/metal properties. There is modularity that enables model evolution as new 

discoveries in CO2 corrosion arise. The second category, empirical models, involves 

mathematical functions that best approximate the causalities among experimental data, 

independent of process physics. Hybrid models are a combination of the previous two 

categories fusing both mechanistic and empirical models into one model. A summary 

of models associated with each category is presented herein.   

3.2.1 CO2 Corrosion Rate Mechanistic Models 

 

The class of mechanistic CO2 corrosion rate models is built upon the 

electrochemical reactions present during the CO2 process. Subsequent investigations 

produced more complete electrochemical models that better capture the reactions 

behind this phenomenon. These models were based on the method of determining the 

corrosion rate from the anodic current by starting from the exchange current density 
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determination and the charge transfer rate calculation. One such model was proposed 

by [54]. This model considered the electrochemical aspects of the carbon dioxide 

corrosion process in aqueous environment based on the charge transfer rate calculations 

and is based on the direct carbonic acid reduction mechanism used by [55]. To predict 

the CO2 corrosion rate, charge transfer calculations and mass transfer limitations with 

respect to glass cell experiments were employed within a flow cell experiments enabled 

model calibration. The authors extended the model to conditions where higher 

temperature and pH values are present. This illuminated the theoretical shortcomings of 

the model due to the omissions of several additional processes that interact with the 

corrosion process such as scale formation. 

Authors in [57] also developed an electrochemical model of carbon dioxide 

corrosion process for pipeline applications. This model focused on the physical and 

chemical reactions interacting during this process. Several parameters introduced into 

the model were determined from a rotating cylinder glass cell experiment and the 

straight pipe flow experiment. The results were successfully compared to the results 

given by experiments conducted by [54]. 

The electrochemical corrosion models in [54] and [57] have been widely used in 

industry offering a simple physical-chemical approach to quantify the corrosion process. 

The uncertainty associated with these models is due to the description of the transport 

phenomenon of species moving from bulk solution to the metal surface.  However, the 

assumed independency between these species gave unreliable prediction of results 

especially when extending the results to species adsorption and protective film 

formation on the metal surface. 
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To reduce corrosion rate estimation uncertainty, additional models have been 

proposed that capture the electrochemical fundamentals of the carbon dioxide corroding 

process of mild steel in aqueous solutions. These models were developed to improve 

the corrosion rate estimation by incorporating the chemical reactions of different species 

present during this process. Since the carbon dioxide corrosion process on the metal 

surface involves several reactions, species are produced at the steel surface while others 

are depleted. This creates concentration gradients of diffusion of these species between 

the surface and the solution. 

Authors in [58] proposed a new mathematical model based on the solution of 

Nernst-Planck equation. This model included the mass conservation of species during 

their transport processes in the boundary diffusion layer. It accounts for the 

concentrations of the different species traveling between the bulk solution and the metal 

surface.  This proposition was improved by [59] who presented a model using the 

correlation of the eddy diffusivity defined in [60] and incorporating the convective mass 

transfer and the Tafel equation to calculate the charge transfer rate. Authors in [61] as 

well as in [56] expanded the work by ameliorating the charge transfer rate calculation 

by using the Tafel equation. This inclusion described the transfer kinetics while 

replacing the exchange current densities in the bulk solution by surface concentrations. 

Mechanistic CO2 corrosion models could be sufficient for corrosion rate 

estimation and have demonstrated utility by depicting a more detailed description of the 

processes involved in corrosion of steel in CO2 environments. These models have a 

proven utility in the fundamental investigations of corrosion mechanisms and a window 
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into more complex systems involving new processes (H2S corrosion, pitting corrosion, 

etc.). 

3.2.2 CO2 Corrosion Rate Empirical Models 

 

The class of empirical models is less dependent on the electrochemical 

underpinnings of the corrosion process. The main expressions that comprise these 

models are usually chosen iteratively and used to extrapolate the results for a wider 

range of experimental database with limited results. An attempt to include additional 

experimental results could alter the model structure significantly; hence, correction 

factors are used.  One well known empirical model for CO2 corrosion rate prediction is 

the NORSOK model [62] given by (3-1). It has been widely used as a free open standard 

model for corrosion estimation. This standard is based on the semi-empirical corrosion 

model developed by [52] that was used the same experimental database as the model of 

[55]. The NORSOK model is founded on a basic temperature dependent function 

multiplied by several correction factors describing the effect of the partial pressure of 

carbon dioxide, the pH, the flow velocity, the steel composition and essentially the 

protective scale formation. The NORSOK corrosion rate is then expressed as 

𝐶𝑅𝑁𝑂𝑅 = 𝐾𝑡𝑓𝐶𝑂2
0.62 (

𝑆

19
)
0.146+0.0324 𝑙𝑜𝑔10(𝑓𝐶𝑂2)

𝑓(𝑝𝐻), (3-1) 

 

where 𝐾𝑡 is the NORSOK temperature constant, 𝑆 is the shear stress, 𝑓𝐶𝑂2 is the fugacity 

of CO2 and 𝑓(𝑝𝐻) is a pH dependent function. 
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3.2.3 CO2 Corrosion Rate Hybrid Models 

 

The class of hybrid CO2 corrosion rate models is dependent on both the 

electrochemical corrosion fundamentals and experimental data. These models are 

mainly employed when the knowledgebase of CO2 corrosion is insufficient. While these 

models retain a structure founded upon a theoretical basis, some of model parameters 

are identified using data analytic techniques. As is the case for empirical models, adding 

additional model regressors requires complete model recalibration or additional 

correction factors. One of the pioneering hybrid corrosion models was developed by 

[63]. This model estimates the corrosion rate based on the CO2 partial pressure and the 

temperature under the assumption that the iron dissolution is governed by the Bockris, 

Drazic and Despic (BDD) mechanism [64]. The corrosion rate is obtained as a function 

of the temperature and the partial pressure of carbon dioxide, namely 

𝑙𝑜𝑔10( 𝐶𝑅) = 7.96 −
2320

𝑇
− 5.5 × 10−3 × 𝑇 + 0.67 × 𝑙𝑜𝑔10( 𝑃𝐶𝑂2), (3-2) 

where 𝑇 is the fluid temperature and 𝑃𝐶𝑂2 is the CO2 partial pressure. 

Modifications to (3-2) have been proposed that led to the introduction of correction 

factors accounting for the different phenomenon interfering with the carbon dioxide 

corrosion process [52, 55, 65]. The CO2 corrosion model presented by [55] is given 

𝑙𝑜𝑔10( 𝐶𝑅) = 5.8 −
1710

𝑇
+ 0.67 × 𝑙𝑜𝑔10( 𝑓𝐶𝑂2), (3-3) 

where 𝑓𝐶𝑂2 is the fugacity of the carbon dioxide, calculated as a function of the fugacity 

coefficient of carbon dioxide a when considering the case of a non-ideal gas  

𝑓𝐶𝑂2 = 𝑎 × 𝑃𝐶𝑂2 . (3-4) 
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This model was recalibrated using correction factors that describe the different 

interactions among the carbon dioxide corrosion process. Specifically, a correction 

factor including the impact of the protective film of FeCO3 on the corrosion rate was 

introduced. This additional parameter was added depending on the range of operating 

temperature by giving an estimation of temperature when this protective film starts to 

form, expressed as 

𝑇𝑆𝑐𝑎𝑙𝑒 =
2400

6.7 + 0.67 × 𝑙𝑜𝑔10( 𝑓𝐶𝑂2)
. (3-5) 

At this temperature, the corrosion rate reaches its peak values and then starts to 

decrease because of the formation of a protective layer on the surface of the metal.  The 

resulting corrosion rate by a scale factor Fscale is  

log
10
(FScale) = {

2400 × (
1

T
−

1

TScale
)  , T > TScale

 0                , T ≤ TScale

. (3-6) 

These modifications broadened the extension of the results with respect to the effect 

of the scale formation on the metal surface. The effects of high pH formation water and 

wetting factor makes this model as one of the most important standards used for CO2 

corrosion modelling and prediction in industry. 

Another improvement, made to the basic model in [55], was presented by [52] to 

capture the effect of the flow velocity in the absence of protective scales formation. This 

proposed model was introduced as a parallel resistance model given as 

1

𝐶𝑅
=

1

𝐶𝑅𝑟
+

1

𝐶𝑅𝑚
, (3-7) 

𝑙𝑜𝑔10( 𝐶𝑅𝑟) = 4.93 −
1119

𝑇
+ 0.58 × 𝑙𝑜𝑔10( 𝑓𝐶𝑂2), (3-8) 
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and 
 

𝐶𝑅𝑚 = 2.45 ×
𝑉𝑚
0.8

𝑑0.2
× 𝑓𝐶𝑂2 . 

(3-9) 

𝐶𝑅𝑟 is the representative of the contribution of the activation reaction kinetics 

and 𝐶𝑅𝑚 is the contribution from the mass transfer kinetics due to the flow velocity.  

This new model proposed by [52] was an improvement to the standard model in [55], 

especially, when adding the effect of the flow velocity. However, it remains a hybrid 

model where the constants are calibrated using limited field data. 

Choosing the appropriate model for corrosion rates estimation will depend on 

the available variables to perform corrosion prediction of an oil and gas system. A 

summary of the different models described and the required inputs for each model is 

presented in Table 3-1. 

Table 3-1: Models Inputs 

Input DLM DLD NOR NPO Description 
𝑇 (°K) X X X X Temperature 

𝑓𝐶𝑂2  (bar) X X X X CO2 fugacity 

𝐷 (m) 
 

X 
 

X Pipe diameter 

𝜌 (kg/m3) 
   

X Water density 

𝜇 (kg/m.s) 
   

X Water viscosity 

𝑉 (m/s) 
 

X 
 

X Fluid velocity 

𝑆 (Pa) 
  

X 
 

Wall shear stress 

pH 
  

X X pH 

 

3.3 Parameter Varying CO2 Corrosion Rate Modeling 

 

Presented in this section is the development of a parameter varying (PV) model 

predicting CO2 corrosion rate in metal alloys. The model identification process is 

performed in three stages. The first stage involves a comparative study among the 

models previously presented. The model with the lowest residuals (i.e., prediction error) 
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is selected as the model to be modified. The modification is based on developing a 

mathematical relationship between the residuals and the solution variables.  

3.3.1 Comparative Study of Selected CO2 Corrosion Models 

 

The dataset used to perform the comparative study is the CO2 corrosion rate data 

provided in [66] experiments and [57]. The corrosion rate values in [66] were measured 

by performing a parametric investigation on the CO2 corrosion process of a ferritic-

pearlitic carbon steel St-52. The experiments were performed on a low-pressure high-

flow velocity test loop with a 0.1m internal diameter. The experimental data from [57] 

involved a parametric investigation of CO2 corrosion on carbon steel X-65 and covered 

higher values of pH. This experiment had been performed on a testing flow loop with a 

0.015m internal diameter. Both experimental investigations were performed using a 

water phase flow condensed with CO2. The water chemistry was strictly controlled and 

the assumption of no protective film present on the metal surface was considered. Table   

3-2 presents a description of the range of experimental conditions. 

Table 3-2: Experimental Dataset Description 

Temperature (◦C) 20 – 90 

pH 3.4 - 6 

Flow velocity (m/s) 0.1 - 13.0 

CO2 partial pressure (bar) 0.4 – 21.0 

 

Data from these two sets were concatenated into one dataset containing 80 data 

points that was divided into two groups. The first group, a calibration group of 69 data 

points, is used for the calibration and the identification process of the functional 

relationship for the model coefficients necessary to improve prediction accuracy. The 

second group, a validation group of 11 data points, is used to validate the parameter 
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varying model coefficients.  The three models compared are [55], [52] and [62]. The 

objective was to select the model presenting the closest prediction results to the 

measured corrosion rates given in [57, 66]. 

Presented in Table 3-3 is a summary of the model prediction performance 

comparison for the recalibrated models. The model presented in [52] has a slightly better 

accuracy over the other two models. The model developed in [52] has a correlation 

coefficient R-squared value of 0.54 and a mean-absolute error value of 6.99 as compared 

to 0.43 and 8.19 for the model in [55] and 0.54 and 7.66 for the NORSOK model [62]. 

Based on the results of this comparison, the DeWaard-Lotz-Dugstad (DLD) model [52] 

was selected as a base structure to be modified using PV coefficients. 

Table 3-3: Data-Based Models Performances Comparison Results 

Model Mean Absolute Error R-Squared 

DeWaard-Lotz-Milliams (1991) 8.19 0.43 

DeWaard-Lotz-Dugstad (1995) 6.99 0.54 

NORSOK Standard (2005) 7.66 0.54 

 

3.3.2 Parameter Varying DLD CO2 Corrosion Rate Model 

 

The DeWaard-Lotz-Dugstad model [52] was originally developed as a parallel 

resistance model presented in (3-7). This model has been developed by introducing two 

independent parameters to capture the different factors contributing to the corrosion 

process. The model was formed in two parts: kinetics related term (3-8) and mass 

transfer related term (3-9). The kinetics related term in (3-8) is a function of the 

temperature and the partial pressure of the carbon dioxide defining the electrochemical 

reaction rate contribution to the corrosion process. The mass transfer term in (3-9) 
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describes the effect of the mass transfer process on the corrosion rate values. The 

proposed structure for the PV CO2 corrosion model is given by  

1

𝐶𝑅𝑅𝑒𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑
=

1

𝐶𝑅𝑟
∗ +

1

𝐶𝑅𝑚
, (3-10) 

where 𝐶𝑅𝑅𝑒𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 is the recalibrated corrosion rate, 𝐶𝑅𝑟
∗ is the modified reaction 

kinetics dependent term and 𝐶𝑅𝑚 is the mass transfer kinetics dependent term.  

With previous experimental conditions involving a condensed aqueous 

environment, the effect of pH was not included on the DeWaard-Lotz-Dugstad model. 

However, both variables play an important role affecting the electrochemical reactions 

taking place during the corrosion process. The pH value will enhance, in the presence 

of favorable conditions, the process of super-saturation of the species, which lead to the 

formation of protective films. On the other hand, the flow directly affects the species 

diffusion process between bulk solution and the metal surface [53]. Hence, to make 

these two parameters explicitly present, it is proposed within this section to 

mathematically introduce the effects of pH and flow velocity by replacing the constant 

coefficients in (3-8) with coefficients that are a function of pH and velocity. 

3.3.2.1 Parameter Varying Coefficients Identification 

 

Presented is the identification of parameter varying coefficients for (3-8).  These 

modifications will produce the model 

𝑙𝑜𝑔10( 𝐶𝑅𝑟
∗) = 𝑎1 ×

1

𝑇
+ 𝑎2 × 𝑙𝑜𝑔10( 𝑓𝐶𝑂2) + 𝑎3, (3-11) 

in which the coefficients 𝑎1, 𝑎2 and 𝑎3 denote mathematical functions involving 

solution parameters. The process is comprised of the following steps: 
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 Step 1: Recalibration of the DLD Model: Calibrate the constant coefficient 

model in (3-11) by concatenating the datasets provided in [57] and [66]. 

In order to be incorporated into the calibration process, the modified parallel 

resistance model in (3-10), where the new kinetics related term presented in (3-11) has 

been integrated to calculate the recalibrated corrosion rate 𝐶𝑅𝑅𝑒𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑, can be 

rewritten as 

𝐶𝑅𝑅𝑒𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 =
𝐶𝑅𝑟

∗ × 𝐶𝑅𝑚
𝐶𝑅𝑟

∗ + 𝐶𝑅𝑚
. (3-12) 

In this form, a nonlinear least squares method can be used to identify the constant 

coefficients that minimize the prediction errors defined as 

𝑚𝑖𝑛
𝑎1,𝑎2,𝑎3∈ℝ

(𝐶𝑅𝑚𝑒s − 𝐶𝑅𝑅𝑒𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑). (3-13) 

The resulting recalibrated model in (3-8) based on the structure presented in (3-11) is 

𝑙𝑜𝑔10( 𝐶𝑅𝑟
∗) = 4.65 −

1119

𝑇
+ 0.18 × 𝑙𝑜𝑔10( 𝑓𝐶𝑂2). (3-14) 

Combining the recalibrated kinetics term 𝐶𝑅𝑟
∗ presented in (3-14) and the mass 

transfer term presented in (3-9), it is possible to calculate the new corrosion rate values 

𝐶𝑅 from (3-12). The predicted corrosion rates 𝐶𝑅 are presented in Figure 3-1 to 

illustrate the comparison between the predicted values and the experimental results. 
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Figure 3-1: Recalibrated DLD Model Results CRRecalibarted 

 

 Step 2: Parameter Varying Coefficients Identification: Identify and calibrate 

functions for the coefficients 𝑎1, 𝑎2 and 𝑎3 to minimize estimation residuals. 

To be able to perform the parameter varying coefficient identification, a new 

variable 𝐶𝑅𝑟
𝐸𝑋𝑃 has been introduced. 𝐶𝑅𝑟

𝐸𝑋𝑃 represented the kinetics related 

contribution if we consider that the measured corrosion rate can be written following 

the same expression in (3-10). Hence, 𝐶𝑅𝑟
𝐸𝑋𝑃 can be calculated as  

𝐶𝑅𝑟
𝐸𝑋𝑃 =

𝐶𝑅𝑚𝑒𝑠 × 𝐶𝑅𝑚
𝐶𝑅𝑚 − 𝐶𝑅𝑚𝑒𝑠

. (3-15) 

Based on the recalibrated kinetics term 𝐶𝑅𝑟
∗ in (3-14) and the experimental kinetics 

term 𝐶𝑅𝑟
𝐸𝑋𝑃 calculated from (3-15), we can define the residual by 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑙𝑜𝑔10( 𝐶𝑅𝑟
𝐸𝑋𝑃) − 𝑙𝑜𝑔10( 𝐶𝑅𝑟

∗). 
(3-16) 
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With the goal of identifying an adequate expression to be included in (3-14), the 

residuals in (3-16) are plotted against the variables presented in (3-14), namely 

temperature and carbon dioxide fugacity (Shown in Figure 3-2). 

 

Figure 3-2: Prediction Residuals as a Function of Solution Parameters 

Based on the results presented in Figure 3-2, we were able to identify the prediction 

residuals calculated based on (3-16) as a plane. Therefore, presenting the residual as a 

correlation that has the same structure as presented in (3-14) would be preferable. Based 

on this observation, the residual was identified, using linear regression methods, as a 

parameter-varying model presented by  

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑓1(𝑝𝐻, 𝑉𝑚) ×
1

𝑇
+ 𝑓2(𝑝𝐻, 𝑉𝑚) × 𝑙𝑜𝑔10( 𝑓𝐶𝑂2) + 𝐵𝑖𝑎𝑠. (3-17) 
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The structure of the varying coefficient 𝑓1 and 𝑓2 was identified using the nonlinear 

optimization process. Based on the results of this process and aiming to have a simple 

expression, the parameter varying coefficients were identified as 

𝑓𝑖(𝑝𝐻, 𝑈) = 𝛼1
𝑖 + 𝛼2

𝑖 × 𝑉𝑚
0.5 + 𝛼3

𝑖 × 𝑝𝐻3, 
(3-18) 

where the coefficients 𝛼1
𝑖 , 𝛼2

𝑖  and 𝛼3
𝑖 , i = 1,2 are calculated using ordinary least squares 

estimation. Integrating the residual model in (3-16) with (3-14) gives 

𝑙𝑜𝑔10( 𝐶𝑅𝑟
𝑓𝑖𝑛𝑎𝑙

) = 𝑙𝑜𝑔10( 𝐶𝑅𝑟
∗) + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙. (3-19) 

This operation produces the final expression for the activation kinetics 𝐶𝑅𝑟
𝑓𝑖𝑛𝑎𝑙

 as  

𝑙𝑜𝑔10( 𝐶𝑅𝑟
𝑓𝑖𝑛𝑎𝑙

) = 3.72 − (877.1 − 61.95𝑉𝑚
0.5 + 1.57𝑝𝐻3)

1

𝑇
 

+(0.98 + 0.008𝑉𝑚
0.5 − 0.02𝑝𝐻3) 𝑙𝑜𝑔10( 𝑓𝐶𝑂2). 

(3-20) 

3.3.2.2 Parameter Varying Model Evaluation 

 

The results associated with the parameter varying reaction kinetics term in (3-20) 

are shown in Figure 3-3. The significant model prediction accuracy offered by (3-20) 

over the DeWaard-Lotz-Dugstad model [52] can be seen at corrosion rates above 20 

mm/yr. It is important to note that the measured corrosion rates at these points occurred 

under experimental conditions where the pH values are low, and the flow velocity values 

are high. This observation supports the premise that the variations in corrosion rate 

driven by these two parameters are needed for accurate corrosion rate predictions. 
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Figure 3-3: PV Corrosion Rate Model Training Results 

 

 
Figure 3-4: PV Corrosion Rate Model Validation Results 

 

Shown in Figure 3-3 and Figure 3-4 is a comparison of the performances of both 

the new recalibrated model and DeWaard-Lotz-Dugstad model. The present model is 

predicting more accurate results with a correlation coefficient R-Squared value up to 

0.90 compared to 0.54 for the DeWaard-Lotz-Dugstad model [52]. The PV model 

allows a more complete interpretation of the CO2 corrosion process by incorporating 



 

 65 

the missing variables (pH and flow velocity) to the reaction’s kinetics related term of 

the model. The proposed PV model for CO2 corrosion prediction has shown very good 

predictions when compared to other data-based models that presently exist. The 

prediction results were very close to the experimentally measured corrosion rates and 

the estimation error was reduced by 80%. This improves accuracy that could be coupled 

with multiphase flow models to enable precise corrosion rate prediction in oil and gas 

production and transmission systems.  

3.4 Discussion 

 

Data-driven models are mathematical representations of experimental observations 

developed based on information retrieved from an input-output fidelity (systems) level. 

This means that mathematical models are not necessarily unique. Thus, predictions 

outside the dataset input range cannot be inferred nor estimated based on such models. 

First principles models, on the other hand, can be used for output predictions with a 

mathematically rigorous quantification of the uncertainty for these predictions. 

First principles models, including mechanistic based models, have prediction 

challenges. Consider the experimental corrosion rates reported in the literature (Table 

3-4). 

Table 3-4: Experimental Corrosion Rate Uncertainty 

T(oC) P(MPa) Vm(m/s) pH 
Experimental Corrosion Rate (mm/year) 

Max Value Min Value Average Value 

60 0.22 13 3.8 44 32 38 

90 0.37 3.1 3.8 17 16 16.5 

90 1.4 3.1 3.6 15 6 10.5 

90 2.1 3.1 3.5 38 15 26.5 
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Table 3-4 shows cases where uncertainty is presented in the corrosion rates 

measured following the experiments performed by [66]. Different corrosion rates values 

had been recorded for some duplicate testing conditions. Notice the significant 

differences observed for similar experimental conditions. These differences are mainly 

due to high temperatures, high velocities and/or low pH, all of which represent favorable 

conditions enhancing high corrosion rates. For the models presented in this work, the 

average corrosion rates were used. 

To show the effect of the differences among the dataset on the modelling process 

output, the duplicate testing conditions were eliminated, and three different datasets 

were constructed: Average corrosion rates for each testing condition, Minimum 

corrosion rates, and Maximum corrosion rates.  

The same calibration process had been performed using each of the three datasets. 

Shown in Figure 3-5 are the least square linear fits for the prediction results using each 

of the three datasets mentioned above.  

 

Figure 3-5: Experimental Corrosion Rate Uncertainty Effect on the Prediction Results 
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Summarized in Table 3-5 are the modelling output for each of the constructed 

dataset and presents the identified coefficients in (3-11) for each of the cases.  

Table 3-5: Calibration Process Output - Uncertainty Effect 

Dataset 

Type 
Calibrated Model 

1.1.1.1.1.1.1.1 Deviation 

Angle 

1.1.1.1.1.1.1.2 (deg) 

Average 𝑙𝑜𝑔10( 𝐶𝑅𝑟
𝑓𝑖𝑛𝑎𝑙

) = 3.72 − (877.1 − 61.95𝑉𝑚
0.5 + 1.57𝑝𝐻3)

1

𝑇
+ (0.98 + 0.008𝑉𝑚

0.5 − 0.02𝑝𝐻3) 𝑙𝑜𝑔10( 𝑓𝐶𝑂2) 43.35 

Minimum 𝑙𝑜𝑔10( 𝐶𝑅𝑟
𝑓𝑖𝑛𝑎𝑙

) = 3.73 − (912.2 − 71.28𝑉𝑚
0.5 + 1.46𝑝𝐻3)

1

𝑇
+ (1.03 − 0.02𝑉𝑚

0.5 − 0.018𝑝𝐻3) 𝑙𝑜𝑔10( 𝑓𝐶𝑂2) 41.94 

Maximum 𝑙𝑜𝑔10( 𝐶𝑅𝑟
𝑓𝑖𝑛𝑎𝑙

) = 3.59 − (826.9 − 61.16𝑉𝑚
0.5 + 1.49𝑝𝐻3)

1

𝑇
+ (0.76 + 0.003𝑉𝑚

0.5 − 0.015𝑝𝐻3) 𝑙𝑜𝑔10( 𝑓𝐶𝑂2) 42.65 

 

The results are close, and the accuracy of the final model has not been majorly 

affected by the uncertainty presented in the original experimental dataset. Using the 

average corrosion rates for the duplicate testing conditions gave the closest prediction 

to the measured values, which supports the choice of the average corrosion rate value 

for each of the duplicate experimental conditions. Although this does not eliminate the 

fact that there is a need to perform a design-of-experiments enabling independent 

validation of the model along with a quantification of the uncertainty to ensure robust 

accuracy from the model. 

Now consider the case of the CO2 corrosion process in the presence of scale 

formation on the surface of the metal, a case not studied here.  The increase of total 

pressure will lead to an increase of the CO2 partial pressure that typically results in an 

increase of the corrosion rate. However, according to the available experimental data in 

[67], for the case of high pressures the recorded corrosion rates tend to stabilize between 
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5 and 20 mm/year. This observation might be explained by the fact that for some 

favorable conditions, when high temperature, high pH and high-pressure values are 

present, super-saturation of bicarbonate and carbonate ion are higher due to their 

increasing concentrations. This in turn accelerates the carbonate precipitation to create 

a protective film that reduces the tendency for CO2 corrosion to occur. Taking into 

considerations the effect of the scale formation will improve the corrosion rate 

prediction and enhance the utility of the model during the design and dimensioning 

process of the transmission infrastructure. 

Internal pitting corrosion is also one of the most influencing factors in the 

degradation and failure of oil and gas production pipelines [68]. It consists of a loss of 

metal at discrete areas due to localized attacks. This focused corrosion causes 

penetration of the pipe wall by pits where the protective film breakdown usually occurs.  

The corrosion propagation to the surrounding areas and could lead to different failures 

(e.g, leaks, burst or rupture). The main challenge then is to track these localized attacks 

and predict corrosion occurrence. Such knowledge will offer the possibility to 

understand the risk of failure of the corroded pipeline and act properly to manage its 

remaining strength. 

Another important factor to consider is an experimental study involving high 

pressures beyond the 0.3 to 22 bar [66]. Higher internal pipe pressures associated with 

production systems will cause an increase in the pipe hoop stresses. These stresses will 

be especially concentrated at the pipe inner wall and pit locations, perhaps enhancing 

corrosion rates. It is unclear how high pressures will influence corrosion in the absence 
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of surface pits. Such tests are difficult to perform and would require experienced testing 

personnel.   

3.5 Data-Based CO2 Corrosion Rate Models Recalibration 

 

The original DeWaard, Lotz and Milliams (DLM) model [63] is presented by  

𝑙𝑜𝑔10( 𝐶𝑅) = 5.8 −
1710

𝑇
+ 0.67 × 𝑙𝑜𝑔10( 𝑃𝐶𝑂2). (3-21) 

Based on the presented expression in (3-21), the recalibration is based on the structure 

given as 

𝑙𝑜𝑔10( 𝐶𝑅) = 𝑎1 +
𝑎2
𝑇
+ 𝑎3 × 𝑙𝑜𝑔10( 𝑃𝐶𝑂2). (3-22) 

The recalibration process result is given by (3-23) and this is achieved using the Least 

Square Method to identify the coefficients 𝑎1, 𝑎2 and 𝑎3 

𝑙𝑜𝑔10( 𝐶𝑅) = 3.07 −
738.4

𝑇
+ 0.54 × 𝑙𝑜𝑔10( 𝑃𝐶𝑂2). (3-23) 

Shown in Figure 3-6 are the results of the recalibrated DLM model in (3-23) 

compared to the original model in (3-21) and the actual measured corrosion rates taken 

from [66] and [57]. 
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Figure 3-6: DLM Model Recalibration Results 

 

Another data-based CO2 corrosion rate model is presented by the NORSOK model. The 

original NORSOK model [62] is presented by  

𝐶𝑅 = 𝐾𝑡 × 𝑓𝐶𝑂2
0.62 × (

𝑆

19
)
0.146+0.0324×𝑙𝑜𝑔10(𝑓𝐶𝑂2)

× 𝑓(𝑝𝐻)𝑡. (3-24) 

Based on the presented expression in (3-24), the recalibration is based on the structure 

given by  

𝐶𝑅 = 𝐾𝑡 × 𝑓𝐶𝑂2
𝑎1 × (

𝑆

19
)
𝑎2+𝑎3×𝑙𝑜𝑔10(𝑓𝐶𝑂2)

× 𝑓(𝑝𝐻)𝑡 . (3-25) 

The recalibration process result is given by (3-26) and this is achieved using a 

Non-linear Least Square optimization method to reduce the prediction error and identify 

the coefficients 𝑎1, 𝑎2 and 𝑎3 

𝐶𝑅 = 𝐾𝑡 × 𝑓𝐶𝑂2
0.59 × (

𝑆

19
)
1.94+2.04×𝑙𝑜𝑔10(𝑓𝐶𝑂2)

× 𝑓(𝑝𝐻)𝑡 . (3-26) 



 

 71 

Shown in Figure 3-7 are the results of the recalibrated NORSOK model in (3-26) 

compared to the original model in (3-24) and the actual measured corrosion rates taken 

from [66] and [57]. 

 

Figure 3-7: NORSOK Model Recalibration Results 

 

3.6 Subsea Pipelines and Jumpers Sizing Based on Corrosion 

Analysis  

 

Multiphase flow characteristics significantly affect the corrosion process of the 

steel pipelines in the oil industry. Presented in this section is a simulated case study for 

the model-based design of subsea architecture based on predicted corrosion rates. The 

oil and gas production from four different wells is grouped through a subsea manifold, 

which feeds the riser through a long production pipeline (Figure 3-8). The properties of 

gas and liquid phases, operating conditions and pipeline design parameters, namely the 

jumper and production pipeline diameters, are captured in Table 3-6. 
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Figure 3-8: Schematic of a Subsea Manifold and Wells Connection 

 

A digital twin is developed to mimic the steady state and dynamic behavior of the 

real subsea architecture. A physics-based model is derived for each subsea component, 

which is modeled using first principles. The models are then brought together and 

implemented in a MATLAB simulation environment. Next, the subsea architecture 

digital twin is integrated with the steady-state multiphase pattern to estimate the flow 

properties in the four jumpers and the production pipeline given the various scenarios. 

Finally, the results are used to estimate corrosion rate based on the proposed corrosion 

model. The proposed workflow is summarized in Figure 3-9. 
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Figure 3-9: Multiphase Flow - Corrosion Rate Digital Twin 

 

Table 3-6: Case Study Simulation Parameters 

Operating Conditions 
System inlet pressure 5E+07 Pa 

System outlet pressure 1.2E+05 Pa 

Pipeline Sizing 

Jumper length 50 m 

Production pipeline 10000 m 

Jumper diameter range 0.1-0.125 m 

Production pipeline diameter range 0.23-0.28 m 

Fluid Properties 

Liquid density 900 kg/m3 

Liquid absolute viscosity 1.5E-03 Ns/m2 

Liquid bulk modulus 1E+09 Pa 

Gas density 240 kg/m3 

Gas absolute viscosity 1E-05 Ns/m2 

Gas volume fraction 1-50 % 

 

The subsea architecture digital twin is simulated for different pipeline sizing 

scenarios. For each simulated case, the liquid-gas two-phase steady-state model 

estimates the liquid and gas flow rates. The resulting liquid velocity serves as input to 

the proposed PV model to predict the corresponding corrosion rate. Illustrated in Figure 

3-10 are the predicted corrosion rates of the four jumpers and the production pipeline 

for 1 percent gas-volume-fraction two-phase flow. 
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Figure 3-10: Pipeline and Jumper Corrosion Rate Prediction ( GVF = 1%) 

 

 

Figure 3-11: Relationship between GVF and Corrosion Rate 

 

Results suggest that the corrosion rate in jumpers can be reduced by increasing 

jumper diameter and decreasing production pipeline diameter, whereas production 

pipeline corrosion rate can be reduced by decreasing both jumper and production 
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pipeline diameters. To optimize the subsea architecture based on minimizing the 

average corrosion rate of both lines, the optimal diameters are found to be 0.125 m and 

0.23 m for the jumpers and the production pipeline, respectively.  An investigation of 

the effect of the production fluid gas-volume-fraction on the system corrosion rate is 

also conducted. Presented in Figure 3-11 is the relationship between the gas-volume-

fraction and the corrosion rate of the optimized subsea architecture lines. It can be 

concluded that corrosion rates can be mitigated by an increase in the gas-volume-

fraction in the production fluid.  

3.7 Conclusion 

 

Numerous CO2 corrosion models are available in the literature and have been used 

by industrial partners to perform corrosion rate prediction during the process of 

hydrocarbons production and transmission. However, the differences between these 

models will always bring up the issue of accuracy of the models [69]. In this study, a 

comparison of some of the existing CO2 corrosion prediction models has been 

conducted using a common testing conditions to highlight the differences presented via 

their models structures as well as the required inputs required for each of the models. 

Performance benchmarking had been conducted to assess the most appropriate model 

to be used as a foundation in developing a newly data-driven model for CO2 corrosion 

prediction, compared to the ones used in this study. 

A “Parameter Varying” (PV) model is developed based on newly introduced model 

coefficients where the fluid factors influencing corrosion rates are nonlinear correlation 

between the pH and the flow velocity. The PV coefficients were not derived from 
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physics, instead it demonstrates a data driven approach based on a system identification 

methodology. A key aspect is its modularity that lends itself to isolated corrections 

derived from additional experimental and scientific studies.  The proposed parameter 

varying CO2 corrosion rate model is based on (3-8) developed in [52].  The parameter 

varying coefficients were identified by determining the functional relationship between 

flow parameters of velocity and pH to the residual generated between experimental data 

and (3-8). Significant improvements in CO2 corrosion rate modelling were achieved.  

The resulting model produced an R-Squared value of 0.9 in comparison to 0.54 

associated with (3-8).  The maximum residual of the proposed model is 12 mm/year 

based on the validation dataset whereas the model in (3-8) is 24 mm/year. 

Demonstrated through this investigation is an avenue for the development of an 

adaptive model, which if constructed using data analytics, will enable the descriptive, 

predictive, diagnostic, and prescriptive analytics (digital twin) that provides value-add 

to the oil and gas industry. This will be ensured by including more complex phenomena 

encountered in practical applications, such as the effect of the pipe steel composition 

and texture, effect of inhibitors, and modelling of localized attacks namely pitting 

corrosion. 
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4 MODEL-BASED SIMULATION APPROACH FOR 

PRE-FEED STUDIES FOR SUBSEA FIELD 

ARCHITECTURES DEVELOPMENT  

 

4.1 Introduction 

 

Presented is an integrated multi-physics model to autonomously perform a subsea 

field architecture pre-FEED study, which identifies the family of solutions satisfying 

pre-specified multi-objectives. From these identified solutions, subject matter experts 

can select those satisfying qualitative constants not captured in the pre-FEED 

investigation for a deep-dive analysis. Beyond its pre-FEED study utility, the proposed 

methodology provides a mechanism by which Artificial Intelligence algorithms can be 

deployed as self-learning routines to deal with the subsea production physics and design. 

The model enables real-time production system health monitoring via self-adaptation 

thereby producing estimates of fluid properties along the different nodes of the network. 

The proposed subsea production system model integrates multi-phase flow, heat, wax 

appearance, pipeline erosion, pipeline corrosion and slugging flow within the pipelines 

into one multi-physics model. The interactions among the sub-models are captured and 

analyzed as part of the pre-FEED study. The parametric uncertainties associated with 

the fluid properties such as gas volume fraction (GVF), density and viscosity play a key 

role in the pre-FEED as the robustness of the subsea systems and connections can be 

quantified. For the value of the pre-FEED study to be meaningful, the proposed model 

must include the effects that the seabed topology and obstacles have on the multi-phase 

flow regime. Without a loss of generality, the multi-objective function used to illustrate 

the model utility within an automated design process focuses on minimizing the pressure 
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differential along the network, and equipment and flow lines installation cost 

simultaneously. 

This chapter is organized as follows. First, the multi-physics sub-models 

constituting a digital twin of a subsea production system are presented. A variety of 

models are developed to capture the different multi-physics aspect present within a fluid 

transmission system. Precisely, a steady state multiphase flow for pressure differential 

prediction as well as a thermal model are presented. Reduced order models and 

criterions are listed enabling a deep analysis of the overall system integrity and flow 

assurance issues. Both corrosion and erosion evaluation criterion have been presented 

as well as a wax deposition threshold. In addition, a thorough description of the overall 

well clustering process has been illustrated discussing all issues related to the limitations 

within the choice of cluster manifolds. Next, the overall optimization process is 

presented. Detailed representation of the objective functions and how they are evaluated 

along the subsea system for all the nodes is introduced. This section is extended by 

providing pseudocodes describing the hybrid optimization approach used such us the 

global scatter search process and the local gradient-based solver including the Dijkstra 

algorithm. Finally, some illustrative examples demonstrating the optimization abilities 

of the proposed autonomous solution and the different scenarios that can be deployed 

are presented. A deeper analysis is provided to demonstrate the utility of the presented 

solution as a testing platform for different analysis and scenarios, which makes it a 

decision support tool offering a fast yet efficient guidance for users during the design 

phase.     
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4.2 Subsea Field Digital-Twin for Autonomous Pre-FEED Design 

 

In this section, a digital multi-physics representation of a subsea production system 

is developed. The adopted structure of the studied subsea production system is presented 

as the connection between wells, manifolds, and the platform. The development begins 

with a description of the multi-physics models required to digitally represent a subsea 

production system. In addition, those models capturing pipeline integrity assessment are 

provided. Next, a clustering solution that facilitates specific grouping of wells and 

manifolds is detailed. Such a feature allows for the customization of a subsea field 

architecture for practical considerations such as managing the number of connections, 

optimizing the size of manifolds as well as enabling future tiebacks extension. This 

section concludes with a mathematical description of the seabed topology.  

4.2.1 Multi-physics Modeling of Subsea Production Subsystems 

 

Presented herein are the primary subsystem models utilized to digitally represent a 

subsea production system. The organization of these sections begin with a steady state 

multiphase flow model that estimates the pressure differential, volumetric flow rate, and 

flow regime [23]. This flow model is followed by a heat transfer model that predicts the 

multiphase flow temperature differential along the pipeline. The coupling between the 

heat transfer and flow characteristics is addressed using an adaptation routine to update 

the fluid properties along pipelines.  

4.2.1.1 Steady-State Multiphase Flow Modeling 

 

The feature influencing facility specifications are the production fluids flowing 

within the network from the reservoir to the topside terminal. Two standard 
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classifications of flow are considered: single phase and multiphase flow. The latter one 

is the common general approach into representing the hydraulic component of a subsea 

production system since most of the flowing fluids in the oil and gas industry are 

presented as multiphase flows. The simultaneous presence of different phases leads to 

the observation of various fluid behaviors changing with the different phases’ 

distribution. Hence, gaining knowledge and understanding of these complicated flowing 

conditions has great significance to analyze and study the variety of complex 

phenomena that occurs within a piping system as well as evaluating the integrity and 

the robustness of the overall subsea system. Quantifying the behavior of the flowing 

fluid will determine the decisions impacting the design and the production stage of a 

subsea field. In addition, model uncertainties in estimating the fluid dynamics are 

important factors influencing both the credibility of the simulation and the optimization 

of the overall network.  

The goal is to directly incorporate the impact of flowing geometries (horizontal, 

inclined, and vertical) imposed by the topology of the seabed. Multiple multiphase flow 

correlations are available to develop these models. In this manuscript, the Beggs and 

Brill correlation [23] is chosen for assessing the pressure differential of the flowing fluid 

within all the subsea field architecture connections for different inclinations Figure 4-1 

.This correlation is adopted to simulate the overall hydraulic part of the subsea network. 

It is noted that the modularity of the proposed digital subsea production system 

facilitates the use of alternative multiphase flow correlations. 
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Figure 4-1: Inclined Pipeline 

 

Given a pipeline with an inclination θ, as presented in [70], the total pressure 

differential can be presented by three different components: pressure differential due to 

elevation change, pressure differential occurring due to friction losses and pressure 

differential result of kinetic energy or convective acceleration. The latter component is 

generally equal to zero for the case of constant area pipelines where no change in 

velocity is present. Hence, for the hydraulic calculations in this study, the pressure 

differential expression presented by the Beggs and Brill correlation is adopted, given by  

Δ𝑃 = Δ𝑃𝑓 + Δ𝑃𝐻𝐻 , (4-1) 

where 𝛥𝑃𝑓 is the pressure differential resulting from the friction losses and 𝛥𝑃𝐻𝐻 is the 

hydrostatic pressure change (due to elevation changes). Once determining the flow 

regime within the pipeline, this correlation is used to calculate the liquid holdup 𝐸𝐿 from 

which equivalent fluid properties are determined. An equivalent density of the flowing 

mixture ρmixture is calculated as  

𝜌𝑚𝑖𝑥𝑡𝑢𝑟𝑒 = 𝜌𝐿𝐸𝐿 + 𝜌𝐺(1 − 𝐸𝐿), (4-2) 
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and an equivalent mixture viscosity 𝜇𝑚𝑖𝑥𝑡𝑢𝑟𝑒 given by 

𝜇𝑚𝑖𝑥𝑡𝑢𝑟𝑒 = 𝜇𝐿𝐸𝐿 + 𝜇𝐺(1 − 𝐸𝐿). (4-3) 

The hydrostatic pressure differential 𝛥𝑃𝐻𝐻 can be obtained as a function of the 

liquid holdup 𝐸𝐿 and the mixture density by 

Δ𝑃𝐻𝐻 =
𝜌𝑚𝑖𝑥𝑡𝑢𝑟𝑒𝑔𝐿

𝑔𝑐
𝑠𝑖𝑛( 𝜃), (4-4) 

where L is the pipeline length, g is the gravitational constant and 𝑔𝑐 is a gravitational 

conversion factor. 

  The pressure differential 𝛥𝑃𝑓 associated with the friction loss along the pipeline 

is determined based on the calculation of the no-slip density 𝜌𝑁𝑆. This latter property is 

calculated with the constraint that both phases (liquid and gas) are moving at the same 

in situ velocity, thus giving as 

𝜌𝑁𝑆 = 𝜌𝐿𝐶𝐿 + 𝜌𝐺(1 − 𝐶𝐿), (4-5) 

where 𝐶𝐿 is the no-slip liquid volume fraction defined as  

𝐶𝐿 =
𝑉𝑆𝐿

𝑉𝑚𝑖𝑥𝑡𝑢𝑟𝑒
. (4-6) 

In this case, 𝑉𝑆𝐿 is the superficial liquid velocity, and 𝑉𝑚𝑖𝑥𝑡𝑢𝑟𝑒 is the mixture 

velocity. The friction factor 𝑓𝑡𝑝 is based on the Beggs and Brill friction factor correlation 

for two phase flow [23]. The corresponding friction pressure differential is written as 

Δ𝑃𝑓 =
2𝑓𝑡𝑝𝑉𝑚𝑖𝑥𝑡𝑢𝑟𝑒

2 𝜌𝑁𝑆𝐿

𝑔𝑐𝐷
. (4-7) 

 

 

 



 

 83 

4.2.1.2 Heat Transfer Modeling of Multiphase Flow in Pipelines 

 

To assess the thermal aspect of a flowing fluid within a pipeline, a reduced-order 

two-phase flow thermal model presented in [71] is applied. The thermal information is 

necessary to determine the temperature gradient along a pipeline. Specifically, the 

temperature distribution profile along a pipeline give information concerning possible 

hydrates wax occurrence. Also, this information is important for selecting the insulation 

layer (thermal conductivity and layers thickness). In addition, having a two-phase-flow 

thermal model coupled with a two-phase-flow model exploits the interaction between 

the hydraulic and thermal sub-models to address the sensitivity of the fluid properties 

to the variation of the operating conditions along the pipelines. 

 Following a similar development used for the multiphase flow model, the 

following thermal model estimates equivalent fluid thermal properties producing an 

overall heat-transfer coefficient of the two-phase flow for different patterns. This 

coefficient depends on both the liquid holdup and pressure differential estimated by the 

fluid model.  Several assumptions are considered when developing the proposed thermal 

model: 

• Hydraulic and thermal properties of both liquid and gas phases are varying 

with respect to pressure, volume, and temperature. 

• Heat flow is from the inner to the surrounding fluid. 

• There is no mass transfer occurring between phases. 

• Frictional heat generation caused by the fluid is negligible. 

• Enthalpy of mixing is negligible, 
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• Energy exchange due to chemical reactions occurring within the pipeline is 

negligible. 

The steady-state output temperature of the fluid at the end of a pipeline is expressed 

in [71] as 

𝑇𝑜𝑢𝑡 = (𝑇𝑖𝑛 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡) 𝑒𝑥𝑝 [
−𝑈 × 𝜋 × 𝐼𝐷

𝑚̇ × 𝐶𝑝
𝑥] + 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡, (4-8) 

where 𝑚̇ is the fluid mass flow rate, 𝐶𝑝 is the fluid specific heat capacity and 𝑈 is the 

overall heat-transfer coefficient within the pipeline given as 

𝑈−1 = 𝐼𝐷 ×∑ [
𝑙𝑛 (

𝐼𝐷𝑖+1
𝐼𝐷𝑖

)

2𝑘𝑐𝑜𝑛𝑑𝑖
𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

]

𝑛+1

𝑖=1⏟              
𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛

+
1

ℎ𝑡𝑝
+

1

ℎ0 × (
𝑂𝐷
𝐼𝐷
)⏟          

𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

, (4-9) 

where 𝑘𝑐𝑜𝑛𝑑𝑖
𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 is the corresponding material conductivity and ℎ0 is the external 

convection heat transfer coefficient. 

The main challenge for two-phase flow is to estimate the two-phase convection heat 

transfer coefficient, ℎ𝑡𝑝. This coefficient is a function of the flow characteristics, 

hydraulic and thermal properties of the fluid as well as the flow pattern present within 

the pipeline. Thus, the model in [71] presents a detailed method to estimate the fluid 

convection heat transfer coefficient by taking into account all these listed factors. 

4.2.1.3 Adaptive Coupling of the Flow and Heat Transfer Models 

 

To improve the robustness of the fluid hydraulic and thermal properties estimation 

along the pipeline, a self-adapting process that tracks the changes of the fluid operating 

temperature and pressure, and updates the fluid properties respectively is employed 

(Figure 4-2).  
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The proposed solution is based on the implementation of a lookup table to update 

both hydraulic and thermal properties considering the changes of the in-line pressure 

and temperature. The lookup table is created based on a database presented as 

pressure/volume/temperature (PVT) file. The selected database is generated in advance 

based on the fluid mixture and composition at the reservoir level using the PVTsim 

software. Hence, this database can be given by the user depending on the property of 

the reservoir or fluid in question. 

 

Figure 4-2: Fluid Properties Update Block Scheme 

 

Table 4-1: Updated Fluid Properties – Self-Adapting Block 

Updated Variable Description Unit 

𝜌𝐿 Liquid Phase Density kg/m3 

𝜌𝐺  Gas Phase Density kg/m3 

𝜇𝐿 Liquid Phase Viscosity Pa.s 

𝜇𝐺 Gas Phase Viscosity Pa.s 

𝐶𝑝𝐿 Liquid Phase Specific Heat Capacity J/(kg.C) 

𝐶𝑝𝐺  Gas Phase Specific Heat Capacity J/(kg.C) 

𝐾𝐿 Liquid Phase Heat Conductivity W/(m.C) 

𝐾𝐺  Gas Phase Heat Conductivity W/(m.C) 

 

The updated fluid properties during this process are summarized in Table 4-1. By 

incorporating these self-adaptive features, a broader range of studies is achieved. 

Specifically, more accurate quantification of the fluid properties along the different 

segments of a pipeline is realized. Hence track changes of the fluid regime is enabled 
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along with the possible occurrence of flow assurance issues. In addition, the self-

adaptive process is implemented during the optimization process to consider the effect 

of changes of the pressure and temperature at each of the subsea system nodes.  

4.2.2 Pipeline Degradation Processes Modeling 

 

During the design phase of a subsea field architecture, several issues are addressed 

to produce solutions that avoid unrealistic connections schemes. Thus, incorporating 

different optimization constraints is needed. In the following section, several constraints 

are introduced to impose different design requirements such as structural, mechanical, 

thermal, and hydraulic considerations. 

4.2.2.1 Pipeline Erosion Modeling 

 

One of the important factors during the design of a subsea system is the rate of 

erosion. Such phenomenon can lead to maintenance consequences regarding the system 

integrity and longevity. Interior erosion is contingent upon the nature of the flowing 

fluid as well as the hydraulic characteristics of the mixture, specifically the fluid mean 

velocity. Incorporating this constraint in the optimization and pipeline sizing process of 

the subsea field element is paramount. 

A widely deployed solution to address erosion within a subsea pipeline is the API 

14E standard requirement for pipeline design and sizing, where under specific input 

conditions a maximum erosional velocity is specified for the mixture mean velocity. 

This limit is defined in the API 14E standard [72] as 

𝑉𝑒𝑟𝑜𝑠𝑖𝑜𝑛 =
𝐶

√𝜌𝑚𝑖𝑥𝑡𝑢𝑟𝑒
. (4-10) 
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To minimize the erosion within the pipeline, the mixture mean velocity must be 

less than the erosional velocity threshold. A constraint is developed given the erosional 

ratio Eratio and defined as 

𝐸𝑟𝑎𝑡𝑖𝑜 =
𝑉𝑚𝑖𝑥𝑡𝑢𝑟𝑒
𝑉𝑒𝑟𝑜𝑠𝑖𝑜𝑛

< 1, (4-11) 

where C is the API 14E erosion factor, 𝑉𝑒𝑟𝑜𝑠𝑖𝑜𝑛 is the erosional velocity, 𝑉𝑚𝑖𝑥𝑡𝑢𝑟𝑒 is the 

mixture mean velocity and 𝜌𝑚𝑖𝑥𝑡𝑢𝑟𝑒 is the mixture equivalent density. 

4.2.2.2 Pipeline Corrosion Modeling 

 

In addition to erosion, corrosion is also considered as a concern that has an impact 

on the reliability and the service life of a subsea production system. Having an accurate 

estimation of the corrosion rate within the optimization process facilitate material 

specifications and sizing of the elements. The model derived in [73] quantifies the 

corrosion rate within the subsea network pipelines, jumpers and riser. The corrosion rate 

model is a data-driven model presented as a parallel resistance model given as 

1

𝐶𝑅
=

1

𝐶𝑅𝑎𝑐𝑡
+

1

𝐶𝑅𝑀𝑎𝑠𝑠
, 

𝑙𝑜𝑔10( 𝐶𝑅𝑎𝑐𝑡) = 3.72 − (877.1 − 61.95𝑉𝑚𝑖𝑥𝑡𝑢𝑟𝑒
0.5 + 1.57𝑝𝐻3)

1

𝑇
 

+(0.98 + 0.008𝑉𝑚𝑖𝑥𝑡𝑢𝑟𝑒
0.5 − 0.02𝑝𝐻3) 𝑙𝑜𝑔10( 𝑓𝐶𝑂2), 

and 

𝐶𝑅𝑀𝑎𝑠𝑠 = 2.45
𝑉𝑚𝑖𝑥𝑡𝑢𝑟𝑒
0.8

𝐷0.2
𝑓𝐶𝑂2 . 

(4-12) 

In this model, both pH and CO2 fugacity are considered to estimate the corrosion 

rate 𝐶𝑅 as a function of two different corrosion rate quantities, namely 𝐶𝑅𝑎𝑐𝑡 

representing the contribution of the activation reaction kinetics and 𝐶𝑅𝑀𝑎𝑠𝑠 representing 
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the contribution from the mass-transfer kinetics due to the mixture velocity. Knowing 

the lifespan of the pipeline, a penetration depth tp is determined as 

𝑡𝑝 = 𝐶𝑅 × 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛. (4-13) 

To ensure an acceptable design, a maximum corrosion allowance te is chosen so that 

𝑡𝑝 < 𝑡𝑒 . (4-14) 

Thus the pipeline minimum wall thickness 𝑡 is determined according to the 

ANSI/ASME standard B31.1 [74] by the following expression 

𝑡 = 𝑡𝑒 + 𝑡𝑡ℎ + [
𝑃 × 𝑂𝐷

2(𝑆𝑝 × 𝐸 + 𝑃 × 𝑌)
] [

100

100 − 𝑇𝑜𝑙
], (4-15) 

where tth is the thread or groove depth, P is the allowable internal pressure in the 

pipeline, OD is the outer diameter of the pipeline, 𝑆𝑝 is the allowable stress for the 

pipeline, E is the longitudinal weld-joint factor, Y is the derating factor and Tol is the 

manufacturer allowable percent tolerance. 

4.2.2.3 Pipeline Wax Appearance Modeling 

 

Another factor impacting the structural integrity of a pipeline is the appearance of 

hydrates wax at the internal surface of the pipeline. This has significant effects on the 

fluid transportation through the flow line by reducing the flow rate of the mixture due 

to a plugging of the pipeline. The wax deposition process occurs when the temperature 

of the medium falls below a threshold temperature known as the wax appearance 

temperature (WAT) [75]. A well-designed pipeline reduces/avoids the possibility of wax 

deposition within the system. This is achieved by optimally choosing the pipeline size 
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and the insulation layer properties so that the flowing mixture temperature stays above 

the WAT, namely 

𝑇 > 𝑊𝐴𝑇. 
(4-16) 

The flowing mixture temperature T is going to be presented as the mixture 

temperature at each node of the subsea field layout following the discretization process 

presented in the next section. To evaluate the constraint requirement presented in (4-16) 

during the optimization process, the thermal model previously presented is used to 

calculate the temperature along the different connection in the subsea field. 

4.2.3 Subsea Wells Clustering 

 

The objective of this investigation is to determine an optimal pipeline connection 

scheme offering the shortest pipeline length to reduce the CAPEX of the architecture. 

However, this routing must minimize the pressure differential ensuring that the 

maximum production is achievable within the system. During this process, a number of 

constraints is imposed, namely flow assurance and structural stability criterions. 

Specifically, maintaining measures like wax appearance temperature, erosional velocity 

and corrosion maximum allowance within acceptable ranges. 

The production fluids are flowing from the wellheads, merge at the manifolds and 

flow back to the riser base to arrive at the topside platform. The overall system is 

presented as a set of spatial nodes interconnected by pipelines. Each node is identified 

by three coordinates (x, y, z), representing the planar coordinates (x and y) and the 

elevation above the seabed z. Letting n denote the number of wells, each well is 

presented as a node given by 𝑊𝑖 = (𝑥𝑊𝑖
, 𝑦𝑊𝑖

, 𝑧𝑊𝑖
), where i=1:n. Similarly, if 
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considering m manifolds, then each one is presented by 𝑀𝑗 = (𝑥𝑀𝑗 , 𝑦𝑀𝑗 , 𝑧𝑀𝑗) , where 

j=1:m. 

In a subsea field, a good practice has been reducing the number of connections 

between wells and platform. Especially when in the case of a large-scale oil and gas 

field, where many subsea wells are present. This makes the connection of all the wells 

to a one manifold inadequate and even if it is possible it will require a large size 

manifold. Hence, deploying smaller size manifolds instead is more practical. To achieve 

this goal, grouping the wells into small number of assemblies is one approach in a field 

where many scattered wells are present. 

4.2.3.1 Subsea Cluster Manifold 

 

A cluster manifold is a widely used equipment within the subsea industry, usually 

deployed to reduce the number of tiebacks connected to the topside terminal [76]. The 

main reason to deploy such a structure is the flexibility to group and segregate any set 

of wells. It offers the ability to present a set of wells as one production entity (Figure 

4-3).  

In addition, using such an approach is advantageous in the sense of reducing the 

overall equipment cost as well as extending the field by connecting additional scheduled 

tiebacks. Also, the cluster manifold plays an important role in increasing the production 

efficiency of the subsea system [77]. 

This equipment is used to guide the production enhancement process by presenting 

a gathering point for the boosting injected products (water, gas, and chemicals) that are 

distributed to all the subsea wells to which it is connected. Hence, this offer the 
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accessibility to enhance the reservoir pressure, control the hydrate formation and 

improve the hydraulic performances of the overall subsea system. Yet, this does not 

eliminate the fact that large-scale equipment comes with several limitations such as the 

complexity and inflexibility during the installation process as well as safety matters 

during production operations. The manifold cluster type employed depends on the 

number of wells to be connected as well as the field development schedule which 

requires a certain number of reserved slots for future wells extension. Each manifold 

normally accommodates between 4 to 10 connection slots [76]. 

 

 

Figure 4-3: Cluster Manifold Configuration[78] 

 

4.2.3.2 Subsea Wells Clustering Process 

 

To group a set of wells into one entity based on the distance between them, a 

geometric clustering algorithm is adopted. Specifically, a k-means algorithm is used to 

divide the scattered wells into groups based on the Euclidean distance between wells 

given as 
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𝑑𝑖𝑠𝑡(𝑊𝑖,𝑊𝑗) = ((𝑥𝑊𝑖
− 𝑥𝑊𝑗

)
2
+ (𝑦𝑊𝑖

− 𝑦𝑊𝑗
)
2
+ (𝑧𝑊𝑖

− 𝑧𝑊𝑗
)
2
)
0.5

. (4-17) 

Note that given the k-means algorithm limitations, there are no constraints that can 

be imposed regarding the size of each cluster. However, only few types of cluster 

manifolds are available depending on the number of connection slots (4, 6, 8 and 10 

slots). Hence, the size of the well groups will directly depend on the type of cluster 

manifold installed. To overcome this limitation, a modified version of the k-means 

clustering algorithm is implemented [79]. This method offers the possibility to define 

the size of the well groups based on the cluster manifolds used. In this work, changes 

are proposed to the original k-means algorithm, so a user can incorporate the preferred 

size for each cluster separately. To apply this method, each of the cluster sizes is 

specified (Figure 4-4). 

In the case of not knowing this information a-priori, the proposed subsea field 

architecture design algorithm will determine the required sizes for each cluster by 

considering the optimal number and type of cluster manifolds required to connect all 

wells as well as take into considerations future scheduled tiebacks.  
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Figure 4-4: Subsea Wells Clustering Process 

These manifolds are selected among the existing types, which translates into the 

combination of cluster manifolds allowing the connection of all the wells with minimum 

equipment cost. The sizes of the possible clusters are determined by solving the 

following optimization problem 

𝑚𝑖𝑛
𝑁𝑏𝑟𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑𝑠

𝐶𝑂𝑆𝑇𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑𝑠,  𝑠. 𝑡  {

𝑁𝑏𝑟𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑𝑠: 𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑠

∑𝑁𝑏𝑟𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑𝑠(𝑘) × 𝑁𝑏𝑟𝑠𝑙𝑜𝑡(𝑘)  ≥ 𝑛

4

𝑘=1

, (4-18) 

where 𝐶𝑂𝑆𝑇𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑𝑠 is the vector containing the cost of the different manifold types 

as listed in (Bai and Bai 2018), 𝑁𝑏𝑟𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑𝑠 is the vector containing the number of 

manifolds used from each type, 𝑁𝑏𝑟𝑠𝑙𝑜𝑡 is a vector listing the number of slots for each 

manifold type (𝑁𝑏𝑟𝑠𝑙𝑜𝑡 = (4,6,8,10)) and 𝑛 is the number of the subsea wells within 

the field. 
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4.2.4 Seabed Topology Approximation 

 

The seabed is introduced as a 3D profile to incorporate both elevation changes 

and topographic obstacles. Since an actual seabed cannot be represented as a continuous 

surface function, a discrete representation is used. The seabed is discretized at the nodes 

by their x and y coordinates and elevation z. In this case, these nodes are used as a 

gridded space during the optimization process. If this information is not available, the 

seabed profile will be approximated using a surface function to emulate the elevations. 

One such surface function is the cubic B-spline interpolation given as 

𝑧(𝑥, 𝑦) =∑𝑧𝑘
0. 𝑒𝑥𝑝(−(

|𝑥 − 𝑥𝑐|

𝑢𝑘
)

𝑝𝑘

− (
|𝑦 − 𝑦𝑐|

𝑣𝑘
)

𝑞𝑘

)

𝑘

, (4-19) 

where 𝑥𝑐, 𝑦𝑐, 𝑢𝑘, 𝑣𝑘, 𝑝𝑘 and 𝑞𝑘 are fitting parameters. In this development, the seabed 

topographic profile to be studied is illustrated in (Figure 4-5). 

 

Figure 4-5: Example of a Discrete Representation of a Seabed 
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4.3 Mathematical Formulation of the Pre-FEED Design Algorithm  

 

  The optimal field layout is identified by maximizing the production (minimizing 

the pressure differential) while minimizing the cost. The first objective function is 

adopted based on the importance of considering the hydraulic properties of the flowing 

fluid, especially in the case of multi-phase flow. Precisely, in the case of a 3D seabed, 

pipelines can be passing through uphills and downhills. Hence, a lot of energy is lost 

and not regained through these elevation changes. Therefore, minimizing the pressure 

drop along the piping scheme is crucial in order to avoid these losses and maintain a 

connection plan that tends to avoid as much as possible any important elevation 

variation especially valleys considered as liquids traps [80, 81]. The latter objective is 

mainly dependent on the pipelines routing scheme and pipelines sizes (inner diameters) 

that directly influence the specified flow assurance constraints as well as the overall cost 

of the subsea production system. Hence, the optimization problem in this study can be 

presented as a multiobjective optimization where the goal is to find the optimal design 

that assure the minimum possible cost while considering having the least amount of 

overall pressure differential (maximizing the production rates) along the subsea system 

in order to respond to the issues illustrated before. 

This optimization problem of the subsea layout subject to the flow assurance and 

hydraulic constraints is presented as follows 

𝑚𝑖𝑛
𝐷𝑒𝑠𝑖𝑔𝑛  
𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

 {𝛼 × Δ𝑃𝑇 + (1 − 𝛼) × 𝐶𝑂𝑆𝑇𝑇}, (4-20) 
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where 𝛥𝑃𝑇 is the overall pressure differential along the subsea network, 𝐶𝑂𝑆𝑇𝑇 is the 

overall cost of the manifolds and flow lines, 𝛼 (0 ≤ 𝛼 ≤ 1) is the weighting factor (for 

the multi-objective optimization) and the design variables are the manifolds positions 

and the pipelines routing and sizing. The reason to use a weighting factor is to represent 

the multi-objective optimization problem as a multi-criteria decision-making process. 

Hence, the possibility of providing a solution that can help making optimal decisions 

requiring tradeoffs between two objectives (in our case the overall pressure differential 

and the overall cost). 

Since the proposed automated subsea field architecture methodology involves a 

multi-objective function, the optimization process operates on a comparison among 

subsea system optimization constraints. Such a comparison is probably ill posed-since 

each constraint has different units leading to differing orders of magnitude. Therefore, 

it is necessary to transform each term in the multiple objective function such that all 

have similar orders of magnitude. One approach is to normalize the individual objective 

functions by dividing each term by the magnitude 10k or by their respective absolute 

function values at the initial design [82]. In this case, the initial design of the subsea 

field architecture is determined based on the initial design variables fed to the 

optimization process. Specifically, the initial design is presented as the initial positions 

of the manifolds, straights connections between the wells and their associated manifold 

as well as pre-selected values for the pipeline’s inner diameters and thickness. The new 

normalized objective function is obtained as 

𝑚𝑖𝑛
𝐷𝑒𝑠𝑖𝑔𝑛  
𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

 {𝛼 ×
Δ𝑃𝑇

|Δ𝑃𝑇,𝑖𝑛𝑖|
+ (1 − 𝛼)

𝐶𝑂𝑆𝑇𝑇

|𝐶𝑂𝑆𝑇𝑇,𝑖𝑛𝑖|
}, (4-21) 
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where 𝛥𝑃𝑇,𝑖𝑛𝑖  and 𝐶𝑂𝑆𝑇𝑇,𝑖𝑛𝑖 are respectively the pressure differential and the total cost 

of an initial design. In this description, 𝛥𝑃𝑇 is the overall total pressure differential 

within the subsea system defined as 

Δ𝑃𝑇 =∑Δ𝑃𝑖

𝑛𝑐

𝑖=1

, (4-22) 

where 𝛥𝑃𝑖 is the total pressure differential of the ith wells set (pressure differential 

between the wells and the riser base or platform) and 𝑛𝑐 is the number of wells groups 

(result of the clustering step). Hence, for the well set i with a cluster manifold 𝑀𝑖 

connected to 𝑚𝑖 wells and the platform, 𝛥𝑃𝑖 is given as 

Δ𝑃𝑖 = Δ𝑃𝑀𝑖
𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚

+∑Δ𝑃𝑊𝑖,𝑗

𝑀𝑖

𝑚𝑖

𝑗=1

, (4-23) 

where Δ𝑃𝑀𝑖
𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚

 is the pressure differential between the manifold 𝑀𝑖 and the riser base 

or platform and  Δ𝑃𝑊𝑖,𝑗

𝑀𝑖  is the pressure differential between a well 𝑊𝑖,𝑗 in the ith well set 

and the corresponding manifold 𝑀𝑖. To determine the optimal pipeline routing between 

all the facilities, the subsea seabed is gridded into vertices and edges. Hence, any 

connection is segmented into small portions passing from node to node within the 

gridded space. In this case, the pressure differential between any two elements (well-

manifold, manifold-platform) is discretized based on the mesh used to grid the field as 

well as the number of segments chosen. Discretizing the connections between a well 

𝑊𝑖,𝑗 in the ith wells set and the corresponding manifold 𝑀𝑖 divided into 𝑛𝑊𝑖,𝑗

𝑀𝑖  segment, 

the pressure differential Δ𝑃𝑊𝑖,𝑗

𝑀𝑖  is calculated as 



 

 98 

Δ𝑃𝑊𝑖,𝑗

𝑀𝑖 = ∑ Δ𝑃𝑁𝑘
𝑁𝑘+1

𝑛𝑊𝑖,𝑗

𝑀𝑖

𝑘=1

, 
(4-24) 

where Δ𝑃𝑁𝑘
𝑁𝑘+1 is the pressure differential between two consecutives nodes. Also, the 

connection between the manifold 𝑀𝑖 and the platform is divided into 𝑛𝑀𝑖
𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚

 

segments, the pressure differential along that connection is obtained as 

Δ𝑃𝑀𝑖
𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚

= ∑ Δ𝑃𝑁𝑘
𝑁𝑘+1

𝑛𝑀𝑖
𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚

𝑘=1

. (4-25) 

  The additional term in the objective function to minimize is the total cost of the 

subsea network. The total cost is divided into pipelines cost and manifolds cost 

𝐶𝑂𝑆𝑇𝑇 = 𝐶𝑂𝑆𝑇𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑠 + 𝐶𝑂𝑆𝑇𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑𝑠, (4-26) 

where 𝐶𝑂𝑆𝑇𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑𝑠 is the cost of the installed cluster manifolds and 𝐶𝑂𝑆𝑇𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑠 is 

the cost of all the installed pipelines given as 

𝐶𝑂𝑆𝑇𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑𝑠 =∑𝐶𝑂𝑆𝑇𝑀𝑖

𝑛𝑐

𝑖=1

 

and 

(4-27) 

𝐶𝑂𝑆𝑇𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑠 =∑𝐶𝑂𝑆𝑇𝑖

𝑛𝑐

𝑖=1

, (4-28) 

where 𝐶𝑂𝑆𝑇𝑖 is the total cost of the pipelines within the ith wells set added to the cost of 

the connection between the corresponding cluster manifold 𝑀𝑖 and the platform giving 

by 
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𝐶𝑂𝑆𝑇𝑖 = 𝐶𝑂𝑆𝑇𝑀𝑖
𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚

+∑𝐶𝑂𝑆𝑇𝑊𝑖,𝑗

𝑀𝑖

𝑚𝑖

𝑗=1

. (4-29) 

Using a similar discretizing process, the pipeline cost between the jth well 𝑊𝑖,𝑗 and the 

corresponding cluster manifold 𝑀𝑖 is determined by  

𝐶𝑂𝑆𝑇𝑊𝑖,𝑗

𝑀𝑖 = ∑ 𝐶𝑂𝑆𝑇𝑁𝑘
𝑁𝑘+1

𝑛𝑊𝑖,𝑗

𝑀𝑖

𝑘=1

 
(4-30) 

and the cost of the connection relating the cluster manifold 𝑀𝑖 to the platform is 

calculated by 

𝐶𝑂𝑆𝑇𝑀𝑖
𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚

= ∑ 𝐶𝑂𝑆𝑇𝑁𝑘
𝑁𝑘+1

𝑛𝑀𝑖
𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚

𝑘=1

. (4-31) 

Both costs for the manifolds as well as the pipelines are calculated based on the 

information listed in [83]. A manifold Mi cost is estimated as  

𝐶𝑂𝑆𝑇𝑀𝑖 = 𝑓0 × 𝑓1 × 𝑓2 × 𝑓3 + 𝐶𝑐𝑜𝑟𝑟. (4-32) 

where 𝐶𝑂𝑆𝑇𝑀𝑖 is the cost of manifold, 𝑓0 is the basic cost of a manifold, 𝑓1 is the tree 

type cost factor, 𝑓2 is the pressure rating cost factor, 𝑓3 is the bore size cost factor and 

𝐶𝑐𝑜𝑟𝑟 is a correction cost. For the pipeline, the cost of a segment between two nodes 𝑁𝑘 

and 𝑁𝑘+1 of a length 𝐿𝑘 is given as 

𝐶𝑂𝑆𝑇𝑁𝑘
𝑁𝑘+1 = 𝑓𝑡 × 𝑓𝑠 × 𝐶0 × 𝐿𝑘 + 𝐶𝑚𝑖𝑠𝑐 , (4-33) 

where 𝑓𝑡 is the flowline type cost factor, 𝑓𝑠 is the flowline size cost factor, 𝐶0 is a base 

cost and 𝐶𝑚𝑖𝑠𝑐 is the coating cost. 

A necessary additional operation evaluated during the optimization process is 

the calculation of the temperature at each node. This is necessary because evaluating 
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the changes of both pressure and temperature at each point of the grid is needed. The 

updated pressure and temperature are used to adapt the hydraulic and the thermal 

properties of the fluid. These properties are deemed indispensable to evaluate the 

different sub-models at the next node. 

Assuming that both the pressure 𝑃𝑘 and the temperature 𝑇𝑘 are calculated at a 

specific node 𝑁𝑘 in one of the connections, the fluid properties are updated by 

interpolating a predefined database to determine the properties based on the values of 

𝑃𝑘 and 𝑇𝑘 (Figure 4-2). These properties are then identified for the next node 𝑁𝑘+1. The 

pressure differential Δ𝑃𝑁𝑘
𝑁𝑘+1 is calculated to determine the pressure 𝑃𝑘+1 and the 

temperature 𝑇𝑘+1 defined as 

𝑃𝑘+1 = 𝑃𝑘 − Δ𝑃𝑁𝑘
𝑁𝑘+1 

and 

(4-34) 

𝑇𝑘+1 = (𝑇𝑘 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡) 𝑒𝑥𝑝 [
−𝑈𝑘 × π × 𝐼𝐷

𝑚̇𝑘 × 𝐶𝑝,𝑘
× 𝐿𝑘] + 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡, (4-35) 

where 𝑈𝑘 is the overall heat transfer coefficient at the pipeline segment 𝑁𝑘 − 𝑁𝑘+1, 𝐶𝑝,𝑘 

is the specific heat capacity of the fluid updated at the node 𝑁𝑘 and 𝑚𝑘̇  is the mass flow 

rate at the same node. This process is evaluated for all the nodes that constitute a specific 

connection between two entities within the subsea field. 

Using the discretization process described above, the pressure and temperature 

values at each node of overall subsea layout can be determined. However, to be able to 

assess the pressure and temperature values at all the nodes constituting the whole subsea 

system, a crucial task is needed to be fulfilled, precisely, determining the pressure and 

temperature values at the level of the manifolds. This can be associated with certain 
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limitation since each manifold is connected to several wells and each connection can 

result in different values for pressure and temperature. To overcome this issue, an 

additional constraint has been considered. This constraint is deployed to make sure that 

the different pressure values resulting from the different connections in one manifold 

are the same. For the case of the temperature, the cluster manifold has been considered 

as a multiple input single output system. Hence, the temperature at the manifold is 

defined as the mixture temperature of all the fluids flowing from the different wells 

connected to this manifold. For example, having a manifold M connected to m wells 

(𝑤𝑖 , 𝑖 = 1:𝑚), for each connection between a well 𝑤𝑖 and the manifold M, the 

temperature of the fluid flowing from 𝑤𝑖 to M at the manifold level is given as  . The 

final fluid mixture temperature at the manifold (𝑇𝑀) is then determined as follows: 

𝑇𝑀 =
∑ 𝑚̇𝑀

𝑖 𝐶𝑝,𝑀
𝑖 𝑇𝑀

𝑖𝑚
𝑖=1

∑ 𝑚̇𝑀
𝑖 𝐶𝑝,𝑀

𝑖𝑚
𝑖=1

, (4-36) 

where 𝑚̇𝑀
𝑖  and 𝐶𝑝,𝑀

𝑖  are respectively the mass flow rate and the specific heat capacity 

of the fluid flowing from 𝑤𝑖 to M at the manifold level. 

In a subsea field, finding the optimal routing map to connect the different 

facilities is paramount. One choice is to select a straight line between two entities. 

However, this connection can be impossible or non-optimal due to the presence of 

topographic obstacles and undesirable regions necessary to avoid. To incorporate this 

requirement, a path finding algorithm is used. The well-known Dijkstra algorithm is 

deployed [84]. This algorithm has been used to solve the problems of pipelines routing 

within oil and gas production and gathering systems [80]. 
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With the subsea field represented as a set of connected nodes, the optimal path 

between two points within this grid is found by evaluating the possible paths that 

produce the minimum cost. The cost of a path is the cumulative cost necessary to pass 

from one node to another. To use the Dijkstra algorithm, a connection matrix 𝑩 and a 

cost/weight matrix 𝑾 is used. The former matrix defines the connection scheme within 

the grid. Each node is connected to the eight surrounding neighbor nodes, and the 

connection matrix can be defined as 

𝑩(𝑙,𝑚) = 1,    𝑖𝑓 𝑁𝑙 𝑎𝑛𝑑 𝑁𝑚  𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 

𝑩(𝑙,𝑚) = 0,    𝑖𝑓 𝑁𝑙 𝑎𝑛𝑑 𝑁𝑚  𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡. 
(4-37) 

The latter matrix is defining the weight or the cost of passing from one node to 

the other. In the case of present obstacle within the field, a vector of the nodes related 

to the obstacles is provided by the user to denote the border of this restriction. Then, 

during the path search process, the Dijkstra algorithm is adapted so that at each segment 

connecting two of these nodes the weight is set as infinity (∞) to emphasize on the fact 

that these regions are undesirable, hence, the Dijkstra algorithm avoids them. Then, 

employing the rule of eight neighbor nodes, the cost matrix, defined based on the 

objective function, is given as 

𝑾(𝑙,𝑚) = 𝑤(𝑙,𝑚),    𝑖𝑓 𝑩(𝑙, 𝑚) = 1 

𝑾(𝑙,𝑚) = ∞,          𝑖𝑓 𝑩(𝑙,𝑚) = 0, 
(4-38) 

where 𝑤(𝑙, 𝑚) is the objective function evaluated between the node 𝑁𝑙 and 𝑁𝑚.  

However, the fluid properties in each node are depending on the variation of 

both pressure and temperature. This will affect the calculation of the weight between 

two nodes 𝑁𝑘 and 𝑁𝑘+1. Precisely, the weight will be depending on the variation at the 
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level of the initial node. Hence, the problem becomes a varying weight short path search. 

To overcome this issue, the variation of the weights when applying the Dijkstra 

algorithm are taken into account [85]. 

Two type of connections are present, wellhead-manifold and manifold-riser base 

connection. Hence, starting from an inlet node, the Dijkstra algorithm evaluates all the 

candidate nodes and estimates the minimum cumulative cost until reaching the ending 

or the output node. The Dijkstra algorithm has been used only to find the optimal path 

between each of the subsea wells within a cluster and the corresponding manifolds while 

minimizing the pressure differential and costs. However, to be able to fulfill this 

objective, the definition of the manifold’s locations and the pipelines inner diameters is 

required to be fixed in advance. Therefore, an integration of the optimal path search 

algorithm within a gradient-based local solver search routine will help search for the 

optimal locations of manifolds and pipelines sizes, and in the same time guarantees that 

for each of the optimization candidates solutions, the optimal connection scheme is 

determined. Hence, because of this integrated process, optimal manifolds locations as 

well as optimal pipelines sizes are determined along with the optimal connection 

scheme. 

In the other hand, since the convexity of the problem (local or global minimum) 

is unknown, a hybrid process is adopted to ensure that the proposed methods generate a 

solution as close as possible to the global minimum. This hybrid method is based on a 

global search algorithm to find global optima. This is achieved by combining a scatter 

search algorithm to generate trial or candidate starting points to be fed to a gradient-

based local non-linear problem solver [86].  Both the scatter search process as well as 
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the local solver optimization routine including the integration of the Dijkstra Algorithm 

for the optimal path search objective are presented as follows, 

Algorithm 1: Global Scatter Search Algorithm 

Inputs: Initial solution x0, Number of trial points, Solution Boundaries, Optimization Problem, Constraints 

Output: Global Optimal Solution 

Initialization: 

• Read problem parameters;  

• Generate Trial Points population; 

• Initialize Global Solution Vector; 

First Local Solver Run: 

• Run Local Solver for Initial Solution x0; 

Stage 1: Distance and Merit Criterion* 

• Evaluate Objectives and constraints at trial solutions; 

• Compute Penalty functions for trial solutions; 

• Select Best Points from Trial Solutions; 

• Run Local Solver for best point from trail solutions; 

• Set Distance and Merit criterion *; 

Stage 2: Main Iterative Loop 

• Evaluate objective and constraints at trial solutions (except selected before); 

• Check merit and distance criterion; 

• Run Local Solver for trial solution; 

• Update Global Solution Vector; 

Final Stage: Select best solution from Global Solutions Vector; 

 

The distance and merit criterion* are set to ensure the quality of the starting point 

selected from the trial points population.  Precisely, as discussed in [86], the distance’s 

criteria is implemented to guarantee that the proposed starting points are far from any 

previously found local solution.  The main objective of this method is to prevent the 

local solver from starting within the same basin of attraction of any previously 

determined local optimum for more than once. In the other hand, the merit criterion is 

presented to guarantee the quality of the chosen starting points used by the local solver. 

Specifically, it ensures that the starting point have a penalty function value less than the 

penalty function threshold defined by the best candidate point from Stage 1 of 

Algorithm 1 (In this case the penalty function is determined based on the evaluation of 

the objective functions at the specific starting point and adding a weighted function 

expressing the possibility of constraints violation). 
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Algorithm 2: Local Minimum Search Algorithm 

Inputs: Initial solution x0, wells clusters, Solution Boundaries, Optimization Problem, Constraints 

Output: Local Optimal Solution (manifolds positions, pipelines inner diameters, piping path) 

Initialization: 

• Read problem parameters; 

• Initialize Local Solution; 

Optimization Process: 

a) Generate Potential Solution; 

b) Extract Manifolds proposed positions; 

c) Extract Pipelines proposed sizes (Inner diameters); 

d) Objective Function Evaluation 

Total_Objective_fcn=0; 

While (i<= Number of wells clusters) 

Do { 

        Cluster_Objective_fcn=0; 

        For (Wi,j in Cluster i) 

        Do {  

Search for Optimal Path between Wi,j and Mi;          (Dijkstra Algorithm) 

Calculate Objective Function for path between Wi,j and Mi : Objective_fcn(Wi,j, Mi); 

Cluster_Objective_fcn= Cluster_Objective_fcn+ Objective_fcn(Wi,j, Mi); 

               } END DO 

Calculate Objective Function between Mi and Platform Base: Objective_fcn(Mi , Platform base); 

Cluster_Objective_fcn= Cluster_Objective_fcn+ Objective_fcn(Mi , Platform base); 

Total_Objective_fcn = Total_Objective_fcn +Cluster_Objective_fcn; 

} END DO 

e) Evaluate Constraints; 

f) Iterate from a to f until local minimum found that satisfies the constraints; 

Final Stage: Generate Local optimal solution (manifolds positions, pipelines inner diameters, piping path) 

The proposed approach is a model-based methodology where the solution is 

based on several coupled multi-physics sub-models presenting a digital illustration of a 

physical system, a subsea production system. An overall flowchart of the model-based 

design process is presented in Figure 4-6. The proposed flowchart is illustrating the 

coupling between the different sub-models along with their integration as a model-based 

simulator within the optimization process to solve for the optimal subsea field 

architecture design with respect to the pre-discussed constraints. 
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Figure 4-6: Model-Based Design Optimization Process 

 

4.4 Model-Based Subsea Field Architecture Pre-FEED Design  

4.4.1 Optimization Problem Inputs and Assumptions 

 

A case study is provided herein for a subsea field containing 16 wells distributed 

throughout a seabed with the topology given in Figure 4-7.  

 

Figure 4-7: Seabed Topology and Subsea Wells Distribution 
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The information concerning the different wells is summarized in Table 4-2. 

Operating information include well pressure, well temperature, liquid volumetric 

flowrate 𝑄𝐿 and the gas volumetric flowrate 𝑄𝐺 as well as the positions of the different 

wells within the subsea field.  

Table 4-2: Wells Operating Information and Positions 

Well # Pressure 

(Pa) 

Temperature 

(°C) 

QL 

(m3/s) 

QG 

(m3/s) 

x 

(km) 

y 

(km) 

z 

(m) 

1 5965208 39.25 0.01 1.69 3.89 8.75 1141.41 

2 6019608 37.06 0.01 1.63 3.21 7.25 1124.03 

3 5669423 36.38 0.03 3.46 5.56 8.75 1120.30 

4 6048015 33.26 0.03 3.49 4.5 6.32 1094.02 

5 6043809 35.88 0.03 3.12 3.89 2.73 1114.94 

6 5594064 35.37 0.03 3.37 5.56 3.33 1112.65 

7 5952798 39.68 0.02 2.82 9.03 9.75 1101.83 

8 5535527 38.79 0.03 3.41 8 6.67 1114.02 

9 5890193 38.06 0.03 3 11.5 9 1100.30 

10 5732166 37.24 0.02 1.78 11.09 6.25 1100.67 

11 5905293 32.25 0.02 2.01 6.69 2.38 1097.77 

12 5541319 32.78 0.03 3.17 5.83 0.83 1098.54 

13 5899088 34.54 0.03 3.44 9.17 3.75 1113.42 

14 5534838 35.51 0.02 2.23 8.05 2.08 1104.74 

15 5938043 38.36 0.02 1.82 10.55 3.33 1112.04 

16 5785945 35.56 0.02 2.8 9.17 0.83 1085.13 

The presented information above is obtained by performing a simulation using 

PIPESIM Steady-State Multiphase Flow Simulator based on the reservoir properties 

presented in Table 4-3. 

To simplify the overall system, many assumptions have been considered in this 

study. For starter, the subsea field architecture is defined to be constituted of subsea 

wells, cluster manifolds and a riser base. All the locations of the different subsea wells 

as well as the location of the riser base are fixed and fed as input to the overall system. 

In addition, all the connections are considered as rigid pipelines. The optimal pipelines 

connection is going to be determined as the results of the Dijkstra optimization problem 
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and each of the pipeline segments length is depending on the gridding process. In this 

case the subsea field is gridded into 100 meters’ segments. 

Table 4-3: Reservoir and Fluid Data 

Parameter Unit Value 

Downhole Pressure psia 3200 

Productivity Index of the reservoir stb/d/psi 20 

Reservoir Temperature °F 120 

Oil API - 19 

Seabed Temperature °F 40 

Saturation Pressure psia 2800 

Live oil viscosity at downhole P/T cP 14 

Solution GOR scf/stb 340 

Solution GLR scf/stb 650 

Dead Oil viscosity @ 104 °F cP 130 

Sulphur Content % 0.75 

Wax content % 3 

Wax appearance Temperature °F 70 

Pour point °F -20 

Asphaltene content % 2 

 

4.4.2 Optimization Results 

 

In this specific case, the wells grouping is set in prior: four well sets where in 

each one four wells are connected to one cluster manifold (Figure 4-8). An example of 

the optimization process is performed with a weighting factor 𝛼 set equal to 0.5, 

meaning the same importance is assigned to both objective functions (pressure 

differential and cost). Initially, the locations of the manifolds are given as the geometric 

mean of the locations of the associated wells. Optimal locations of the manifolds will 

be determined during the optimization process. 

Given this grouping option, the optimization process is evaluated to determine 

the optimal routing scheme as well as manifolds optimal locations for each well set and 

the size of the pipeline for each connection that minimizes the overall cost and pressure 

differential. This optimization example is performed provided additional pipeline and 
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insulation properties such as thickness and thermal conductivity introduced in Table 

4-4. 

Given this grouping option, the optimization process is evaluated to determine 

the optimal routing scheme as well as manifolds optimal locations for each well set and 

the size of the pipeline for each connection that minimizes the overall cost and pressure 

differential. This optimization example is performed provided additional pipeline and 

insulation properties such as thickness and thermal conductivity introduced in Table 3. 

 

Figure 4-8: Subsea Wells Clustering Process Results 

Table 4-4: Pipeline and Insulation Properties 

Parameter Unit Value 

Pipeline wall thickness m 0.01 

Pipeline wall thermal conductivity W.C-1.m-1 50 

Insulation Layer thickness m 0.01 

Insulation layer thermal conductivity W.C-1.m-1 0.5 

 

Based on the information listed in Table 4-2, Table 4-3 and Table 4-4, the 

identified optimal layout is shown in Figure 4-9.  
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Figure 4-9: Subsea Optimal Layout ({4-4-4-4} Grouping, 𝜶 = 0.5) 

 

The optimization process is a constrained problem. The presented constraints 

are mainly related to the pipeline structural integrity issues. Precisely, the optimization 

process is performed under the following conditions:  

• A maximum mixture velocity is allowed: defined by setting a threshold for 

the erosional velocity within all connections. 

• The corrosion rate along the connections must be less than a maximum 

allowance value (chosen as 3 mm/year). 

• The temperature along the subsea field layout must stay above a wax 

appearance temperature (set as 10 °C). 

The evaluated constraints at all the nodes of the subsea field layout are 

summarized. Presented in Figure 4-10 are the evaluated constraints (erosion and 

corrosion).  
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Figure 4-10: Erosion and Corrosion Constraints Evaluation 

 

As shown, along all the connections, the erosion constraint is satisfied since the 

mixture velocity is always below the erosional velocity threshold. Hence, the aim of 

minimizing the possibility of having erosional issue is achieved. In the other hand, the 

optimal solution of the subsea field architecture presents an overall predicted corrosion 

rate that is below the maximum allowance threshold. 

Knowing this information can also be useful to deploy a tracking system within 

each pipeline connection. This will allow the creation a corrosion and erosion profile 

along the connection which helps detect the corrosion hot spots along the pipelines as 

well as be used as a feedback information to control the inhibitors injection process.    

4.4.3 Insulation Analysis 

 

Another analysis scenario is performed using the proposed subsea field 

configuration. The effect of changing the type of pipeline insulation as well as the layer 

thickness is investigated. Using pipeline insulation is essential specially to reduce the 

risks of having solid precipitation and deposits within the flow lines. Applying the 
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thermal insulation on the outer surface of the pipelines ensures that the temperature of 

crude oil above the critical threshold wax appearance temperature (WAT). A sensitivity 

analysis is performed where several insulation configurations are compared and both 

the total volume as well as the cost of the insulation are determined by optimizing the 

overall subsea system for each case. The different type of insulation materials used 

during this analysis are shown in Table 4-5. In this table, the properties of each type are 

listed, the density of each material, the thermal conduction coefficient as well as the unit 

cost for each type [87].  

Table 4-5: Insulation Layer Properties 

Insulation material 
Density 

(kg/m3) 

Thermal Conductivity 

(W/(C.m)) 

Unit Price 

(USD/kg) 

Syntactic Polypropylene 890 0.16 2.8 

Rubber 1300 0.28 1 

Syntactic Epoxy 850 0.13 4.15 

Polypropylene 900 0.22 1.7 

 

Based on the provided properties, the optimization is performed for each type of 

insulation. For each case, three values for the insulation layer thickness are used: 0.01, 

0.05 and 0.1 m. Both volume and cost of the insulation are determined after the 

optimization. The results are summarized in Figure 4-11 and Figure 4-12. 
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Figure 4-11: Insulation Analysis - Results (Volume and Cost) 

 

 

Figure 4-12: Overall Total Cost - Variation of Insulation Type and Thickness 

 

As shown in Figure 4-11 and Figure 4-12, the impact of changing the insulation 

configuration on the overall cost of the insulation is assessed. Using this automated 

design methodology, an extensive study can be iteratively performed in which different 

scenarios and thermal insulation strategies are tested. Additional investigations can also 

be accomplished by including the search for an optimal insulation layer thickness based 
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on the material properties within the overall architecture optimization process. The 

corresponding results offer a family of optimized solutions that can be evaluated based 

on ease of maintenance, installation and overall cost while addressing flow assurance 

issue that can be present during the life stages of the subsea field.  

4.4.4 Weighting Factor Variation Analysis 

 

Since the study in this work is a multi-objective optimization problem, many 

solutions can be obtained. The resulting number of solutions is contingent upon the 

optimization objective function and its weighting factors. Based on the overall problem 

described in (4-21), the optimized objective functions evaluated with respect to the 

variation of the weighting factor α are presented in Figure 4-13.  

 

Figure 4-13: Weighting Factor Variation - Objective Functions Evaluation 

 

The pressure differential function is decreasing for the range of weighting factor 

𝛼 up to 0.5. However, for 𝛼 greater than 0.5, no major pressure differential variation is 

seen, while the overall cost continuous to increase as 𝛼 increases. Hence, in this case a 

weighting factor that balances production flow and cost produced is 𝛼 = 0.5. However, 
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based on the user interests and the issues studied, different weighting factors can be used 

to give priority to one objective function over the other. This is helpful in the case where 

different financial scenarios are analyzed or that alternative measures are considered for 

dealing with the integrity and productivity issues within the field. In this case, the 

optimization methodology can be extended to incorporate these measures within the 

calculation process to give insights about their performance and efficiency.   

 

4.4.5 Clustering Scenarios Analysis 

 

The grouping of wells is either defined as an input by the user using standard 

types of cluster manifold (number of slots is equal to 4, 6, 8 or 10) or automatically 

determined by the proposed approach based on the result of the optimization presented 

in (4-18). The results of the optimization problem given different grouping scenarios 

are presented in Figure 4-14 to Figure 4-16.  

 

Figure 4-14: Optimal Subsea Layout - Case 1 {4-4-8} 
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Figure 4-15: Optimal Subsea Layout - Case 2 {4-4-4-4} 

 

 
Figure 4-16: Optimal Subsea Layout - Case 3 {8-8} 

 

As shown, three scenarios are evaluated: Case 1 {4-4-8} combination, Case 2 

{4-4-4-4} combination and Case 3 with an {8-8} combination. The case with {8-8} 

grouping is the result of performing the integer optimization described in (4-18). Both 

other cases are user defined grouping configurations. In order to give an idea about the 

evaluated values of both objective functions (overall pressure differential and overall 
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cost) as well as the initial design chosen for each optimization scenario, the results of 

the optimization and the evaluated non-normalized objectives functions are presented. 

For each of the clustering scenarios presented above and considering the same 

importance for both functions (𝛼 = 0.5), the results are summarized in Table 4-6. 

Table 4-6: Grouping Analysis - Non-Normalized Objective Functions 

{4-4-4-4} Case {4-4-8} Case {8-8} Case 

Attribute 
Initial 

Design 

Optimal 

Solution 

Attribut

e 

Initial 

Design 

Optimal 

Solution 

Attribut

e 

Initial 

Design 

Optimal 

Solution 

M
a
n

 

#
1
 

x 4.2944 4.3494 

M
a
n

 

#
1
 

x 7.3611 7.3304 

M
a
n

 

#
1
 

x 7.1375 7.2871 

y 7.7667 7.5995 y 1.9333 1.8663 y 7.8667 2.4405 

z 1125.2834 1122.0794 z 1104.1334 1103.4540 z 1118.2438 1104.6393 

M
a
n

 

#
2
 

x 9.9806 9.9460 
M

a
n

 

#
2
 

x 9.9806 9.9640 

M
a
n

 

#
2
 

x 7.3639 6.7688 

y 7.9667 7.8957 y 7.9667 7.9280 y 2.4104 7.3162 

z 1100.9774 1101.0265 z 1100.9774 1100.9998 z 1105.2019 1107.7621 

M
a
n

 

#
3
 

x 9.2361 9.1528 

M
a
n

 

#
3
 

x 5.8306 5.9307 

C
o

n
n

e
c
ti

o
n

s 
In

n
e
r
 D

ia
m

e
te

r
s 

(m
) 

1 0.381 0.4064 

y 2.5 2.5368 y 5.3271 5.3770 2 0.381 0.4064 

z 1108.34 1109.0605 z 1095.1514 1096.3910 3 0.381 0.4064 

M
a
n

 

#
4
 

x 5.4917 5.4257 

C
o

n
n

e
c
ti

o
n

s 
In

n
e
r
 D

ia
m

e
te

r
s 

(m
) 

1 0.381 0.4064 4 0.381 0.4064 

y 2.3208 2.3877 2 0.381 0.4064 5 0.381 0.4064 

z 1107.0813 1107.7728 3 0.381 0.4064 6 0.381 0.4064 

C
o

n
n

e
c
ti

o
n

s 
In

n
e
r
 D

ia
m

e
te

r
s 

(m
) 

1 0.381 0.4064 4 0.381 0.508 7 0.381 0.4064 
2 0.381 0.3048 5 0.381 0.256 8 0.381 0.508 
3 0.381 0.3048 6 0.381 0.4064 9 0.381 0.3048 
4 0.381 0.4064 7 0.381 0.4064 10 0.381 0.4064 
5 0.381 0.256 8 0.381 0.4064 11 0.381 0.4064 
6 0.381 0.4064 9 0.381 0.4064 12 0.381 0.4064 
7 0.381 0.4064 10 0.381 0.256 13 0.381 0.508 
8 0.381 0.4064 11 0.381 0.4064 14 0.381 0.4064 
9 0.381 0.4064 12 0.381 0.4064 15 0.381 0.4064 
10 0.381 0.256 13 0.381 0.4064 16 0.381 0.4064 
11 0.381 0.4064 14 0.381 0.508 17 0.381 0.4064 
12 0.381 0.4064 15 0.381 0.4064 18 0.381 0.3048 
13 0.381 0.4064 16 0.381 0.4064 

 

14 0.381 0.508 17 0.381 0.4064 
15 0.381 0.256 18 0.381 0.508 
16 0.381 0.4064 19 0.381 0.256 
17 0.381 0.4064 

 

18 0.381 0.3048 
19 0.381 0.508 
20 0.381 0.256 

Pressure Differential 

(Pa) 
1.568.E+7 

Pressure Differential 

(Pa) 
1.70E+07 

Pressure Differential 

(Pa) 
1.26E+07 

Overall Cost (USD) 2.29E+07 Overall Cost (USD) 2.58E+07 Overall Cost (USD) 1.93E+07 

Total Objective 

Function 
1.93E+07 

Total Objective 

Function 
2.14E+07 

Total Objective 

Function 
1.59E+07 

 

This kind of analysis identifies the possibility to evaluate different grouping 

scenarios. Hence, the feasibility is evaluated as well as the effectiveness of each scenario 
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based on the desired clustering protocols, and the types of available manifolds. This is 

beneficial especially if certain number of constraints are present which limit the options 

during the design process. 

As shown in Table 4-6, having different grouping scenarios can largely affect 

the evaluation of both objective functions. For example, a grouping case of {8-8} 

presents less costs and pressure differential values compared to the others. This is 

illustrated mainly by the fact that the number of piping connections and cluster 

manifolds in this case is reduced. However, this comes at expense the fact that the larger 

the size of a cluster manifold, the harder its installation can be. In addition, several issues 

can occur, especially if this manifold is being used for gas injection into wells or is 

hosting a pigging device.       

4.5 Conclusion 

 

An integrated model-based method is developed using a digital subsea system 

representation for the design and the optimization of a subsea field architecture. The 

main objective is to present a reliable and engineering efficient methodology that can 

be used by experts during the design phase of subsea fields. This methodology is 

engineering efficient in terms of having an automated process that can offer a wide range 

of results and present an environment that can automatically simulate, test and analyze 

different types of design scenarios subject to diverse optimization objectives. 

The integrated model-based methodology is developed by coupling different 

reduced-order, physics-based models. Precisely, several models are deployed, namely, 

a multiphase flow model coupled with a thermal model to capture the hydraulic and 
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thermal behavior of a steady state multiphase flow within pipelines network. Both 

hydraulic and thermal models are coupled via a properties adaptive block, assuring an 

estimation of the hydraulic and thermal properties of the fluid as a function of the 

operating conditions (temperature and pressure). Different constraints are introduced to 

cope with flow assurance challenges. The overall network is designed and optimized by 

considering erosion, corrosion, and wax appearance limitations. Being a system-based 

environment, the developed platform offers the possibility to include extra constraints 

depending on the studied problem as well as the user preferences.  

Using the derived models and constraints, the optimization process is defined as a 

multi-objective optimization problem where both pressure differential and cost are 

desired to be as minimal. This is illustrated by the search for the optimal design fulfilling 

these requirements, meaning the optimal pipelines routing scheme, pipelines sizes as 

well as the manifolds placement. This is achieved via an integrated optimization process 

where the Dijkstra algorithm is coupled with a multi-start algorithm for global 

optimization. 

Several sensitivity analyses are performed in this development. They include the 

effect of wells grouping in the case of a large subsea field as well as the effect of 

different weighting scenarios within the multi-objective optimization problem. This is 

introduced to illustrate the capabilities of the developed platform and to demonstrate its 

potential as a solution that can be extended to cover additional aspects that can be faced 

during the design, optimization and the development of a subsea field.  
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5 CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

 

Proposed in this dissertation is a model-based optimization methodology for 

subsea field pre-FEED studies. The presented approach is introduced as a modular 

process where multi-physics sub-models have been developed and integrated to 

determine an optimal design of subsea field connecting scheme under production and 

flow assurance constraints. The main advantage of the presented methodology is the 

deployment of reduced-order and data-driven models allowing quasi-instantaneous 

results applicable for tasks where cheap computational efforts are required, such us 

systems design and optimization, real-time health monitoring and condition-based 

maintenance of subsea equipment.  

As mentioned, pipelines are considered as the main element constituting a subsea 

system. Hence, understanding the dynamics of multiphase flow within pipelines with 

reduced computational time yet good accuracy is crucial within the subsea industry 

compartments. In chapter 2, a low-dimensional multiphase flow model in horizontal 

pipelines has been experimentally evaluated. The transient response of the low-D model 

for the case of air-water two-phase flow mixtures has been compared against 

experimental dataset, collected from the National University of Singapore Multiphase 

Flow Loop for different GVF levels and flow regimes that can be encountered in the oil 

and gas production.  

The studied reduced-order two-phase flow model is developed following three 

major steps. A mechanistic steady-state multiphase flow model is used as a first step to 

determine the fluid steady-state flowing conditions such as flow pattern, liquid holdup 
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and pressure drop. Then, these estimations are used to approximate equivalent fluid 

properties to present the two-phase flow as one single-phase equivalent fluid. These 

equivalent properties are fed to a modal approximation of the dissipative distributed-

parameter model.  

To give more insights about the performance of the low-D multiphase flow 

analytical model, a comparison with results from OLGA Dynamic Multiphase Flow 

Simulator, a widely used simulation package in the industry, has been introduced. The 

Low-D model pressure predictions and the OLGA simulations were compared to the 

measured transient pressure for different GVF levels. As detailed in chapter 2, both 

models have showed good prediction agreement with the experimental data with less 

than 5% mean absolute percent error. However, an accuracy-simulation time tradeoff is 

suggested depending on the required accuracy and available computational power. 

Precisely, the effect of the number of modes on the low-D model has been analyzed. As 

shown in chapter 2, increasing the model order (number of modes) results in an 

improved accuracy however will require a longer computation time.  

In the other hand, the analysis of the single-phase flow experimental dataset 

established the existence of entrained or entrapped air in the system due to the action of 

the water pump. It has been shown that the presence of entrained air in the pipeline 

results in a significantly lower speed of sound of the fluid leading to a considerable 

increase in the pipeline damping and a decrease in the natural frequency. 

In chapter 3, one of the main issues in the oil and gas industry has been studied. 

Precisely, a new “Parameter Varying” (PV) carbon dioxide corrosion rate model in oil 

and gas pipeline has been developed. To develop this model, a comparison of some of 
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the existing CO2 corrosion prediction models highlighting the differences between their 

structures as well as the required inputs required has been conducted allowing a good 

benchmarking to assess the most appropriate model to be used as a foundation in 

developing the newly data-driven model for CO2 corrosion prediction. 

 The proposed CO2 corrosion rate model is based on newly introduced parameter 

varying coefficients where the fluid factors influencing corrosion rates are nonlinear 

correlation between the pH and the flow velocity. These introduced coefficients were 

not derived from physics, instead the results of a data driven approach based on a system 

identification methodology. A key aspect is its modularity that lends itself to isolated 

corrections derived from additional experimental and scientific studies.  The proposed 

parameter varying CO2 corrosion rate model is based on (3-8) developed in [52].  The 

parameter varying coefficients were identified by determining the functional 

relationship between flow parameters of velocity and pH to the residual generated 

between experimental data and (3-8). Significant improvements in CO2 corrosion rate 

modelling were achieved.  The resulting model produced an R-Squared value of 0.9 in 

comparison to 0.54 associated with (3-8).  The maximum residual of the proposed model 

is 12 mm/year based on the validation dataset whereas the model in (3-8) is 24 mm/year. 

In chapter 4, An integrated model-based method has been developed using a digital 

subsea system representation for the design and the optimization of a subsea field 

architecture. The main objective is to present a reliable and engineering efficient 

methodology that can be used by experts during the design phase of subsea fields. This 

methodology is engineering efficient in terms of having an automated process that can 

offer a wide range of results and present an environment that can automatically simulate, 
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test, and analyze different types of design scenarios subject to diverse optimization 

objectives. 

The integrated model-based methodology is developed by incorporating the 

multiphase flow modeling approach presented in chapter 2 and the newly developed 

data-driven CO2 corrosion rate model developed in chapter 3 as well as several other 

reduced-order, physics-based models describing different aspects of a subsea 

production system. Precisely, the multiphase flow model described in chapter 2 has been 

coupled with a thermal model to capture the hydraulic and thermal behavior of a steady 

state multiphase flow within pipelines network. To highlight the interdependence of  

both hydraulic and thermal behavior of a mixture flowing within a pipeline and their 

effect on the fluid properties, both these models have been coupled via a properties 

adaptive block, assuring an estimation of the hydraulic and thermal properties of the 

fluid as a function of the operating conditions (temperature and pressure). In addition to 

carbon dioxide corrosion, different constraints are introduced to cope with flow 

assurance challenges. The overall subsea field network is designed and optimized by 

considering erosion, corrosion, and wax appearance limitations as well as seabed 

topology and elevation variations.  

Integrating the derived models and constraints, the optimization process is defined 

as a multi-objective optimization problem where both pressure differential and cost are 

desired to be as minimal. The main objective is then defined by finding the optimal 

design fulfilling all the listed requirements, meaning the optimal pipelines routing 

scheme, pipelines sizes as well as the manifolds placement. This is achieved by 
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incorporating the Dijkstra algorithm within a multi-start algorithm routine for global 

optimization. 

To illustrate the capabilities of the proposed methodology, several sensitivity 

analyses are performed, including wells grouping scenarios in the case of a large subsea 

field and their effect on the overall optimization results as well as the effect of different 

weighting scenarios within the multi-objective optimization problem. In addition, the 

effect of varying the pipeline insulation properties for different configuration has been 

investigated to demonstrate the potential to use the proposed approach as a fast testing 

platform for thermal and insulation analysis.   

Overall, the proposed model-based optimization approach can be deployed as a fast 

testing environment offering the ability for the subsea engineer during the pre-FEED 

study phase to test, analyze and investigate a variety of connecting scenarios or having 

a fast optimal layout scheme guess that can be the basis for more elaborated and well 

detailed studies. In addition, with the modularity characteristic that it offers, this 

approach is giving the user a lot of flexibility to integrate different models as seen 

appropriate depending on the task requirements and necessities. 

5.2 Future Work 

 

Considering the modularity of the presented optimization approach, different sub-

models can be added or changed depending of the user preferences. In other terms, 

extensive studies can be performed to incorporate additional modules describing other 

aspects and phenomena that can interfere with the subsea field layout determination. 

Precisely, the presented methodology is based on the integration of reduced-order 
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physics-based models, this characteristics enable the amelioration of the overall system 

accuracy and computation time based on the evaluation and the recalibration of the 

existing sub-models based on experimental investigation as well as in field collected 

data. Such capacity offers the users the ability to broaden the range of the applicability 

of the presented approach to cover almost every aspect or issue that can occur during 

the overall life cycle of the subsea production system.  

As a feasible future step, more investigation can be performed to ameliorate the 

presented CO2 corrosion rate prediction model aiming at evaluating the effect of the 

fluid properties, pressure, and temperature variations on the model’s accuracy under a 

wide range of operating conditions. This will be ensured by including more complex 

phenomena encountered in practical applications, such as the effect of the pipe steel 

composition and texture, effect of inhibitors, and modelling of localized attacks namely 

pitting corrosion. Since the development of such an adaptive model has been 

constructed using data analytics, such amelioration will enable the descriptive, 

predictive, diagnostic, and prescriptive analytics (digital twin) that provides value-add 

to the oil and gas industry.  

Such study can also be extended to enhance the accuracy of the proposed 

multiphase flow model presented in chapter 2. Precisely, the collection of additional   

that covers more flow patterns and fluid properties as well as the variation of the 

geometry configuration can be helpful to highlight other issue existing in a subsea 

production system and can be interfering in the next steps of the development of a 

subsea field such us slugging. Hence, the addition of a slug-tracking module is also 

suggested for the Low-D model to simulate the hydrodynamic slugging conditions and 
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exploit such information during the design phase to ameliorate the output result of the 

optimization process. 

In the other hand, by taking into account the level of accuracy and the advantage 

of computational requirements regarding the OLGA dynamic multiphase flow 

simulator, the application of the multiphase flow model presented in chapter 2 can be 

extended to perform extra real-time tasks varying from production monitoring, pressure 

and flow rate forecasting along pipelines, instantaneous flow pattern tracking as well as 

coupling with flow assurance models for pipelines integrity management analysis. 

However, the main extension that can be incorporated within this work as a future 

amelioration is having a platform that enables the simulation of the whole subsea system 

from the reservoir to the terminals, which represents a big asset for the oil and gas 

industry. In this matter, the proposed methodology can provide the needed information. 

In addition, more elaborated analysis can be provided to cover more aspects related to 

the subsea system simulations namely the sea state uncertainties such as environment 

temperature, overburden pressure, and delivery flow. However, this can be enhanced by 

including a drilling simulation and optimization module. This will be the 

complementary of the present work, allowing to cover all the subsea system departments 

(upstream, midstream, and downstream).  
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