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Abstract

In this dissertation we improve Min Ru’s defect relation (as well as the Second

Main Theorem) for holomorphic curves f : C → X intersecting D := D1 + · · · +

Dq, where D is a divisor of equi-degree, and D1, . . . , Dq are big, nef, and have no

components in common. Our results will decrease the number of divisors Di that

f is needed to omit in order to conclude that f is degenerate. The corresponding

arithmetic results are also obtained.

v



Contents

Abstract v

1 Introduction 1

2 Divisors, Line Bundles, and Positivity 6

2.1 Sheaves and Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Effective Cartier Divisors . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Line Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Big and Nef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Ampleness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Nevanlinna Theory 26

3.1 Jensen Formula and First Main Theorem . . . . . . . . . . . . . . . . 26

3.2 Second Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Generalizing the First Main Theorem . . . . . . . . . . . . . . . . . . 33

3.4 Generalizing the Second Main Theorem . . . . . . . . . . . . . . . . . 37

4 Main Results 51

4.1 Statement of the Main Results . . . . . . . . . . . . . . . . . . . . . . 51

vi



4.2 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 67

vii



Chapter 1

Introduction

When one first begins to study complex analysis, one quickly learns that holomorphic

functions have a high degree of regularity. For example, if f is holomorphic at x ∈ C,

then f has a power series in some neighborhood of x, i.e. f(z) =
∑∞

n=0 cn(z − x)n in

some neighborhood of x. Another form of regularity is that a holomorphic function of

the form f = u+ iv must also have that the u and v be harmonic. Perhaps one of the

more surprising results is the Little Picard Theorem. The theorem is the following.

Theorem 1.1 (Little Picard Theorem [GK06], page 322). Let f be an entire function,

and suppose that the image of f omits two distinct complex values. Then f must be

identically constant.

There are many proofs of this theorem. One proof uses the universal cover, D,

of C with two points removed. A geometric proof, which can be seen as the root of

Nevanlinna theory, can be found in [Kra04], page 78. This proof constructs a metric

of negative curvature on C with two points removed, and then applies the Ahlfors-

Schwarz lemma to conclude the function must be constant. This theorem tells us
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CHAPTER 1. INTRODUCTION

that holomorphic functions have a high degree of rigidity, and that a holomorphic

function is very different from a real-valued smooth function as there are many real-

valued smooth functions that omit two distinct values which are not constants, even

degree polynomials, sin(x), and cos(x) to name a few.

The results of this dissertation will give us a generalization of the Little Picard

Theorem. Note that the function in the theorem was entire. This result was extended

to the case when f is meromorphic, i.e. f : C→ C∪{∞} = P1. The conclusion then

is that f can omit at most two points in C ∪ {∞} = P1. Over the past near century

the question of how much this theorem can be generalized has been a very interesting

one. One might ask the question “What if f is a holomorphic map from C into P2,

then what must f omit in order to deduce that it is a constant function?” What if

the target space were a general projective variety? That is the case this dissertation

is concerned with. In this dissertation we will prove an improved defect relation for

holomorphic curves f : C → X where X is a complex projective variety. In our set-

ting, divisors will take the place of the points from the Little Picard Theorem. Thus

we need to study the properties of the divisors required for f to omit. Also, since our

results will apply to a complex projective variety of arbitrary dimension, we will not

be concluding directly the function f is constant, but that f is degenerate.

In order to obtain our result we employ the use of Nevanlinna theory. Nevanlinna

theory deals with the asymptotic behavior of meromorphic funtions by defining a

growth function and relating it to the proximity function, both entirely constructs

of Nevanlinna theory. After one accepts the first results of Nevanlinna theory, the

Little Picard Theorem above is obtained as an immediate corollary. Moreover, the

definitions of the growth and proximity functions are easily modified to more general

settings, allowing us to work with more complicated manifolds, rather than just P1.
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CHAPTER 1. INTRODUCTION

Using Nevanlinna theory, generalized to the target space of a complex projective va-

riety, Min Ru obtained a defect relation for holomorphic curves intersecting general

divisors (see [Ru15]). In this dissertation we use his methods, as well as some addi-

tions, to obtain an improved defect relation when the divisors are big, nef, and have

no common components.

We will begin this dissertation with an introduction to some basic concepts in

algebraic geometry, namely sheaves, line bundles, divisors, and cohomology. We

will then recap some important notions of positivity of line bundles and divisors

paramount to understanding our main theorem. These topics will include ampleness,

bigness, and nefness.

In chapter 3 we will give a recap of the development of Nevanlinna theory that

has occurred over the past century. We will begin by discussing the original notions

of Nevanlinna theory as it applies to a holomorphic map f : C→ C ∪ {∞}. We will

then cover the generalization of this theory developed by Cartan when f : C → Pn.

After that, we will recap the recent results of Min Ru for the case when f : C→ X,

where X is a complex projective variety, that will allow us to obtain our result. In

this setting Ru made the following definition.

Definition 1.0.1 ([Ru15]). Let X be a normal complex projective variety, and D be

an effective Cartier divisor on X. The Nevanlinna constant of D, denoted by Nev(D),

is given by

Nev(D) := inf
N

(
inf

{µN ,VN}

dimVN
µN

)
, (1.1)

where the infimum “inf
N

” is taken over all positive integers N , and the infimum

“ inf
{µN ,VN}

” is taken over all pairs {µN , VN}, where µN is a positive real number,

and VN ⊂ H0(X,O(ND)) is a linear subspace with dimVN ≥ 2 such that, for all

3



CHAPTER 1. INTRODUCTION

P ∈ suppD, there exists a basis B of VN with

∑
s∈B

ordE(s) ≥ µN ordE(ND)

for all irreducible components E of D passing through P . If dimH0(X,O(ND)) ≤ 1

for all positive integers N , then we define Nev(D) = +∞.

In general, Nev(D) proves difficult to compute. However, a theorem from [Ru15] tells

us that if Nev(D) < 1, then any holomorphic map f : C→ X\D must be degenerate.

Chapter 4 will contain the main results of this dissertation. Our main theorem

will be the following.

Main Theorem. Let X be a complex normal projective variety of dimension n ≥ 2.

Let D1, . . . , Dq be effective, big and nef Cartier divisors on X, and that the linear

system |NDi| (i = 1, . . . , q) is base-point free for N ≥ N0. We further assume

that D1, . . . , Dq have no irreducible components in common, and are in l-subgeneral

position. Let ri > 0 be real numbers such that D :=
∑q

i=1 riDi is equidegree. Let

f : C→ X be holomorphic and Zariski dense. Then

q∑
j=1

rjmf (r,Dj) ≤
(

2n[(l + 1)/2]

q(1 + α)

)( q∑
j=1

rjTf,Dj(r)

)
‖E

with

α =
2−3n−2 min1≤i,j≤q(r

n−2
i r2

j (D
n−2
i .D2

j )) min1≤i,j≤q(r
n−1
i rj(D

n−1
i .Dj))

(nDn)2
> 0,

where [x] denotes the smallest integer greater than x.

The coefficient on the right hand side of the inequality, 2n[(l + 1)/2]/q(1 + α),

4



CHAPTER 1. INTRODUCTION

will give us our generalization of Theorem 1.1, and tell us that if q > 2n[(l + 1)/2],

then any holomorphic map f : C→ X\D must be degenerate.

There is a conjecture that gives criteria in terms of the geometric properties of a

projective variety X, and a divisor D, for when a holomorphic map f : C→ X\D is

degenerate. The conjecture is the following.

Conjecture 1.2 (Griffiths Conjecture). Let X be a projective variety. If KX is the

canonical divisor of X, D is a normal crossing effective divisor, and KX+D is ample,

then any holomorphic map f : C→ X\D must be degenerate.

For example, if X = P1, and a is a point in P1, then KX = −2{a}, and we

immediately obtain the result that if f omits 3 points in P1, then it must be constant.

The key difference between this conjecture and our result, is that our result mostly

focuses on the geometry of the divisor D, and largely ignores the geometry of X. Note

that the geometry of X only shows up in the quantity 2n[(l + 1)/2]/q(1 + α) with

the dimension n. Whereas the geometry of X is critical in the Griffiths Conjecture

with the inclusion of the canonical divisor.

As mentioned above, the main results of this dissertation will apply to a complex

projective variety of arbitrary dimension n. The dimension n = 2 results are contained

in [Liao], and the results of this dissertation are contained in [MR17].

5



Chapter 2

Divisors, Line Bundles, and

Positivity

We will use this chapter as a brief recap of sheaves, divisors, line bundles, and the

necessary theorems we will need to prove our result. A more in depth exposition on

these subjects can be found in [GH78] and [Laz04].

2.1 Sheaves and Cohomology

Definition 2.1.1 ([GH78], page 35). Let X be a topological space. A sheaf F on

X associates to each open set U , an abelian group F (U), called the sections of F

over U ⊂ X, and a map (called the restriction map) rV,U : F (V ) → F (U) for any

open sets U ⊂ V , satisfying

i. For any open sets U ⊂ V ⊂ W ,

rV,U ◦ rW,V = rW,U .

6



2.1 SHEAVES AND COHOMOLOGY

We will write σ|U for rV,U(σ).

ii. For any pair of open sets U, V ⊂ X and sections σ ∈ F (U), τ ∈ F (V ) such

that

σ|U∩V = τ |U∩V ,

there exists a section ρ ∈ F (U ∪ V ) with

ρ|U = σ, ρ|V = τ.

iii. If σ ∈ F (U ∪ V ) and

σ|U = σ|V = 0,

then σ = 0.

If the topological space X is a complex manifold (or a complex projective variety),

and U ⊂ X is an open set, then we have a few key examples of sheaves which we will

use throughout this dissertation.

i. The sheaf O of holomorphic functions where

O(U) = {holomorphic functions on U};

ii. The multiplicative sheaf O∗ of nowhere zero holomorphic functions where

O∗(U) = {holomorphic functions f on U where f(p) 6= 0 for any p ∈ U};

7



2.1 SHEAVES AND COHOMOLOGY

iii. The multiplicative sheaf M∗ where

M∗(U) = {meromorphic functions f on U such that f 6≡ 0}.

We also have maps between sheaves defined via group homomorphisms as follows.

Definition 2.1.2 ([GH78], page 36). Let E and F be two sheaves on X. A sheaf

map, or sheaf morphism, f : E → F is a collection of group homomorphisms

{fU : E (U)→ F (U)},

such that for open sets U ⊂ V and σ ∈ E (V ), we have

fV (σ)|U = fU(σ|U).

Then the kernel sheaf and image sheaf of a map between sheaves are also well defined

as

ker(f)(U) = {ker(fU : E (U)→ F (U))},

and

Im(f)(U) = {s ∈ F (U) | ∀p ∈ U,∃V ⊂ U with p ∈ V s.t. s|V ∈ Im(fV )}.

Before we continue towards defining the cohomology of sheaves, observe the following

8



2.1 SHEAVES AND COHOMOLOGY

diagram

0→ E
α→ F

β→ G→0,

where E , F , and G are sheaves, and α, β are sheaf maps. We say that this is a short

exact sequence if ker(α) = {0}, Im(β) = G , and Im(α) = ker(β). These special maps

and sheaves will be a useful tool in analyzing the cohomology soon to be defined.

Example 2.1. Let X be a complex manifold. Then the sequence

0→ Z i→ O exp→ O∗→0,

where i denotes inclusion, and exp(f) = e2π
√
−1f for f ∈ O(U), is a short exact

sequence.

Given a sheaf F on X, let us define a cochain group as follows,

Definition 2.1.3. Let U = {Uα} be an open covering of X. Define the k-th cochain

group, Ck(U,F ), by

Ck(U,F ) :=
∏

α0,...,αk

F (Uα0 ∩ · · · ∩ Uαk).

An element σ ∈ Ck(U,F ) consists then of a section σα0,...,αk ∈ F (Uα0 ∩ · · · ∩ Uαk).

Furthermore, we can define a map δ : Ck(U,F )→ Ck+1(U,F ), called the coboundary

map, as in [GH78], page 38, by

(δσ)α0,...,αk+1
=

k+1∑
j=0

(−1)jσα0,...,α̂j ,...,αk+1
|Uα0∩···∩Uαk+1

.

9



2.1 SHEAVES AND COHOMOLOGY

Example 2.2. Let U = {U1, U2, U3} be an open covering of a topological space X.

Then we have that for a cochain element σ ∈ C0(U,F ),

(δσ)ij = (σj − σi)|Ui∩Uj ∈ F (Ui ∩ Uj),

and if σ ∈ C1(U,F ),

(δσ)ijk = σij + σjk − σik ∈ F (Ui ∩ Uj ∩ Uk).

A cochain σ is called a cocycle if δσ = 0, and a coboundary if there exists a τ such

that δτ = σ. The coboundary map can be seen as analogous to the differential map

on sheaves by noting the following lemma.

Lemma 2.3. A coboundary is a cocycle. That is, δ ◦ δ = 0.

Proof. For the sake of the reader, we will only proof this for the case of example 2.2.

The essence of the proof is the same for the general case, but the notation becomes

a burden. In the setting of example 2.2, we have

((δ ◦ δ)σ)123 = (δσ)23 − (δσ)13 + (δσ)12

= (σ3 − σ2)− (σ3 − σ1) + (σ2 − σ1)

= 0 ∈ F (U1 ∩ U2 ∩ U3).

We omit the restriction notation here as we will in the future.

We can now define the cohomology of a sheaf with respect to a cover U .

10



2.1 SHEAVES AND COHOMOLOGY

Definition 2.1.4 ([GH78], page 39). Define the k-th cohomology group Hk(U,F ) by

Hk(U,F ) :=
ker(δk)

Im(δk−1)
.

Note that this definition depends on the open covering U . We can however rectify

this by passing to the direct limit and defining the k-th Čech cohomology group as

Hk(X,F ) = lim
→
Hk(U,F ).

We can even further simplify this by imposing a condition on U .

Theorem 2.4 (Leray’s Theorem [GH78], page 40). Let F be a sheaf on X, and

suppose U is an open cover of X such that Hp(Ui1 ∩ · · · ∩Uip ,F ) = 0 for all integers

p > 0, and all finite intersections Ui1 ∩ · · · ∩ Uip, then for all integers k > 0,

Hk(U,F ) ∼= Hk(X,F ).

What this means is that in practice, we can choose a fine enough cover U , and work

with Hk(U,F ) instead of having to worry about the direct limit.

Let Ai be groups. We say that a sequence of homomorphisms

· · · → An−1
αn−1→ An

αn→ An+1→ . . .

is a long exact sequence if Im(αn−1) = ker(αn) for each n. As with other cohomology

theories, we can associate a short exact sequence of sheaves to a long exact sequence of

11



2.1 SHEAVES AND COHOMOLOGY

cohomology in the following way: Suppose we have a short exact sequence of sheaves

0→ E
α→ F

β→ G→0.

Then α and β induce maps

α : Ck(U,E )→ Ck(U,F ),

and

β : Ck(U,F )→ Ck(U,G ).

Furthermore, α and β commute with δ, thus they send a cocycle to a cocycle, and a

coboundary to a coboundary. Thus they also induce maps for cohomology

α∗ : Hk(X,E )→ Hk(X,F ),

and

β∗ : Hk(X,F )→ Hk(X,G ).

The only thing left to define is the coboundary map

δ∗ : Hk(X,G )→ Hk+1(X,E ).

For σ ∈ Ck(U,G ) sastisfying δσ = 0, we can refine U such that there exists τ ∈

Ck(U,F ) satisfying β(τ) = σ, since β is surjective. Then β(δτ) = δ(β(τ)) = δσ = 0,

12



2.2 EFFECTIVE CARTIER DIVISORS

thus after refining further, there exists µ ∈ Ck(U,E ) satisfying α(µ) = δτ . Now since

α(δµ) = δ(α(µ)) = δδ(τ) = 0 and α is injective, µ is a cocycle and µ ∈ ker(δ). Then

we can define δ∗σ := [µ] ∈ Hk+1(X,E ). We then have the following theorem.

Theorem 2.5 ([GH78], page 40). Given a short exact sequence of sheaves E , F , and

G

0→ E → F→G→0,

the associated long sequence of cohomology

0 → H0(X,E )→ H0(X,F )→ H0(X,G )

→ H1(X,E )→ H1(X,F )→ H1(X,G )→ . . .

...

→ Hp(X,E )→ Hp(X,F )→ Hp(X,G )→ . . .

is exact.

2.2 Effective Cartier Divisors

A complex projective (algebraic) variety X ⊂ PN is the locus in PN of a finite collection

of homogeneous polynomials {Fα(X0, . . . , XN)} ([GH78], page 166). In this setting,

we have the following definition of Cartier divisors.

Definition 2.2.1 ([Laz04], page 8). Let X be a projective variety. A Cartier divisor

on X is a global section of the quotient sheaf M∗/O∗. We denote by Div(X) the set

13



2.2 EFFECTIVE CARTIER DIVISORS

of all such sections, so that

Div(X) = H0(X,M∗/O∗).

However, this definition is fairly abstract and not very illustrative. Specifically,

given a divisor D ∈ Div(X), it is represented by a collection of pairs {(Ui, fi)}, where

{Ui} is an open covering of X, and fi ∈ M∗(Ui) with fi/fj ∈ O∗(Ui ∩ Uj). We will

call the function fi the “local defining function” for D on Ui. We define the support

of a divisor D, denoted supp(D) ⊂ X, by

supp(D) ∩ Ui = {x ∈ Ui | fi(x) = 0}.

Definition 2.2.2. Let D = {(Ui, fi)}. We say that D is effective, denoted D ≥ 0, if

each of its local defining functions fi is holomorphic on Ui.

Div(X) in fact forms a group with respect to the following addition operation:

given two divisorsD1, D2 ∈ Div(X), which are represented by {(U1i, f1i)} and {(U2i, f2i)}

respectively, the new divisor D1 +D2 is given by the collection {(Ui, f1if2i)}.

There will also be mention of Weil divisors.

Definition 2.2.3. A Weil divisor is a formal sum of codimension one irreducible

subvarieties of X. That is, a Weil divisor is of the form

∑
V⊂X

nV [V ],

where V is a codimension one, irreducible subvariety of X, and nV are integers with

all but finitely many equal to zero. We say that a Weil divisor is effective if all of the

14



2.3 LINE BUNDLES

nV are non-negative.

Note that we can associate a Weil divisor to any Cartier divisor in the following

way: Let D be a Cartier divisor, then define the associated Weil divisor as

∑
V⊂X

ordV (D)[V ].

It is then clear that our notions of effectiveness for Cartier divisors and Weil divisors

coincide in this case. In the case that X is smooth, one can also construct a Cartier

divisor from a Weil divisor. We can also define a Weil divisor to a meromorphic

function as follows,

(f) =
∑
V⊂X

ordV (f)[V ].

Definition 2.2.4. We say that two divisorsD1 andD2 are linearly equivalent, denoted

by D1 ∼ D2, if D1 −D2 = (f) for some (global) meromorphic function f on X.

2.3 Line Bundles

Let M be a compact complex manifold. It is known, from the maximum principle,

that there are no non-constant holomorphic functions on M . So, instead, we study

(holomorphic) sections of holomorphic line bundles. We have the following definition

of holomorphic line bundles.

Definition 2.3.1 ([GH78], page 132-133). Let M be a compact complex manifold.

A holomorphic line bundle on M is a complex manifold L together with a surjective

holomorphic map π : L→M such that there exists an open covering {Uα} of M and

15



2.3 LINE BUNDLES

fiber-preserving biholomorphic maps (i.e. π(φ−1
α (x, a)) = x for all x ∈ Uα and a ∈ C)

φα : π−1(Uα)→ Uα × C,

such that

φα ◦ φ−1
β : (Uα ∩ Uβ)× C→ (Uα ∩ Uβ)× C

is a non-zero linear map on each {x} ×C. The map φα is called a trivialization of L

over Uα.

We define the transition functions gαβ : Uα ∩ Uβ → C∗ by

x 7→ (φα ◦ φ−1
β )|{x}×C ∈ GL(1,C) = C∗,

where the GL(n,C) is the complex general linear group of degree n (i.e. the set of

n×n invertible complex matrices). The maps gαβ are then holomorphic and nowhere

vanishing, i.e. gαβ ∈ O∗(Uα ∩Uβ), and will necessarily satisfy the following identities

gαβ(x)gβα(x) = 1 for all x ∈ Uα ∩ Uβ

gαβ(x)gβγ(x)gγα(x) = 1 for all x ∈ Uα ∩ Uβ ∩ Uγ.

On the other hand, given an open cover U = {Uα} of M , and holomorphic functions

gαβ ∈ O∗(Uα ∩ Uβ) satisfying these identities, we can construct a line bundle L with

transition functions gαβ by taking the union of Uα × C over all α and identifying

{x} ×C in Uα ×C and Uβ ×C via multiplication by gαβ(x). Thus we may also refer

to a line bundle as a collection {Uα, gαβ}.

Definition 2.3.2. Let π : L→M be a holomorphic line bundle over M . A holomor-

16



2.3 LINE BUNDLES

phic section (resp. meromorphic section) s of L is a holomorphic (meromorphic) map

s : M → L such that π ◦ s = s ◦ π = id. Let H0(M,L) be the set of all holomorphic

sections of L.

Alternatively, let L be a holomorphic line bundle with transition functions {gαβ},

and let eα(x) = φ−1
α (x, 1) for x ∈ Uα, where φα is the local trivialization of L over Uα.

Then we can write, for each s ∈ H0(M,L) (resp. meromorphic section of L), s = sαeα

where sα is a holomorphic (resp. meromorphic) function on Uα. It is easy to check

that sα = gαβsβ. Hence we can give this alternative definition: A holomorphic section

(resp. meromorphic section) s of L is a collection of holomorphic (resp. meromorphic)

functions sα : Uα → C such that sα = gαβsβ on Uα∩Uβ. These definitions also extend

to a complex projective variety X.

There is an important interplay between line bundles and divisors. First of all,

for any meromorphic section s of L, the zero locus [s = 0] ⊆ X gives a divisor on

X. Conversely, let D = {(Uα, fα)} be Cartier divisor D on X where X is a complex

projective space, we can construct a line bundle associated to D, denoted by [D], over

X as follows: we define our transition functions as

gαβ :=
fα
fβ
.

Then we have gαβ ∈ O∗(Uα ∩ Uβ). Furthermore, the collection {gαβ} does in fact

satisfy the conditions of transition functions. Notice that fα = gαβfβ, and we see that

{fα} is a meromorphic section of [D]. This (special) section is called the canonical

section of [D] and is denoted by sD. Furthermore, when D is effective, sD is a

holomorphic section of [D].

We can also associate a Cartier divisor with a sheaf in the following way: let D
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2.3 LINE BUNDLES

be a Cartier divisor on X, we define the sheaf OX(D) as

OX(D)(U) = {f ∈M(U) : (f) +D|U ≥ 0}.

OX(D) also has vector space structure since if (f)+D|U ≥ 0 and (g)+D|U ≥ 0, then

(af + bg) +D|U ≥ 0 for scalars a and b.

Theorem 2.6 ([GH78], page 133-137). Let D be a Cartier divisor on X. Then there

is an isomorphism of vector spaces H0(X, [D])→ H0(X,OX(D)) given by s 7→ s/sD

where sD is the canonical section of [D].

Proof. From the definitions above, a global section f ∈ H0(X,OX(D)) is a meromor-

phic function f on X satisfying

(f) +D ≥ 0.

LetD = {(Uα, fα)}. Recall that the associated line bundle [D] has transition functions

gαβ =
fβ
fα
.

Given s ∈ H0(X, [D]), i.e. a collection s = {sα ∈ O(Uα)} with

sβ
sα

= gαβ =
fβ
fα
,

then {sα/fα} defines a global meromorphic function g on X. Since (sα) ≥ 0 in every

Uα, we have

(g|Uα) + (fα) = (sα) ≥ 0.
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2.3 LINE BUNDLES

Thus, (g)+D ≥ 0 globally on X, and thus g ∈ H0(X,OX(D)). Note that sD = {fα},

hence s/sD = g, so s/sD ∈ H0(X,OX(D)). It is easy to see that the map s 7→ s/sD is

injective. To show the map is surjective, let f ∈ H0(X,OX(D)), then the collection

{ffα} defines a section s of [D]. Since

(ffα) = (f) + (fα) ≥ 0

in every Uα, s is a holomorphic section of [D]. Obviously, s/sD = f since sD = {fα}.

This proves that the map s 7→ s/sD is surjective.

Since we now have this correspondence, we will use the sheaf OX(D) and the line

bundle [D] interchangeably in the future, and whether we are referring to the line

bundle or the sheaf will be clear from context. That is, we will make no distinction

between the notations H0(X,OX(D)) and H0(X, [D]), or even H0(X,D).

We can also develop a notion of a “norm” on a line bundle.

Definition 2.3.3. Let L = {Uα, gαβ} be a line bundle over X where Uα is an open

covering, and gαβ are transition functions. A metric on L is a collection of positive

smooth functions

hα : Uα → R+,

such that on Uα ∩ Uβ we have

hβ = |gαβ|2hα.
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2.3 LINE BUNDLES

We will use h to denote the collection {hα}. A holomorphic line bundle together with

a Hermitian metric h is called a Hermitian line bundle.

Definition 2.3.4. If h is a metric on a line bundle L, then the global form c1(L, h) =

−
√
−1

2π
∂∂̄ log hα is called the first Chern form of L with respect to the metric h. We

say that a holomorphic line bundle L is positive if L admits a metric h such that its

first Chern form is positive definite everywhere on M .

We have the following landmark theorem by Kodaira.

Theorem 2.7 (Kodaira Embedding Theorem [GH78], page 176-181). Let M be a

compact complex manifold, and let L be a positive line bundle over M . Then there

exists k0 such that for k > k0, the map

iLk : M → PN−1

is an embedding. Here iLk is defined in the following way: choose a basis {s1, . . . , sN}

of H0(X,Lk), then define the induced map iLk : M → PN−1 by

x 7→ [s1(x) : · · · : sN(x)],

where the choice of homogeneous coordinates on PN−1 corresponds to the basis {s1, . . . , sN}

of H0(X,Lk).

Note that when {t1, . . . , tN} is a different basis for H0(X,Lk), then the induced

map is different, but it only differs by composition with an element of PGL(N,C).
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2.4 BIG AND NEF

2.4 Big and Nef

Let Di, 1 ≤ i ≤ k, be Cartier divisors on an n-dimensional complex projective va-

riety X, and let V be a k-cycle (a linear combination of subvarieties of dimension

k), then the intersection number D1.D2. . . . .Dk.[V ] ∈ Z can be defined. The def-

inition is rather technical, we refer the reader to [Laz04], page 15, for the precise

definition. There are a few key properties to note from the definition. The number

D1.D2. . . . .Dk.[V ] is symmetric, multilinear, and only depends on the linear equiva-

lence class of the Di. When X = V we will use the abbreviation D1.D2. . . . .Dn.[X] =

D1.D2. . . . .Dn ∈ Z. We can now define the term “numerically effective” (nef).

Definition 2.4.1. We say that a Cartier divisor D on a complex projective variety

X is nef if

D.C ≥ 0 (2.1)

for any algebraic curve C in X.

Theorem 2.8. The nef divisors on a complex projective variety X form a closed

convex cone.

Proof. Let D1, . . . , Dl be a finite collection of nef divisors on X, and a1, . . . , al ≥ 0

be real numbers. Then for any algebraic curve C in X, we have the following:

(a1D1 + · · ·+ alDl).C = a1D1.C + · · ·+ alDl.C ≥ 0.

We can now define what it means for a divisor to be big. Let X be a complex

projective variety. Let L be a holomorphic line bundle on X. We will use the notation
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2.4 BIG AND NEF

that h0(L) = h0(X,L) = dimH0(X,L). Then we have the following definition.

Definition 2.4.2. Let L be a line bundle on a complex projective variety X of

dimension n. Then L is big if and only if there exists C > 0 such that

h0(L⊗m) ≥ Cmn

for all sufficiently large positive integers m.

Since we have already established the link between D and [D], going forward, if

we mention that a divisor is big, what we clearly mean is that the associated line

bundle is big. We can now prove a well known lemma from Kodaira.

Theorem 2.9 (Kodaira [BS95], page 61). Let D be a big Cartier divisor, and E be

an arbitrary effective Cartier divisor on a complex projective variety X. Then

H0(X,OX(mD − E)) 6= 0

for all sufficiently large m.

Proof. Consider the short exact sequence

0→ OX(mD − E)→ OX(mD)→ OX(mD)|E → 0.

From the Theorem 2.5, we have an exact sequence

0→ H0(X,OX(mD − E))→ H0(X,OX(mD))→ H0(E,OX(mD)|E).

Since D is big, h0(OX(mD)) grows as mdim(X). On the other hand, dim(E) <

22



2.5 AMPLENESS

dim(X), so dimH0(E,OX(mD)|E) grows at most as mdim(X)−1. Additionally, from

the long exact sequence of cohomology above, we know that

h0(OX(mD − E)) ≥ h0(OX(mD))− dimH0(E,OX(mD)|E),

which is positive. Thus H0(X,OX(mD − E)) 6= 0.

2.5 Ampleness

Definition 2.5.1. Let D be a Cartier divisor on a projective variety X. The complete

linear system of D, denoted |D|, is given by

|D| = {D′ | D′ is an effective divisor, and D′ ∼ D}.

The base locus of |D| is the intersection of the support of all elements of |D|, and we

say |D| is base-point free if the base locus is empty.

Let D be a Cartier divisor on a projective variety X with h0(X,OX(D)) > 0. We

can define a map, as in theorem 2.7, in the following way: choose a basis {σ1, . . . , σN}

of H0(X,OX(D)), then D defines a rational map (it is defined outside the base locus

of |D|)

φ : X → PN−1,

where N = dimH0(X,OX(D)), by the rule

x→ [σ1(x) : σ2(x) : · · · : σN(x)].
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Again we note that the induced map will differ if we choose a different basis, but it

only differs by composition with an element of PGL(N,C).

Definition 2.5.2. We say that a Cartier divisor D on X is semiample if |mD| is base-

point free for some m ∈ N, very ample if the φ map defined above is an embedding

of X, and we say that D is ample if mD is very ample for some m ∈ N.

The above definition also extends to holomorphic line bundles over X. With this

definition, from Theorem 2.7, we have the following corollary.

Corollary 2.10. If a holomorphic line bundle L is positive, then it is also ample.

This is perhaps our simplest notion of positivity to understand immediately from the

definition. However, from this simple definition we obtain the following theorem.

Theorem 2.11 (Cartan-Serre-Grothendieck [Laz04]). Let X be a complex projective

variety, and let D be a Cartier divisor on X. Then the following are equivalent:

i. D is ample;

ii. For every coherent sheaf F on X, there is a positive integer m such that

H i(X,F(mD)) = 0

for all m > m0 and i > 0 (and these cohomology groups are finite dimensional

vector spaces);
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iii. For every coherent sheaf F on X, there is a positive integer m0 such that the

natural map

H0(X,F(mD))⊗OX → F(mD)

is surjective for all m divisible by m0.

Finally, we note that if D is ample, then D is big and nef. But the converse

statement is not true. See [Laz04] for details.
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Chapter 3

Nevanlinna Theory

3.1 Jensen Formula and First Main Theorem

In the traditional theory of rational functions of one complex variable, one first learns

the importance of the degree. Many properties are controlled by this value. For

example, if f is a rational function on C, then the number of solutions to the equation

f(z) = a, for any a ∈ C, is equal to d, counting multiplicity, where d is the degree of

f . While this result is extremely simple and elegant, it is limited to a very specific

set of functions. What if one wanted to make a similar conclusion for a broader set

of functions, for example, all transcendental meromorphic functions f : C → Ĉ =

C ∪ {∞}? It was to this end that Nevanlinna theory was developed. Obviously such

functions do not have a “degree” in the classical sense. In this case, we will define

what is called the characteristic function, Tf (r), which will take on the role of the

classical degree. We will denote the number of solutions to the equation f(z) = a in

26



3.1 JENSEN FORMULA AND FIRST MAIN THEOREM

the disc {z : |z| ≤ r}, counting multiplicity, by n(r, a) = nf (r, a) for any a ∈ Ĉ. Let

Nf (r, a) =

∫ r

0

nf (t, a)

t
dt. (3.1)

Then we have the equation

1

2π

∫ π

−π
log |f(reiθ)− a|dθ = log |f(0)− a|+Nf (r, a)−Nf (r,∞). (3.2)

This is called the Jensen formula, which will be used to obtain our main Nevanlinna

theories. First let us introduce some notation. Let x+ = max{x, 0}. We define

mf (r,∞) =
1

2π

∫ π

−π
log+ |f(reiθ)|dθ,

and

mf (r, a) = m 1
f−a

(r,∞) =
1

2π

∫ π

−π
log+ 1

|f(reiθ)− a|
dθ.

Using the fact that

log+(x± y) ≤ log+ x+ log+ y,

we obtain

mf (r,∞) = mf−a(r, 0) +O(1).
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3.2 SECOND MAIN THEOREM

Thus we can rewrite the Jensen formula (3.2) as

mf (r,∞) +Nf (r,∞) = mf (r, a) +Nf (r, a) +O(1), r →∞.

This is the First Main Theorem of Nevanlinnna theory (FMT), and it gives us our

motivation for defining the Nevanlinna characteristic Tf (r) by

Tf (r) := mf (r,∞) +Nf (r,∞).

Since the two functions in the definition of our Nevanlinna characteristic count a-

points and the average proximity of f to a on the circle |z| = r, we will refer to

Nf (r, a) and mf (r, a) as the counting function and proximity function, respectively.

3.2 Second Main Theorem

The main result of this dissertation will be a generalization of the Second Main

Theorem (SMT), which we are now ready to state and prove. First, let n1(r) = n1,f (r)

denote the number of critical points of a meromorphic function f in the disc |z| ≤ r,

counting multiplicity. Then we have that

n1,f (r) = nf ′(r, 0) + 2nf (r,∞)− nf ′(r,∞). (3.3)

Now just as in (3.1), we can define N1(r) as

N1(r) = N1,f (r) :=

∫ r

0

n1(t)

t
dt. (3.4)
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3.2 SECOND MAIN THEOREM

Then we have the following statement of the SMT.

Theorem 3.1 (Second Main Theorem [Nev29]). For every finite set {a1, . . . , aq} ⊂ Ĉ

we have

q∑
j=1

mf (r, aj) +N1(r) ≤ 2Tf (r) + S(r), (3.5)

where S(r) is a small error term, S(r) = O(log(rTf (r))) when r →∞, r /∈ E, where

E is a set of finite measure.

In order to prove the SMT we will need the following lemma.

Lemma 3.2. If g is an increasing function on [0,∞] tending to +∞, and ε > 0, then

g′ ≤ g1+ε(x) for all x /∈ E, where E is a set of finite measure.

Proof. Let E be the set where g′ ≥ g1+ε(x), then

∫
E

dz ≤
∫
E

g′(x)

g1+ε
(x)dx =

∫
dy

y1+ε
<∞.

Proof of the Second Main Theorem. [Ahl39] Consider the area element

dρ = ρ2(w)
dxdy

π(1 + |w|2)2
,

where

log ρ(w) :=

q∑
j=1

log
1

[w, aj]
− 2 log

(
q∑
j=1

1

[w, aj]

)
+ C, (3.6)
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and [x, y] is the chordal distance between x and y, and C > 0 is chosen so that

∫
C
dρ = 1.

Then we can use f to pull back our area element dρ, and change variables to obtain

∫
C
nf (r, a)dρ(a) =

∫ r

0

∫ π

−π
ρ2(w)

|w′|2

(1 + |w|2)2
tdθdt, (3.7)

where w = f(teiθ). Next apply the derivative with respect to r to the double integral

on the right and divide by 2πr to obtain

λ(r) :=
1

2π

∫ π

−π
ρ2(w)

|w′|2

(1 + |w|2)2
dθ. (3.8)

Now note the following inequality,

1

b− a

∫ b

a

log(g(x))dx ≤ log
( 1

b− a

∫ b

a

g(x)dx
)
. (3.9)

Combining (3.9) with (3.8) yields

log λ(r) ≥ 1

π

∫ π

−π
log ρ(w)dθ − 1

π

∫ π

−π
log(1 + |w|2)dθ +

1

π

∫ π

−π
log |w′|dθ.

The first integral can be approximated using (3.6). The second term in (3.6) becomes

irrelevant as it contains a double log, and we obtain

1

π

∫ π

−π
log ρ(f(reiθ))dθ = 2

q∑
j=1

mf (r, aj) +O(log Tf (r)).
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The second integral equals 4mf (r,∞), and the third can be evaluated with Jensen’s

formula. This gives the following relation

2

q∑
j=1

mf (r, aj) + 2{Nf ′(r, 0)−Nf ′(r,∞)− 2mf (r,∞)} ≤ log λ(r) +O log Tf (r).

The expression in brackets is equal to N1(r)− 2Tf (r) by the FMT. Thus

q∑
j=1

mf (r, aj) +N1(r)− 2Tf (r) ≤
1

2
log λ(r).

This is almost our desired result. All that is left to do is to estimate λ. To this end,

let dρ be a probability measure in C. Now integrate the FMT with respect to a ∈ C

against dρ to obtain

1

2π

∫ π

−π
U(f(reiθ))dθ = U(f(0)) +

∫
C
Nf (r, a)dρ(a)−Nf (r,∞),

where

U(w) =

∫
C

log |w − a|dρ(a).

Then we can estimate the expression in (3.7) by

∫ r

0

dt

t

∫ t

0

λ(s)sds =

∫
C
Nf (r, a)dρ(a) ≤ Nf (r,∞) +

1

2π

∫ π

−π
U(f(reiθ))dθ.

But U(w) is a potential of a probaility measure dρ, so U(w) ≤ log+ |w| + O(1), and
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we obtain that

∫ r

0

dt

t

∫ t

0

λ(s)sds ≤ Tf (r) +O(1).

Now applying Lemma 3.2 twice we obtain that λ(r) < rTf (r)
1+ε, r /∈ E. Thus we can

conclude that log λ(r) = S(r) which proves the theorem.

We can rewrite the SMT using the FMT in the following way (as in [YY03], page

23): let N̄f (r, a) be the averaged counting function of distinct solutions of f(z) = a.

Then
∑
Nf (r, aj) ≤

∑
N̄f (r, a) +N1(r), and we have

(q − 2)Tf (r) ≤
q∑
j=1

N̄f (r, a) + S(r). (3.10)

Now that we have the machinery of the FMT and SMT, the Little Picard Theorem

is an immediate corollary. If a meromorphic function f were to omit three values,

then the left hand side of (3.10) would be equal to Tf (r). Thus Tf (r) ≤ S(r), which

implies f is a constant. We also obtain another, similar lemma.

Lemma 3.3. Let a1, . . . , a5 be five points on the Riemann sphere, then at least one

of the equations f(z) = aj has simple solutions.

Proof. If all five equations have multiple solutions, thenN1(r, f) ≥ (1/2)
∑5

j=1 Nf (r, aj).

Combining this with the SMT implies that (5/2)Tf (r) ≤ 2Tf (r) + S(r), thus f must

be constant.
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3.3 Generalizing the First Main Theorem

We now have the FMT and SMT for the case when f is a meromorphic function on C.

Our next step is to generalize the FMT to the case when X is a complex projective

variety, (L, h) is a Hermitian line bundle on X, and f : C→ X is a holomorphic map.

Before we do this however, we will need to recall the following theorem.

Theorem 3.4. Let g be a function of class C2 on D̄(r), or a sub-harmonic function

on D̄(r). Then

∫ r

0

dt

t

∫
|ζ|<r

ddc[g] =
1

2
g(reiθ)

dθ

2π
− g(0).

Proof. Let Z denote the set of singularities of g, and S(Z, ε) be the union of small

circles of radius ε around singularites with ε small enough to remain in D(t). Then

Stokes’ theorem implies that

∫
|ζ|<r

ddc[g] =

∫
|ζ|=r

dc[g]− lim
ε→0

∫
S(X,ε)(t)

dcg

=
1

2

∫
|ζ|=r

r
∂g

∂r

dθ

2π
− lim

ε→0

∫
S(X,ε)(t)

dcg,

which we can integrate with respect to 1/t to obtain

∫ r

0

dt

t

∫
|ζ|<r

ddc[g] =

∫ r

0

dt

t

∫
|ζ|=t

1

2
t
∂g

∂t

dθ

2π
−
∫ r

0

dt

t
lim
ε→0

∫
S(X,ε)(t)

dcg

=
1

2

∫ 2π

0

g(reiθ)
dθ

2π
− g(0)−

∫ r

0

dt

t
Singg(t).
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3.3 GENERALIZING THE FIRST MAIN THEOREM

Thus,

∫ r

0

dt

t

∫
|ζ|<t

ddc[g] =
1

2

∫ 2π

0

g(reiθ)
dθ

2π
− g(0),

and by definition we have that

∫
|ζ|<t

ddc[g] =

∫
|ζ|<t

ddcg + Singg(t)

=

∫
|ζ|<t

ddcg + lim
ε→0

∫
S(X,ε)(t)

ddcg.

Thus the theorem is proved.

Lemma 3.5 (Poincare-Lelong Formula [GH78], page 388). Let f be a holomorphic

function on D(r), then

∫ r

0

dt

t

∫
|ζ|<r

ddc[log |f |2] = Nf (r, 0).

Which we can write as

ddc[log |f |2] = [f = 0],

where [f = 0] =
∑

p(ordpf) · p is the divisor associated with f .

In order to define the Nevanlinna functions in this new setting, we will need to be

familiar with the concept of a Weil function. Let X be a complex projective variety

and D be an effective Cartier divisor on X. A Weil function for D is a function

λD : (X\suppD) → R such that for every x ∈ X there is an open neighborhood U

of x in X, a nonzero rational function f on X with D|U = (f), and a continuous
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function α : U → R such that

λD(x) = − log |f(x)|+ α(x)

for all x ∈ (U\suppD). A continuous (fiber) metric ‖ · ‖ on the line sheaf OX(D)

determines a Weil function for D given by

λD(x) = − log ‖s(x)‖,

where s is the rational section of OX(D) such that D = (s). As an example, the Weil

function for the hyperplane H = {a0x0 + · · ·+ anxn = 0} on Pn(C) is given by

λH(x) = log
max0≤i≤n |xi|max0≤i≤n |ai|
|a0x0 + · · ·+ anxn|

for x = [x0 : · · · : xn] ∈ Pn(C)\H.

Definition 3.3.1 (Nevanlinna Functions). Let D be an effective Cartier divisor on a

projective variety X. We can now define the Nevalinna functions in our new setting.

i. The characteristic function Tf,L of f with respect to (L, h) is defined by

Tf,L(r) =

∫ r

0

dt

t

∫
|ζ|≤r

f ∗c1(L, h)

Remark 3.6. This definition of the characteristic function behaves precisely as

desired, namely, if L is ample and Tf,L(r) is bounded, then f must be a constant;
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ii. The proximity function of f with respect to D is defined by

mf (r,D) =

∫ 2π

0

λD(f(reiθ))
dθ

2π
,

where λD is the Weil function associated to D;

iii. The counting function of f with respect to D is defined by

Nf (r,D) =

∫ r

0

nf (t,D)
dt

t
,

where nf (t,D) denotes the number of points of f−1(D) in the disc |z| < t

counting multiplicity.

These definitions lead us to the first main theorem which appears just as it did in the

previous section.

Theorem 3.7 (First Main Theorem). Let X be a complex projective variety. Let

(L, h) be a Hermitian line bundle over X. Let s be a holomorphic section of L, and

let D = [s = 0]. Then for any holomorphic map f : C→ X with f(C) not in D,

Tf,L(r) = mf (r,D) +Nf (r,D) +O(1).

Proof. By definition, on Uα, ||s||2 = |sα|2hα, so by the Poincare-Lelong formula,

ddc[log ||s||2] = −c1(L, h) + [D].

The FMT is then obtained by applying Theorem 3.4.
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3.4 Generalizing the Second Main Theorem

Now that we have generalized the FMT to the case when f : C → X where X is a

complex projective variety, we will now state and prove the SMT for the case when

M = Pn(C) with the divisors as hyperplanes. In order to do this, we will need the

help of the following lemma.

Lemma 3.8 (Logarithmic Derivative Lemma [Ru01], page 8). Let f(z) be a mero-

morphic function. Then for δ > 0

∫ 2π

0

log+

∣∣∣∣∣f ′f (reiθ)

∣∣∣∣∣dθ2π
≤

(
1 +

(1 + δ)2

2

)
log+ Tf (r) +

δ

2
log(r) +O(1)||E(δ).

Proof. For w ∈ C, we define the surface element as follows:

Φ =
1

(1 + log2 |w|)|w|2

√
−1

2π2
dw ∧ dw̄.

This is a (1,1) form on C with singularities at w = 0,∞. By computation,

∫
C

Φ =

∫
C

1

(1 + log2 |r|)|r|2
1

2π2
rdrdθ = 1.

By the change of variable formula, we have

∫
∆(t)

f ∗Φ =

∫
w∈C

nf (t, w)Φ(w).

Thus, if we let µ(r) =
∫ r

1
dt
t

∫
∆(t)

f ∗Φ, we obtain that

µ(r) =

∫ r

1

dt

t

∫
∆(t)

|f ′|2

(1 + log2 |f |)|f |2

√
−1

4π2
dz ∧ dz̄
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=

∫
w∈C

∫ r

1

dt

t
nf (t, w)Φ(w) =

∫
w∈C

Nf (r, w)Φ(w) ≤ Tf (r) +O(1).

Where the last inequality holds due to the FMT. By Lemma 3.2, we have that

1

π

∫
|z|=r

|f ′|2

(1 + log2 |f |)|f |2
dθ

2π
≤ (µ(r))(1+δ)2rδbδ||Eδ ,

where b is a constant. As a result of this, Lemma 3.2, and the concavity of log, we

can compute the following:

∫ 2π

0

log+

∣∣∣∣∣f ′f (reiθ)

∣∣∣∣∣dθ2π
=

1

4π

∫
|z|=r

log+

(
|f ′|2

(1 + log2 |f |)|f |2
(1 + log2 |f |)

)
dθ

≤ 1

4π

∫
|z|=r

log+

(
|f ′|2

(1 + log2 |f |)|f |2

)
dθ

+
1

4π

∫
|z|=r

log+(1 + (log+ |f |+ log+(1/|f |))2)dθ

≤ 1

4π

∫
|z|=r

log

(
1 +

|f ′|2

(1 + log2 |f |)|f |2

)
dθ

+
1

2π

∫
|z|=r

log+(log+ |f |+ log+(1/|f |))dθ +
1

2
log 2

≤ 1

2
log

(
1 +

1

2π

∫
|z|=r

|f ′|2

(1 + log2 |f |)|f |2
dθ

)
+

1

2π

∫
|z|=r

log(1 + log+ |f |+ log+(1/|f |))dθ +
1

2
log 2

≤ 1

2
log

(
1 +

1

2
µ(1+δ)2(r)rδbδ

)
+ log(1 +mf (r) +m1/f (r)) +

1

2
log 2||Eδ

≤ 1

2
log

(
1 +

1

2
(µ(r))(1+δ)2rδbδ

)
+ log+ Tf (r) +O(1)||Eδ
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≤

(
1 +

(1 + δ)2

2

)
log+ Tf (r) +

δ

2
log r +O(1)||Eδ .

Which proves the theorem.

We will now ensure that the reader is familiar with how our generalizations of the

Nevanlinna functions appear in this special case when M = Pn(C) and L = OPn(1).

Let L = OPn(1) be the hyperplane line bundle with transition functions gαβ = wα/wβ,

where Uα = {wα = 0}. The sections of L are sH = {〈a,w〉/wα} with [sH = 0] = H =

{a0w0 + · · · + anwn = 0}. The metric on L is given by hα = |wα|2/||w||2. The first

Chern form of this metric is given by

c1(L, h) = −ddc log hα = ddc log ||w||2.

This is the so called Fubini-Study metic on Pn. By Theorem 3.4, the characteristic

function takes the form

Tf (r) =

∫ r

0

dt

t

∫
|ζ|<r

ddc log ||f ||2 =

∫ 2π

0

log ||f(reiθ)||dθ
2π

+O(1),

where f = (fo, . . . , fn) is a reduced representation of f , that is, fo, . . . , fn have no

common zeros. The proximity function will take the form

mf (r,H) =

∫ 2π

0

log
1

||sH ◦ f(reiθ)||
dθ

2π
=

∫ 2π

0

log
||f(reiθ)|| · ||H||
|〈a, f(reiθ)〉|

dθ

2π
,

as λH(f(z)) = log ||f(z)||·||a|||〈f(z),a〉| is the Weil-function. Lastly, the counting function of f
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with respect to H is given by

Nf (r,H) =

∫ r

0

(nf (t,H)− nf (0, H))
dt

t
+ nf (0, H) log r,

where nf (t,H) is the number of points where 〈a, f〉 = 0 in the disc |z| < t, counting

multiplicity. And by Jensen’s formula,

Nf (r,H) =

∫ 2π

0

log |〈f(reiθ), a〉|dθ
2π

+O(1).

We are now ready to state the SMT in this setting.

Theorem 3.9 (Cartan’s Second Main Theorem [Car]). Let H1, . . . , Hq be hyperplanes

in Pn(C) in general position. Let f : C → Pn(C) be a linearly non-degenerate holo-

morphic curve. Then for any δ > 0, we have

q∑
j=1

mf (r,Hj) +NW (r, 0)

≤ (n+ 1)Tf (r) +O(log+ Tf (r)) + δ log r +O(1)||Eδ ,

where the Wronskian of f0, . . . , fn is denoted by W (f0, . . . , fn).

This version of the SMT can be derived from a more general version which we will

now state, prove, and then prove the derivation.

Theorem 3.10 (General Second Main Theorem). Let f = [f0 : · · · : fn] : C→ Pn(C)

be a holomorphic curve whose image is not contained in any proper subspaces. Let

H1, . . . , Hq (or a1, . . . , aq) be arbitrary hyperplanes in Pn(C). Then for any δ > 0, we
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have the inequality

∫ 2π

0

max
K

∑
k∈K

λHk(f(reiθ))
dθ

2π
+NW (r, 0)

≤ (n+ 1)Tf (r) +O(log Tf (r)) + δ log r +O(1)||Eδ ,

where the maximum is taken over all subsets K of {1, . . . , q} such that aj, j ∈ K, are

linearly independent.

Proof. Let H1, . . . , Hq be the given hyperplanes with coefficient vectors a1, . . . , aq ∈

Cn+1. Denote K ⊂ {1, . . . , q} such that aj, j ∈ K are linearly independent. Without

loss of generality, we may assume that q ≥ n+ 1 and that #K = n+ 1. Let T denote

all injective maps µ : {0, . . . , n} → {1, . . . , q} such that aµ(0), . . . , aµ(n) are linearly

independent. Then

∫ 2π

0

max
K

∑
k∈K

λHk(f(reiθ))
dθ

2π

=

∫ 2π

0

max
µ∈T

n∑
j=0

log

(
||f(reiθ)|| · ||aµ(j)||
|〈f(reiθ), aµ(j)〉

)
dθ

2π

=

∫ 2π

0

log

{
max
µ∈T

(
||f(reiθ)||n+1∏n

j=0 |〈f(reiθ), aµ(j)〉

)}
dθ

2π
+O(1)

≤
∫ 2π

0

log

{∑
µ∈T

(
||f(reiθ)||n+1∏n

j=0 |〈f(reiθ), aµ(j)〉|

)}
dθ

2π
+O(1)

=

∫ 2π

0

log

{∑
µ∈T

|W (〈f , aµ(0)〉, . . . , 〈f , aµ(n)〉)(reiθ)∏n
j=0 |〈f(reiθ), aµ(j)〉|

}
dθ

2π

+

∫ 2π

0

log

{
||f(reiθ)||n+1/|W (f0, . . . , fn)|(reiθ)

}
dθ

2π
+O(1), (3.11)

where W (〈f , aµ(0)〉, . . . , 〈f , aµ(n)〉) denotes the Wronskian of the functions
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〈f , aµ(0)〉, . . . , 〈f , aµ(n)〉). In the last line of equation (3.11), we use the property of

Wronskians that

|W (f0, . . . , fn)| = |W (〈f, aµ(0)〉, . . . , 〈f, aµ(n)〉)| · C,

where C is a constant. Now we will estimate the first term on the right-hand side of

equation (3.11). Let

gµ(l) =
〈f , aµ(l)〉
〈f , aµ(0)〉

, 0 ≤ l ≤ n.

Then Tgµ(l)(r) ≤ Tf (r) + O(1) for 0 ≤ l ≤ n. Hence, by the Logarithmic Derivative

Lemma,

∫ 2π

0

log

{∑
µ∈T

|W (〈f , aµ(0)〉, . . . , 〈f , aµ(n)〉)(reiθ)∏n
j=0 |〈f(reiθ), aµ(j)〉|

}
dθ

2π

=

∫ 2π

0

log+
∑
µ∈T

(
|W (1, gµ(1), . . . , gµ(n))|
|gµ(1), . . . , gµ(n)|

(reiθ)

)
dθ

2π
+O(1)

≤ O(log Tf (r)) + δ log r +O(1)||Eδ . (3.12)

Now

∫ 2π

0

log

{
||f ||n+1/|W (f0, . . . , fn)(reiθ)|

}
dθ

2π

=

∫ 2π

0

log ||f ||n+1 dθ

2π
+

∫ 2π

0

log
1

|W (f0, . . . , fn)(reiθ)|
dθ

2π

= (n+ 1)Tf (r)−NW (0, r). (3.13)

Combining (3.11), (3.12), and (3.13) concludes the proof.
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In order to deduce the SMT from the general SMT, we will prove the following

lemma.

Lemma 3.11. Let H1, . . . , Hq be hyper planes in Pn(C) located in general position.

Then

q∑
j=1

mf (r,Hj) ≤
∫ 2π

0

max
µ∈T

n∑
i=0

λHµ(i)(f(reiθ))
dθ

2π
+O(1).

Proof. Let aµ(i) be the coefficient vectors of Hj, 1 ≤ j ≤ q. By definition,

〈f , aµ(i)〉 = a
µ(i)
0 f0 + · · ·+ aµ(i)

n fn, 0 ≤ i ≤ n,

where aµ(i) = (a
µ(i)
0 , . . . , a

µ(i)
n ). By solving the system of linear equations above,

fi = ã
µ(i)
0 〈f , aµ(0)〉+ · · ·+ ãµ(i)

n 〈f , aµ(n)〉, 0 ≤ i ≤ n,

where (ã
µ(i)
j ) is the inverse matrix of a

µ(i)
j . Thus for any µ ∈ T ,

||f(z)|| ≤ C max
0≤i≤n

{〈f , aµ(i)〉|}. (3.14)

For a given z ∈ C, there exists a µ ∈ T such that

0 < |〈f(z), aµ(0)〉| ≤ · · · ≤ |〈f(z), aµ(n)〉| ≤ |〈f(z), aj〉|,

for j 6= µ(i), i = 0, 1, . . . , n. Hence by (3.14)

q∏
j=1

||f(z)||
|〈f(z), aj〉|

≤ C max
µ∈T

||f(z)||
|〈f(z), aµ(i)〉|

, (3.15)
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and the lemma is proved.

We will in fact be able to further generalize this theorem to the setting of a

complex projective variety. In this setting the theorem appears as follows.

Theorem 3.12 ([RV17], Theorem 2.8). Let X be a complex projective variety, and

let D be an effective Cartier divisor on X. Let V be a nonzero linear subspace of

H0(X,O(D)), and let s1, . . . , sq be nonzero elements of V . For each i = 1, . . . , q, let

Dj be the Cartier divisor (sj). Let f : C → X be a holomorphic map with Zariski-

dense image. Then, for any ε > 0,

∫ 2π

0

max
J

∑
j∈J

λDj(f(reiθ))
dθ

2π
≤ (dimV + ε)Tf,D(r)‖,

where the set J ranges over all subsets of {1, . . . , q} such that the sections (sj)j∈J are

linearly independent.

Proof. Let d = dimV . We may assume that d > 1 since otherwise all Dj are the same

divisor, the sets J have at most one element each, and the theorem follows from the

First Main Theorem.

Let Φ : X → Pd−1 be the rational map associated to the linear system V . Let

X ′ be the closure of the graph of Φ, and let p : X ′ → X and φ : X ′ → Pd−1 be the

projection morphisms. Let f̂ : C→ X ′ be the lifting of f .

Note that, even though Φ extends to the morphism φ : X ′ → Pd−1, the linear

system of H0(X ′, p∗O(D)) corresponding to V may still have base points. However,

there is an effective Cartier divisor B on X ′ such that, for each nonzero s ∈ V , there

is a hyperplane H in Pd−1 such that p∗(s) − B = φ∗H. More precisely, φ∗O(1) ∼=
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O(p∗D −B). The map

α : H0(X ′,O(p∗D −B))→ H0(X,O(p∗D))

defined by tensoring with the canonical global sections sB of O(B) is injective, and

its image contains p∗(V ). The preimage α−1(p∗(V )) corresponds to a base-point free

linear system for the divisor p∗D −B.

For each j = 1, . . . , q, letHj be the hyperplane in Pd−1 for which p∗(sj)−B = φ∗Hj.

Then

λp∗Dj = λφ∗Hj + λB +O(1). (3.16)

By the functoriality of Weil functions, λp∗Hj(f̂(z)) = λDj(f(z)). Therefore, it will

suffice to prove the inequality

∫ 2π

0

(
max
J

∑
j∈J

λHj(φ(f̂)(reiθ)) + λB(f̂(reiθ))

)
dθ

2π

≤ (dimV + ε)Tf,D(r) ‖.

For any subset J of 1, . . . , q, the sections sj, j ∈ J , are linearly independent elements

of V if and only if the hyperplanes Hj, j ∈ J , lie in general position in Pd−1. Thus

we may apply Cartan’s Theorem from above to obtain that

∫ 2π

0

max
J

∑
j∈J

λHj(φ(f̂)(reiθ))
dθ

2π
≤ (dimV + ε)Tφ(f̂)(r).

From (3.16), we get Tφ(f̂)(r) = Tf,D(r) − Tf̂ ,B(r) + O(1). On the other hand, since
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each set J has at most dimV elements, and B is effective, we get

(#J)λB(x) ≤ (dimV )λB(x) +O(1)

for all x ∈ X ′. Hence

∫ 2π

0

(
max
J

∑
j∈J

λHj(φ(f̂)(reiθ)) + λB(f̂(reiθ))

)
dθ

2π

≤ (dimV + ε)Tf,D(r)− (dimV + ε)Tf̂ ,B(r) + (dimV )mf̂ (r, B) ‖

≤ (dimV + ε)Tf,D(r) ‖,

where in the last inequality we used from the first main theorem that mf̂ (r, B) ≤

Tf̂ ,B(r) +O(1), and the theorem is proved.

The basic theorem above motivates the notation of the Nevanlinna constant, which

will be key to proving our result. Let X be a normal projective variety, and D be an

effective divisor on X. For any section s ∈ H0(X,O(D)), we use ordE(s) to denote

the coefficients of (s) in E, where (s) is the divisor on X associated to s. We will

not recall the definition of normal projective variety here (see [Laz04], page 15 for the

precise definition), but the condition of normality of X is assumed so that ordED is

defined for any prime divisor E, and any effective Cartier divisor D on X ([Laz04],

Remark 1.1.4). We then have the following definition of the Nevanlinna constant.

Definition 3.4.1 ([Ru15]). Let X be a normal complex projective variety, and D

be an effective divisor on X. The Nevanlinna constant of D, denoted by Nev(D), is

given by

Nev(D) := inf
N

(
inf

{µN ,VN}

dimVN
µN

)
, (3.17)

46



3.4 GENERALIZING THE SECOND MAIN THEOREM

where the infimum “inf
N

” is taken over all positive integers N , and the infimum

“ inf
{µN ,VN}

” is taken over all pairs {µN , VN} where µN is a positive real number, and

VN ⊂ H0(X,O(ND)) is a linear subspace with dimVN ≥ 2 such that, for all

P ∈ suppD, there exists a basis B of VN with

∑
s∈B

ordE(s) ≥ µN ordE(ND)

for all irreducible components E of D passing through P . If dimH0(X,O(ND)) ≤ 1

for all positive integers N , then we define Nev(D) = +∞.

With this notation we have the following key theorem.

Theorem 3.13 ([Ru15]). Let X be a complex normal projective variety and D be an

effective Cartier divisor on X. Then, for every ε > 0,

mf (r,D) ≤ (Nev(D) + ε)Tf,D(r) ‖E

holds for any Zariski dense holomorphic mapping f : C→ X.

Proof. Let σ0 denote the set of all prime divisors occurring in D, so we can write

D =
∑
E∈σ0

ordE(D)E.

Let

Σ := {σ ⊂ σ0| ∩E∈σ E 6= 0}.
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For an arbitrary x ∈ X, pick σ ∈ Σ (depents on x) for which

λD(x) ≤ λDσ,1(x),

where Dσ,1 :=
∑

E∈σ ordE(s)E. Now for each σ ∈ Σ, by definition, there is a basis

Bσ of VN ⊂ H0(X,ND) such that

∑
s∈Bσ

ordE(s) ≥ µNordE(ND)

at all points P ∈ ∩E∈σE. Since Σ is finite, {Bσ | σ ∈ Σ} is a finite collection of bases

of VN . Thus, we have, using the property of Weil functions that, if D1 ≥ D2, then

λD1 ≥ λD2 , we obtain that,

λND(x) ≤ 1

µN
max
σ∈Σ

∑
s∈Bσ

λs(x).

The theorem is obtained by taking x = f(reiθ), integrating, and applying Theorem

3.12.

Definition 3.4.2. Define δf (D), the Nevanlinna defect of f with respect to D, by

δf (D) := lim inf
r→+∞

mf (r,D)

Tf,D(r)
.

Then we have the two following key corollaries.

Corollary 3.14. Let D be an effective Cartier divisor on a smooth complex projective

variety X. Then

δf (D) ≤ Nev(D)

48



3.4 GENERALIZING THE SECOND MAIN THEOREM

for any Zariski dense holomorphic map f : C→ X.

Corollary 3.15. Let D be an effective Cartier divisor on a complex normal projective

variety X. If Nev(D) < 1, then every holomorphic map f : C→ X\D is not Zariski

dense, i.e., the image of f must be contained in a proper subvariety of X.

Proof. Note that f : C→ X\D implies thatmf (r,D) = Tf,D(r)+O(1). So δf (D) = 1.

Assume that f is Zariski dense, then the above Corollary implies that

1 = δf (D) ≤ Nev(D) < 1

which is a contradiction. Thus, f is not Zariski dense.

This corollary will be the key to proving our version of the Second Main Theorem

as it reduces the problem to just finding an upper bound for Nev(D). Previous

results can also be obtained by computing this Nevanlinna constant as exhibited in

the following example.

Example 3.16. Let X = Pn and D = H1+· · ·+Hq where H1, . . . , Hq are hyperplanes

in Pn in general position. We take N = 1 and consider V1 := H0(Pn,O(D)) ∼=

H0(Pn,OPn(q)). Then dimV1 =
(
q+n
n

)
. For each P ∈ SuppD, since H1, . . . , Hq are in

general position, P ∈ Hi1∩· · ·∩Hil with {i1, . . . , il} ⊂ {1, . . . , q} and l ≤ n. Without

loss of generality, we can assume Hi1 = {z1 = 0}, . . . , Hil = {zl = 0} by taking

proper coordinates for Pn. Now we take the basis B = {zi00 . . . zinn | i0 + · · ·+ in = q}

for V1 = H0(Pn,OPn(q)). Then for each irreducible component E of D containing

P , say E = {zj0 = 0} with 1 ≤ j0 ≤ l, we have ordE{zj = 0} = 0 for j 6= j0,
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ordE{zj0 = 0} = 1, and thus ordED = 1. On the other hand,

∑
s∈B

ordEs =
∑
~i

ij0 =
1

n+ 1

∑
~i

(i0 + · · ·+ in) =
q

n+ 1

(
q + n

n

)
=

q

n+ 1
dimV1,

where the sum is taken for all vectors ~i = (i0, . . . , in) with i0 + · · · + in = q, and we

used the fact that the number of choices of ~i = (i0, . . . , in) with i0 + · · · + in = q is(
q+n
n

)
. Thus we can take µ1 = q

n+1
dimV1, and hence,

Nev(D) ≤ dimV1

µ1

=
n+ 1

q
.
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Chapter 4

Main Results

4.1 Statement of the Main Results

We are now ready to state and prove the main results of this dissertation. Let X be

a complex projective variety of dimension n, and D be a Cartier divisor on X. We

will use the notation Dn to denote the n-fold intersection of D with itself. Following

Aaron Levin [Lev09], let the divisor D :=
∑q

i=1 be a divisor on X with D1, . . . , Dq

effective. D is said to have equidegree respect to D1, . . . , Dq if

Di.D
n−1 =

1

q
Dn

for 1 ≤ i ≤ q. We also recall that a Cartier divisor D (or the line sheaf OX(D)) on

X is said to be numerically effective, or nef, if D.C ≥ 0 for for any closed integral

curve C on X as mentioned in Chapter 2.

Lemma 4.1 ([Lev09], Lemma 9.7). Let X be a projective variety of dimension n. If

Dj, 1 ≤ j ≤ q, are big and nef, then there exist positive real numbers rj such that
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D =
∑q

j=1 rjDj is of equidegree.

Proof. We follow the simple proof given by Autissier [Aut1]. Let

4 := {(t1, . . . , tq) ∈ Rq
+ | t1 + · · ·+ tq = 1}.

Define a map g : 4→ 4 by letting, for t = (t1, . . . , tq) ∈ 4,

g(t) =

(
φ(t)

(
∑q

j=1 tjDj)n−1.D1

, · · · φ(t)

(
∑q

j=1 tjDj)n−1.Dq

)
,

where φ(t) :=

(
q∑
i=1

1

(
∑q

j=1 tjDj)n−1.Di

)−1

. By the Brouwer’s fixed point theorem,

there exists a point x = (x1, . . . , xq) ∈ 4 such that g(x) = x, i.e.

φ(x) = (

q∑
j=1

xjDj)
n−1.(xiDi) for i = 1, . . . , q.

This implies, by summing up, that qφ(x) = (
∑q

j=1 xjDj)
n. Thus

1

q

(
q∑
j=1

xjDj

)n

= φ(x) = (xiDi).

(
q∑
j=1

xjDj

)n−1

which proves the lemma.

Recall that the divisors D1, . . . , Dq on X with q > l are said to be in l-subgeneral

position if, for any subset of l + 1 elements {i0, . . . , il},⊂ {1, . . . , q},

suppDi0 ∩ · · · ∩ suppDil = ∅.

When l = dimX, then we say that the divisors D1, . . . , Dq are in general position on
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X. Now we are ready to state Ru’s theorem.

Theorem A ([Ru15], Theorem 5.6). Let X be a complex normal projective variety of

dimension≥ 2, andD = D1+· · ·+Dq be a sum of effective big and nef Cartier divisors,

in l-subgeneral position on X. Let ri > 0 be real numbers such that D :=
∑q

i=1 riDi

is of equidegree (such numbers exist due to Lemma 4.1). We further assume that

there exists an integer N0 > 0 such that the linear system |NDi| (i = 1, . . . , q) is

base-point free for N ≥ N0. Let f : C → X be a Zariski dense holomorphic map.

Then, for ε > 0 small enough,

q∑
j=1

rjmf (r,Dj) <

(
2l dimX

q
− ε
)( q∑

j=1

rjTf,Dj(r)

)
‖E,

where ‖E means the inequality holds for all r ∈ (0,∞) except for a possible set E

with finite Lebesgue measure.

In this dissertation, we improve the above theorem with an additional assumption

that “D1, . . . , Dq have no irreducible components in common”. The following is the

precise statement.

Main Theorem (Complex Part). Let X be a complex normal projective variety of

dimension n ≥ 2. Let D1, . . . , Dq be effective, big and nef Cartier divisors on X,

and that the linear system |NDi| (i = 1, . . . , q) is base-point free for N ≥ N0. We

further assume that D1, . . . , Dq have no irreducible components in common, and are

in l-subgeneral position. Let ri > 0 be real numbers such that D :=
∑q

i=1 riDi is

equidegree (such numbers exist due to Lemma 4.1). Let f : C → X be holomorphic
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and Zariski dense. Then

q∑
j=1

rjmf (r,Dj) ≤
(

2n[(l + 1)/2]

q(1 + α)

)( q∑
j=1

rjTf,Dj(r)

)
‖E

with

α =
2−3n−2 min1≤i,j≤q(r

n−2
i r2

j (D
n−2
i .D2

j )) min1≤i,j≤q(r
n−1
i rj(D

n−1
i .Dj))

(nDn)2
> 0,

where [x] denotes the smallest integer greater than x.

Under the assumptions in the Main Theorem, we have the following defect relation

δf (D) ≤ 2n[(l + 1)/2]

q(1 + α)
(4.1)

for D :=
∑q

i=1 riDi. We note that, in the case when we study f : C → X\D (i.e.

the image of f omits D), by doing a blowing up, the smoothness condition (or the

normal condition) of X, as well as the nefness condition of Dj, 1 ≤ j ≤ q, can all

be removed by a lemma from Aaron Levin. The following is the exact statement of

Levin’s lemma.

Lemma 4.2 (Lemma 9.10 in [Lev09]). Let X be a complex projective variety. Let D =∑q
j=1 Dj be a sum of effective Cartier divisors on X. Then there exists a nonsingular

projective variety X ′, a birational morphism π : X ′ → X, and a divisor D′ =
∑q

j=1 D
′
j

on X ′ such that suppD′j ⊂ suppDj for all j, every irreducible component of D′ is

nonsingular, |D′j| is base-point free for all j (in particular D′j is nef), and κ(D′j) =

κ(Dj) = dim ΦD′j
(X ′) for all j (where κ(Dj) is the Kodaira dimension of Dj).

Thus the defect relation (Cor. 3.15), together with Lemma 4.1, implies the fol-
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lowing result.

Corollary 4.3. Let X be a complex projective variety of dimension ≥ 2, and D =

D1 + · · ·+Dq be a sum of big Cartier divisors, in l-subgeneral position on X. Assume

that D1, . . . , Dq have no irreducible components in common. If q ≥ 2n[(l+1)/2], then

every holomorphic mapping f : C→ X\ ∪qj=1 Dj must be degenerate.

On the arithmetic side, similar to the analytic case, we can prove the following

improvement of Ru’s result ([Ru15a], Theorem 4.1).

Main Theorem (Arithmetic Part). Let k be a number field and S ⊂Mk be a finite set

containing all archimedean places. Let X be a normal projective variety of dimension

n ≥ 2, and let D1, . . . , Dq be effective, big and nef Cartier divisors on X, both defined

over k, and that the linear system |NDi| (i = 1, . . . , q) is base-point free for N ≥ N0.

We further assume that D1, . . . , Dq have no irreducible components in common, and

are in l-subgeneral position. Let ri > 0 be real numbers such that D :=
∑q

i=1 riDi is

equidegree (such numbers exist due to Lemma 4.1). Then

q∑
j=1

rjmS(x,Dj) ≤
(

2n[(l + 1)/2]

q(1 + α)

)( q∑
j=1

rjhDj(x)

)
,

holds for all x ∈ X(k) outside a Zariski closed subset Z of X, where

α =
2−3n−2 min1≤i,j≤q(r

n−2
i r2

j (D
n−2
i .D2

j )) min1≤i,j≤q(r
n−1
i rj(D

n−1
i .Dj))

(nDn)2
> 0.

The proof of this arithmetic result can be done in a similar way (see [[Ru15a]), so

we omit the arithmetic proof here.
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4.2 Proof of the Main Theorem

The proof of the Main Theorem relies on the notion of Nevanlinna constant Nev(D),

and the defect relation (as well as the Second Main Theorem) in terms of Nev(D)

from Chapter 3. Let X be a normal projective variety, and D be an effective Cartier

divisor on X. As mentioned in chapter 3, the condition of normality of X is assumed

so that ordED (called the coefficient of D in E) is defined for any prime divisor E

and any effective Cartier divisor D on X ([Laz04], Remark 1.1.4). For any section

s ∈ H0(X,OX(D)), we use ordE s or ordE(s) to denote the coefficients of (s) in

E where (s) is the divisor on X associated to s. This assumption along with the

following key lemmas will be enough to prove our main theorem.

Lemma 4.4 ([Laz04], Corollary1.4.41). Suppose D is a nef Cartier divisor on a

projective variety X with dimX = n. Then

h0(ND) =
Dn

n!
Nn +O(Nn−1). (4.2)

In particular, Dn > 0 if and only if D is big.

Lemma 4.5 ([Aut1], Lemma 4.2). Suppose E is a big and base-point free Cartier

divisor on a projective variety X, and F is a nef Cartier divisor on X such that

F −E is also nef. Let β > 0 be a positive real number. Then for any positive integers

N,m with 1 ≤ m ≤ βN , we have

h0(NF −mE) ≥ F n

n!
Nn − F n−1.E

(n− 1)!
Nn−1m

+
(n− 1)F n−2.E2

n!
Nn−2 min{m2, N2}+O(Nn−1),
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where O depends on β.

Proof. Case m ≤ N : The Riemann-Roch Theorem (see [Laz04]) tells us that

χ(X,NF −mE) =
1

n!
(NF −mE)n +O(Nn−1).

From this we obtain that

hi(X,NF −mE) = O(Nn−i)

for all i since F and F − E are nef ([Laz04] p. 69), and h0(X, aD) − h1(X, aD) =

χ(X, aD) +O(an−1) if D is nef by definition. By direct computation, we have that

(NF −mE)n = F nNn − nF n−1ENn−1m

+
n∑
i=2

(i− 1)F i−2(NF −mE)n−iE2N i−2m2.

Combining these proves this case.

Case m > N : Let N ≤ i ≤ βN , then we have a short exact sequence

0→ OX(NF − (i+ 1)E)→ OX(NF − iE)→ OZ((NF − iE)|Z)→ 0,

where Z = div(s) for some s ∈ Γ(X,E). Then the long exact sequence of cohomology

implies that

h0(OX(NF − (i+ 1)E)) ≥ h0(OX(NF − iE))− h0(OZ((NF − iE)|Z)).
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Since

h0(OZ((NF − iE)|Z)) ≤ h0(OZ((NF |Z)) =
F n−1E

(n− 1)!
Nn−1 +O(Nn−2),

we have that

h0(X,NF −mE) ≥ h0(X,NL−NE)−
m−1∑
i=N

h0(Z, (NF − iE)|Z)

≥ F n

n!
Nn − F n−1E

(n− 1)!
Nn−1m+

n− 1

n!
F n−2E2Nn −O(Nn−1),

where the lower bound for the h0(X,NL − NE) is obtained from the previous case

when m ≤ N .

Lemma 4.6 ([Lev09], Lemma 10.1). Let V be a vector space of finite dimension d over

a field k. Let V = W1 ⊃ W2 ⊃ W3 ⊃ . . . ⊃ Wh and V = W ′
1 ⊃ W ′

2 ⊃ W ′
3 ⊃ . . . ⊃ W ′

h′

be two filtrations on V. Then there exists a basis v1, v2, .., vd of V that contains a basis

of each Wj and W ′
j.

Proof. The proof will use induction on the dimension d. When d = 1 the result is triv-

ial. By refining the first filtration, we may assume, without loss of generality, that W2

is a hyperplane in V . Let W ∗
i = W ′

i ∩W2 for i = 1. . . . , h′. By the inductive hypoth-

esis, there exists a basis v1, . . . , Vd−1 of W2 containing a basis of each of W3, . . . ,Wh

and W ∗
1 , . . . ,W

∗
h . Let l be the maximal index with W ′

l 6⊂ W2, and let vd ∈ W ′
l \W ∗

l .

We claim that B = {v1, . . . , vd} is a basis with the required property. It clearly con-

tains a basis of Wi for each i. Let i ∈ {1, . . . , h′}. If i > l, then W ′
i = W ∗

i , and so by

construction, B contains a basis of W ′
i . If i ≤ l, then vd ∈ W ′

l \W ∗
l ⊂ W ′

i\W ∗
i . Since

B contains a basis B∗i of W ∗
i , and W ∗

i is a hyperplane in W ′
i , we see that B∗i ∪ {vd}
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is a basis of W ′
i .

Proof of the Main Theorem. We are now ready to prove our main theorem (the

complex case only). By replacing D with N0D if necessary, we can assume that the

linear systems |Dj|, 1 ≤ j ≤ q, are base-point free. We first look at the special case

when rj, 1 ≤ j ≤ q, are all rational numbers.

For P ∈ suppD, let DP :=
∑

i:P∈suppDi

riDi. Since intersection of any l+ 1 distinct

Dj is empty and no two of D1, . . . , Dq have common components, we can write

DP := DP,1 +DP,2,

where DP,1 and DP,2 are effective divisors with no irreducible components in common,

and each DP,i is a sum of at most [(l + 1)/2] of the r1D1, . . . , rqDq for i = 1, 2. To

compute the Nevanlinna constant for D, we let N be a sufficiently large positive

integer, which is divisible by the common denominators of rj, 1 ≤ j ≤ q, and let

VN = H0(X,ND). We consider the two filtrations for VN :

Wj := H0(X,ND − jDP,1), and W ′
j := H0(X,ND − jDP,2),

and we use Lemma 4.6 above to construct a basis B for VN which contains a basis for

each Wj and W ′
j . Notice that, for s ∈ H0(X,ND−mDP,i)/H

0(X,ND− (m+1)DP,i)

with i = 1, 2, we have 1
ordE(D)

ordE s ≥ m for any irreducible component E of D which

contains P . Hence,

1

ordE(ND)

∑
s∈B

ordE s (4.3)
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≥ 1

N
min
i=1,2

∞∑
m=0

m(h0(ND −mDP,i))− h0(ND − (m+ 1)DP,i))

=
1

N
min
i=1,2

∞∑
m=1

h0(ND −mDP,i).

Now, for each i = 1, 2, we apply Lemma 4.5 with F = D, E = DP,i and βi =

Dn

nDn−1.DP,i
, and denote Ai := (n− 1)Dn−2.D2

P,i, it yields

∞∑
m=1

h0(ND −mDPi) (4.4)

≥
[βiN ]∑
m=1

(
Dn

n!
Nn − Dn−1.DP,i

(n− 1)!
Nn−1m+

Ai
n!
Nn−2 min{m2, N2}

)
+O(Nn)

=

(
Dn

n!
βi −

Dn−1.DP,i

(n− 1)!

β2
i

2
+
Ai
n!
g(β)

)
Nn+1 +O(Nn)

=

(
βi
2

+
Ai
Dn

g(βi)

)
DnN

n+1

n!
+O(Nn)

=
βi
2

(
1 +

2Ai
βiDn

g(βi)

)
DnN

n+1

n!
+O(Nn),

where g : R+ → R+ is the function given by g(x) = x3

3
if x ≤ 1 and g(x) = x− 2

3
for

x ≥ 1. From the assumption that D is of equidegree with respect to r1D1, . . . , rqDq ,

we have, for j = 1, . . . , q,

(rjDj).D
n−1 =

1

q
Dn

which implies that, for 1 ≤ i ≤ 2,

Dn−1.DP,i ≤
[(l + 1)/2]

q
Dn.

Hence

βi =
Dn

nDn−1.DP,i

≥ q

n[(l + 1)/2]
≥ 1

n
. (4.5)
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Here, above, we can assume that q ≥ [(l + 1)/2] for otherwise the theorem trivially

holds by the FMT. Hence g(βi) ≥ 1
n3 . On the other hand, we have

Ai = (n− 1)Dn−2.D2
P,i ≥ min

1≤i,j≤q
(riDi)

n−2.(rjDj)
2 = min

1≤i,j≤q
(rn−2
i r2

j (D
n−2
i .D2

j )),

and

βi ≤
Dn

nmin1≤i,j≤q(riDi)n−1.(rjDj)
=

Dn

nmin1≤i,j≤q(r
n−1
i rj(D

n−1
i .Dj))

.

Hence, by combining (4.3) and (4.6), we have

1

ordE(ND)

∑
s∈B

ordE s ≥
q

2n[(l + 1)/2]
(1 + 2C1)DnN

n

n!
+O(Nn−1),

where

C1 =
min1≤i,j≤q(r

n−2
i r2

j (D
n−2
i .D2

j )) min1≤i,j≤q(r
n−1
i rj(D

n−1
i .Dj))

(nDn)2
(4.6)

and thus, together with Lemma 4.4,

1

ordE(ND)

∑
s∈B

ordE s ≥
q

2n[(l + 1)/2]
(1 + 2C1)h0(ND) + o(h0(ND)).

Therefore, from the definition of Nev(D), we have

Nev(D) ≤ lim inf
N→+∞

h0(ND)
q

2n[(l+1)/2]
(1 + 2C1)h0(ND) + o(h0(ND))

=
2n[(l + 1)/2]

q(1 + 2C1)
.
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Applying Theorem 3.13 with ε = 2n[(l+1)/2]
q

C1

(1+C1)(1+2C1)
, for D =

∑q
j=1 rjDj, it gives

mf (r,D) ≤ 2n[(l + 1)/2]

q(1 + C1)
Tf,D(r) ‖E,

where C1 is given in (4.6). This proves the case when rj, 1 ≤ j ≤ q, are rational

numbers.

We now prove the case that not all of rj, 1 ≤ j ≤ q, are rational numbers. By

the assumption that D has equidegree with respect to r1D1, . . . , rqDq, we have, for

1 ≤ j ≤ q,

(rjDj).

(
q∑
j=1

rjDj

)n−1

=
1

q

(
q∑
j=1

rjDj

)n

.

Let C1 be the constant in (4.6) and fix

δ0 =
2−4n−1C1D

n

q(1 + 2−3n−1C1)
. (4.7)

By the continuity, we can choose rational numbers aj, 1 ≤ j ≤ q, which are close rj

with

|aj − rj| ≤ min

ε04 ( min
1≤i≤q

rj),
ε0(min1≤i≤q rj)

4
(

2n[(l+1)/2]
q(1+2−3n−1C1)

)
 , (4.8)

where

ε0 = min

{
1,

2n[(l + 1)/2]2−3n−2C1

q(1 + 2−3n−1C1)(1 + 2−3n−2C1)

}
, (4.9)

and such that

(aiDi).

(
q∑
j=1

ajDj

)n−1

<
1

q

(
q∑
j=1

ajDj

)n

+ δ0. (4.10)

Consider D′ :=
∑q

j=1 ajDj, and write D′P := D′P,1 + D′P,2 where D′P,1 and D′P,2 are

effective divisors with no irreducible components in common, and each D′P,j is a sum
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of at most [(l+ 1)/2] of the a1D1, . . . , aqDq. Similar to the above, let N be a positive

integer, sufficiently large enough, which is divisible by the common denominators of

aj, 1 ≤ j ≤ q, by the same argument as deriving (4.3) and (4.4), there is a basis of

H0(X,ND′) such that

1

ordE(ND′)

∑
s∈B

ordE s ≥ min
1≤i≤2

βi
2

(
1 +

2Ai
βiDn

g(βi)

)
D′n

Nn

n!
+O(Nn−1), (4.11)

where βi = D′n

nD′n−1.D′P,i
, Ai = (n − 1)D′n−2.D′P,i

2, and g : R+ → R+ is the function

given by g(x) = x3

3
if x ≤ 1 and g(x) = x − 2

3
for x ≥ 1. Now, from (4.10), we have,

for i = 1, 2,

(D′
n−1

.D′P,i) ≤ [(l + 1)/2]

(
1

q
D′n + δ0

)
=

[(l + 1)/2]

q
D′n

(
1 +

qδ0

D′n

)
,

so, noticing that D′n ≥ 1
2n
Dn, we have

βi =
D′n

nD′n−1.D′P,i
≥ q

n[(l + 1)/2]

1(
1 + qδ0

D′n

) ≥ q

n[(l + 1)/2]

1(
1 + 2nqδ0

Dn

) . (4.12)

For same reason (i.e. we can assume that q ≤ [(l + 1)/2](1 + 2nqδ0
D2 ) for otherwise the

theorem would automatically hold by the FMT), we get βi ≥ 1
n

and thus

g(βi) ≥
1

n3
. (4.13)

Also, noticing that

(D′
n−2

.D′P,i
2
) ≥ min

1≤i,j≤q
((aiDi)

n−2.(ajDj)) ≥
1

2n
min

1≤i,j≤q
((riDi)

n−2.(rjDj)
2),
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and, similarly,

(D′
n−1

.D′P,i) ≥
1

2n
min

1≤i,j≤q
((riDi)

n−1.(rjDj)),

we have, also using the similar inequality D′n ≤ 2nDn,

Ai = (n− 1)D′n−2.D′P,i
2 ≥ 1

2n
min

1≤i,j≤q
(rn−2
i r2

j (D
n−2
i .D2

j )), (4.14)

and

βi =
D′n

nD′n−1.D′P,i
≤ 4nDn

nmin1≤i,j≤q(r
n−1
i rj(D

n−1
i .Dj))

. (4.15)

By combining (4.11), (4.12), (4.13), (4.14), (4.15), and Lemma 4.4, we obtain

1

ordE(ND′)

∑
s∈B

ordE s (4.16)

≥

(
q(1 + 21−3nC1)

2n[(l + 1)/2](1 + 2nqδ0
Dn

)
h0(ND′) + o(h0(ND′))

)
ordE(ND′),

where C1 is given in (4.6). Hence, from the definition of the Nevanlina constant,

we get

Nev(D′) ≤
2n[(l + 1)/2](1 + 2nqδ0

Dn
)

q(1 + 21−3nC1)
.

Applying Theorem 3.13 with

ε =
2n[(l + 1)/2](1 + 2nqδ0

Dn
)2−3nC1

q(1 + 2−3nC1)((1 + 21−3nC1)
,

we get

q∑
j=1

ajmf (r,Dj) ≤

(
2n[(l + 1)/2](1 + 2nqδ0

Dn
)

q(1 + 2−3nC1)

)(
q∑
j=1

ajTf,Dj(r)

)
‖E.
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From (4.7),

δ0 =
2−4n−1C1D

n

q(1 + 2−3n−1C1)
,

so

q∑
j=1

ajmf (r,Dj) ≤
(

2n[(l + 1)/2]

q(1 + 2−3n−1C1)

)( q∑
j=1

ajTf,Dj(r)

)
‖E.

Now, from (4.8),

q∑
j=1

rjmf (r,Dj) ≤
q∑
j=1

ajmf (r,Dj) +

q∑
j=1

(min rj)ε0
4

mf (r,Dj) ‖E,

so, together with the First Main Theorem, we get

q∑
j=1

rjmf (r,Dj)

≤
(

2n[(l + 1)/2]

q(1 + 2−3n−1C1)

)( q∑
j=1

ajTf,Dj(r)

)
+

(min rj)ε0
4

(
q∑
j=1

Tf,Dj(r)

)
‖E

=

(
2n[(l + 1)/2]

q(1 + 2−3n−1C1)

)( q∑
j=1

ajTf,Dj(r)

)
+
ε0
4

(
q∑
j=1

rjTf,Dj(r)

)
‖E

≤
(

2n[(l + 1)/2]

q(1 + 2−3n−1C1)
+
ε0
4

)( q∑
j=1

rjTf,Dj(r)

)
+
ε0
4

(min rj)

(
q∑
j=1

Tf,Dj(r)

)

+
ε0
4

q∑
j=1

rjTf,Dj(r) ‖E

≤
(

2n[(l + 1)/2]

q(1 + 2−3n−1C1)
+ ε0

)( q∑
j=1

rjTf,Dj(r)

)

≤
(

2n[(l + 1)/2]

q(1 + α)

)( q∑
j=1

rjTf,Dj(r)

)
‖E
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where, by (4.9), we get

α =
2−3n−2 min1≤i,j≤q(r

n−2
i r2

j (D
n−2
i .D2

j )) min1≤i,j≤q(r
n−1
i rj(D

n−1
i .Dj))

(nDn)2
.
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