
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

TITLE OF THESIS 

How Long Does it Take to Offload Traffic from Firewall? 

  _____________________________________________________________ 

A Thesis 

Presented to 

the faculty of Engineering Technology 

University of Houston 

  _______________________________________________________________ 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

_______________________________________________________________ 

By 

RajaRevanth Narisetty 

December 2013 

 



3 
 

Acknowledgements 

 

My sincere thanks to Dr.Deniz Gurkan for giving me this opportunity to work on Network 

Security and Network Management aspects of the emerging Software Defined Networking arena. 

My special thanks to Dr.Wajiha Shireen & Dr.Fatima Merchant for their valuable suggestions 

and inputs. I would like to thank Gregory Lebovitz, Gary Hemminger & Tony Chou of 

vARMOUR Networks Inc. for their insights and support during my research at University of 

Houston. I am thankful to all my friends for all their help and support which turned out to be an 

asset. 

 

 

 

 

 

 

 

 



4 
 

Contents 

Chapter 1 ..................................................................................................................................... 12 

Introduction ................................................................................................................................. 12 

1. Network Firewall Placement.............................................................................................. 12 

2. Virtual Firewalls ................................................................................................................ 14 

3. Distributed Firewalls .......................................................................................................... 15 

4. Software Defined Networking ........................................................................................... 15 

5. OpenFlow Protocol ............................................................................................................ 17 

6. Software Defined Security [6] ........................................................................................... 20 

Chapter 2 ..................................................................................................................................... 22 

Background of the Study ............................................................................................................ 22 

1. Firewall Bottleneck ............................................................................................................ 22 

2. Firewall Throughput of Various Vendors in Market ......................................................... 22 

3. Processes on Firewall ......................................................................................................... 25 

i. Deep Packet Inspection .................................................................................................. 25 

ii. Intrusion Detection/Prevention System .......................................................................... 25 

4. Throughput Issues – Effects – Use Cases .......................................................................... 26 

i. Science DMZ [8] ............................................................................................................ 27 

ii. Multi-site Use Case ........................................................................................................ 28 



5 
 

Chapter 3 ..................................................................................................................................... 30 

Overview ...................................................................................................................................... 30 

1. Application Identification with DPI................................................................................... 30 

i. Study on Number of Packets to Identify Applications ................................................... 31 

2. Offload DPI of Classified Applications ............................................................................. 31 

i. Leverage SDN Paradigm for Offloading DPI ................................................................ 32 

Chapter 4 ..................................................................................................................................... 33 

Objective ...................................................................................................................................... 33 

Chapter 5 ..................................................................................................................................... 34 

Framework .................................................................................................................................. 34 

1. XEN Virtualization Platform ............................................................................................. 34 

2. Network Elements .............................................................................................................. 36 

i. OpenFlow Switch ........................................................................................................... 36 

ii. vArmour SDSec Virtual Application ............................................................................. 37 

iii. vArmour Application Server .......................................................................................... 38 

iv. Floodlight Controller ...................................................................................................... 42 

v. Tools ............................................................................................................................... 46 

Chapter 6 ..................................................................................................................................... 47 

OVS Based Experimental Setup ................................................................................................ 47 

1. Virtualization Setup ........................................................................................................... 47 



6 
 

i. Dom0 OVS & Networking ............................................................................................. 54 

i. DomU’s & Networking .................................................................................................. 54 

ii. Data Plane & Control Plane (Data & Fabric Network) .................................................. 56 

iii. Client & Server VMs...................................................................................................... 56 

iv. Setup flows on OVS to pass C  S traffic via FW ....................................................... 56 

v. Traffic Generation & Session on FW ............................................................................. 57 

vi. Session Offloading Flow Setup ...................................................................................... 58 

2. Network Delays & Measurement Points............................................................................ 58 

3. Measurements .................................................................................................................... 60 

4. Observations ...................................................................................................................... 60 

5. Xen Virtualization Delays.................................................................................................. 61 

Chapter 7 ..................................................................................................................................... 63 

Setup with Open Flow Hardware Switch & Distributed VM’s .............................................. 63 

1. Experimental Setup ............................................................................................................ 63 

Chapter 8 ..................................................................................................................................... 66 

Network Delays ........................................................................................................................... 66 

1. What is minimum length of a session on firewall to benefit from offloading? ................. 66 

i. Firewall to AppServer Network Delay........................................................................... 67 

ii. AppServer Processing Delay .......................................................................................... 68 

iii. AppServer to Floodlight Network Delay ....................................................................... 68 



7 
 

iv. Floodlight Processing Time ........................................................................................... 69 

v. Floodlight to OF Switch Network Delay ....................................................................... 69 

2. Determining Minimum Length of Session to Benefit from Offloading ............................ 70 

Chapter 9 ..................................................................................................................................... 71 

Measurements ............................................................................................................................. 71 

1. Measurement Points on the Experimental Setup ............................................................... 71 

2. Measurements .................................................................................................................... 71 

i. Firewall to AppServer network delay: ........................................................................... 71 

ii. AppServer Processing Time: .......................................................................................... 72 

iii. Flow Setup Time: ........................................................................................................... 73 

iv. Floodlight Processing Time: .......................................................................................... 73 

v. AppServer to Floodlight Network Delay: ...................................................................... 74 

Chapter 10 ................................................................................................................................... 76 

GENI Experimentation .............................................................................................................. 76 

1. GENI TOPOLOGY ........................................................................................................... 76 

2. Realization of Experimental Network Nodes on GENI ..................................................... 77 

Chapter 11 ................................................................................................................................... 78 

Results .......................................................................................................................................... 78 

i. Firewall to AppServer Network Delay........................................................................... 78 

ii. AppServer to Floodlight Network Delay: ...................................................................... 79 



8 
 

iii. AppServer Processing Time: .......................................................................................... 81 

iv. Floodlight to OVS Network Delay: ............................................................................... 82 

v. Floodlight Processing Time: .......................................................................................... 82 

vi. How  long does it take to identify SCP application on firewall? ................................... 84 

Chapter 12 ................................................................................................................................... 87 

Conclusion ................................................................................................................................... 87 

Chapter 13 ................................................................................................................................... 92 

Future Work ................................................................................................................................ 92 

References .................................................................................................................................... 93 

Appendix ...................................................................................................................................... 97 

1. GEC 16 POSTER ............................................................................................................... 97 

2. GEC 17 POSTER ............................................................................................................... 98 

3. GEC 18 POSTER ............................................................................................................... 99 

Bibliography .............................................................................................................................. 100 

INDEX ........................................................................................................................................ 107 

 

 

 

 



9 
 

List of Figures 

Figure 1: Firewall Placement [1] .................................................................................................. 14 

Figure 2: SDN Architecture [3] .................................................................................................... 16 

Figure 3: Components of an OpenFlow switch [4] ....................................................................... 17 

Figure 4: Sequence of OpenFlow messages between OpenFlow switch & controller [5] ........... 19 

Figure 5: Flow Mod Packet Structure ........................................................................................... 20 

Figure 6: Science DMZ Architecture [8] ...................................................................................... 28 

Figure 7: Multi-site Use Case ....................................................................................................... 29 

Figure 8: Available pCPUs on Xen Host ...................................................................................... 35 

Figure 9: Memory share of VMs on Xen Host ............................................................................. 36 

Figure 10: AppServer Log ............................................................................................................ 39 

Figure 11: AppServer Controller Connection ............................................................................... 39 

Figure 12: AppServer connected Controller attached OpenFlow Switches ................................. 40 

Figure 13: Default Flows on AppServer connected controller attached OpenFlow Switches ..... 41 

Figure 14: Offload Flow Rules configured on AppServer............................................................ 41 

Figure 15: Avior Controller Connection Interface........................................................................ 44 

Figure 16: Avior – Controller connected switch flow rule summary ........................................... 45 

Figure 17: Avior - New flow rule setup Interface......................................................................... 45 

Figure 18: Open vSwitch based Experimental Setup ................................................................... 47 

Figure 19: Default Flow Rules on Open vSwitch ......................................................................... 49 

Figure 20: Pushing Static Flows ................................................................................................... 49 

Figure 21: Data Plane.................................................................................................................... 50 



10 
 

Figure 22: Firewall Configuration ................................................................................................ 50 

Figure 23: Offload rule generation – Firewall – AppServer - User .............................................. 51 

Figure 24: Injection of Offload flow rules .................................................................................... 51 

Figure 25: Flow Mod Time Stamp................................................................................................ 52 

Figure 26: Offloaded rules ............................................................................................................ 53 

Figure 27: Data Plane - Offloaded Path ........................................................................................ 53 

Figure 28: Xen Center – Virtual Network’s ................................................................................. 54 

Figure 29: Open vSwitch Controller Info ..................................................................................... 54 

Figure 30: Open vSwitch Active Ports ......................................................................................... 55 

Figure 31: Network Delay Plots ................................................................................................... 60 

Figure 32: Experimental Setup with Hardware OpenFlow Switch .............................................. 64 

Figure 33: Offloading Events........................................................................................................ 66 

Figure 34: Firewall to AppServer Network Delay ........................................................................ 72 

Figure 35: AppServer Processing Time ........................................................................................ 72 

Figure 36: Sum of Floodlight Static Flow Processing Time and Floodlight to OVS network 

Delay ............................................................................................................................................. 73 

Figure 37: Floodlight Processing Delay ....................................................................................... 74 

Figure 38: AppServer to Floodlight Network Delay .................................................................... 75 

Figure 39: GENI Topology ........................................................................................................... 76 

Figure 40: Firewall to AppServer Network Delay ........................................................................ 78 

Figure 41: AppServer to Floodlight Network Delay {POST-OK} (b) ......................................... 80 

Figure 42: AppServer to Floodlight Network Delay TCP RTT (c) .............................................. 81 

Figure 43: AppServer Processing Time ........................................................................................ 81 



11 
 

Figure 44: Floodlight to OVS Network Delay .............................................................................. 82 

Figure 45: Floodlight Processing Time......................................................................................... 83 

Figure 46: Offload rules to OVS ................................................................................................... 84 

Figure 47: SCP Application Identification Time on Firewall ....................................................... 85 

Figure 48: Offload Delay Measurements (a) ................................................................................ 85 

Figure 49: Offload Delay Measurements (b) ................................................................................ 86 

Figure 50: Mean & 99th Percentile - Time to Offload - Virtualized Setup .................................. 88 

Figure 51: Mean & 99th Percentile - Total Time to Offload - Physical PC Setup ....................... 90 

 

List of Tables 

Table 1: Firewall Throughput ....................................................................................................... 25 

Table 2: Virtual Machine Specifications ...................................................................................... 35 

Table 3: OpenFlow Match/Action pairs on Floodlight REST API [16] ....................................... 44 

Table 4: VM/Port/Virtual Network Mapping ............................................................................... 56 

Table 5: Measurement Definitions................................................................................................ 60 

Table 6: Mean & 99th Percentile of Total Time to Offload on Virtualized Setup ....................... 88 

Table 7: Mean & 99th Percentile of Total Time to Offload on Physical PC Setup ...................... 89 

 

 

 

 



12 
 

Chapter 1 

 

Introduction 

 

1. Network Firewall Placement 

Firewalls comprise the principal network security elements of the enterprise/data center networks. 

They monitor and process all the ingress/egress traffic of the network against predefined policies, 

rules and existing set of virus, malware and worm signatures. Before proceeding further, it is 

essential to understand placement of the firewall in the network. 

Placement of the firewall stands key in protecting the network from attacks, virus, worms, malware 

etc. There are many considerations and practices for firewall placement. Let us see the general 

practices of the firewall placement across the enterprise and data center networks. 

 

i. Enterprise Networks 

On the enterprise networks, firewalls stand as entry/exit points at the border router connecting 

to internet service provider ie at the corporate WAN edge [1]. Along with the actions -taken 

against pre-defined policies and rules, they perform operations like Deep Packet Inspection 

(DPI), intrusion detection/prevention. 



13 
 

Also, they may exist at multiple places in the network to monitor internal traffic. These include 

existing at the juncture of different internal enterprise networks, wired – wireless LAN 

perimeter etc. [1] 

 

ii. Data Center Networks 

 

As depicted in the Figure 1, when it comes to the data centers of an enterprise or the data 

centers of the service providers the following are the firewall placement practices:  

 At the corporate WAN edge 

 Between server farms 

 Single or multiple instance per rack 

Placement details of the firewall in the network (enterprise/data center) are depicted in the 

Figure 1. [1] 



14 
 

 

Figure 1: Firewall Placement [1] 

 

2. Virtual Firewalls 

 

Virtual Firewalls are the firewall instances running as virtual machines on a virtualized 

environment. 

These monitor traffic of the tenants of the rack. The virtual firewall’s can be implemented in one 

of the following ways: [2] 

 Traditional software firewall on a guest virtual machine 

 Virtual switch with additional security capabilities 

 Custom built security appliance viewing network security requirements 



15 
 

Our discussion is in relevance to the third category of virtual firewalls which would be monitoring 

the ingress/egress traffic of the tenants of the data center rack. 

 

3. Distributed Firewalls 

 

Multiple firewall instances are deployed across the network which maintains state with a central 

firewall node. As the state is being maintained there exists track of the sessions of the virtual 

machine on all the instances of the firewall, even if tenant is migrated across. To a larger extent, 

virtual distributed firewalls mitigate issues related to firewall chokepoint, load balancing, dynamic 

allocation of security resources in need (new or unexpected workload). 

 

4. Software Defined Networking 

 

Unlike the legacy systems, software defined networking separates the decision making capabilities 

from a switching element/node. All the forwarding decision making capabilities are managed by 

piece of software called the OpenFlow Controller. One or many OpenFlow switches shall be 

attached to the OpenFlow Controller and this manages the flows pertaining to the switches. As the 

decision making is now centralized, there exists a complete network topology top down view at 

the decision making point which also brings in advantages during recovery. 

 

The prime benefits of the SDN architecture are: [3]  



16 
 

o Cost Effectiveness, Dynamic and Adaptability  

o Programmability, Agility etc 

o Centralized control 

o Programmatic configuration 

o Open standards based and vendor neutral 

The below diagram overview’s the SDN abstraction: [3] 

 Infrastructure layer – set of network resources like switches etc  

 Control Layer – The above mentioned set of network resources are controlled in 

centralized manner through controller. 

 Application Layer – Any custom or business specific requirements can be deployed.  

 

Figure 2: SDN Architecture [3] 

 



17 
 

5. OpenFlow Protocol 

 

OpenFlow is the protocol on which the communication between OpenFlow switch and controller 

happens. OpenFlow enables us to set the path for data packets that ingress switch. These are 

updated in the flow tables as flow entries. Outbound decision for incoming traffic is taken after 

the flow table look up or by consulting controller in case of absence of relevant flow entry. [4] 

Using the OpenFlow protocol, the controller can add, update, and delete flow entries in flow tables, 

both reactively (in response to packets) and proactively. Each flow table in the switch contains a 

set of flow entries; each flow entry consists of match fields, counters, and a set of ‘Actions’ 

(instructions to apply to matching packets). The above mentioned comprise the components of an 

OpenFlow switch and are depicted in the Figure 3. [4] 

 

Figure 3: Components of an OpenFlow switch [4] 

 



18 
 

i. OpenFlow Protocol Messages 

The OpenFlow protocol messages can be categorized as one of the following – 

 Switch to controller messages 

 Controller to switch messages 

The charts explain about the types of OpenFlow message exchange sequences [5] 

 



19 
 

 

Figure 4: Sequence of OpenFlow messages between OpenFlow switch & controller [5] 

The detailed packet structures and importance of all the messages are discussed in 

OpenFlow specifications by Open Networking Foundation. 

In relevance to our experiment, we will discuss the ‘packet_in’ and ‘flow_mod’ messages 

where the earlier is from switch to the controller and later is the vice versa. 

Here, we will quickly recall how OpenFlow based switches perform switching. [4] 

 OpenFlow switch encapsulates as an OpenFlow message and forwards the first packet 

of a new flow to an OpenFlow controller attached. 

 Controller communicates OpenFlow switch with the forwarding decision through 

‘flow-mod’ or ‘packet-out’ message.  

 Based on the controller’s decision the switch will forward the traffic. 



20 
 

The traffic/flow is identified based on match criteria specified in OpenFlow specification 

and the flow modification messages will be a set of match, action pairs. 

The below is the sample packet trace of the OpenFlow flow-mod message on the wireshark, 

a network packet capture tool. 

 

Figure 5: Flow Mod Packet Structure 

 

6. Software Defined Security [6] 

 

This section is an excerpt from the vARMOUR’s Software Defined Security discussion and its 

benefits.   



21 
 

Similar to how SDN abstracts the network control plane from the forwarding plane, Software 

Defined Security (SDSec) separates the security control plane from the enforcement plane (data 

plane). This helps in building an efficient network security solution with the following features: 

[6] 

 Distributed Network Security Architecture – Multiple instances of the security 

appliances across the network maintaining state with the central node of the security 

system. 

 Centralized Control – Abstraction of the instances, their current sessions and 

performance 

 Easier Configuration Management – As all of the instances maintain state with the 

central control node and all of these control plane communication happens on the fabric 

network, all the instances are configurable from central control node. 

 Load Distribution/Avoid Bottlenecks – The firewall load can be offloaded/distributed 

to other instances which are part of the distributed security solution on the fabric 

network. 

 Effective Monitoring of VMs after/during migration – Consider a virtual machine, 

under the surveillance of an instance of the distributed security system, migrates to 

another host which is under surveillance of a different firewall instance. The earlier 

state/session information of the virtual machine are present in the new surveillance 

point because of the decoupled and distributed architecture of the security system. 

Also the firewall instances (enforcement points) can be spun and placed across any required 

point of the network without losing any information and instant state information of all ongoing 

systems on the security system. 



22 
 

Chapter 2 

 

Background of the Study 

 

1. Firewall Bottleneck 

 

Firewall’s as part of deep packet inspection, inspect header and payload of all the ingress/egress 

traffic. Other firewall features like intrusion detection and prevention systems require huge 

processing capabilities. There is more probability of bottlenecks at the firewall irrespective of 

available higher bandwidths and network capabilities. In our research, we understood that 

throughput of available enterprise class firewall devices range between 700Mbps and 2Gbps. Also, 

upgrading the existing firewalls to achieve higher throughput ratios for the available bandwidth of 

the network to actual bandwidth of firewall involves huge cost. 

 

2. Firewall Throughput of Various Vendors in Market 

 

The below tabulation discusses the firewall throughput, deep packet inspection throughput, 

intrusion prevention system throughput etc. It is clearly evident that the DPI is the most bandwidth 



23 
 

consuming service amongst various firewall service’s/features. Also, we all know how important 

it is to identify which application traffic it is to validate the traffic. DPI on every packet passing 

through the firewall would add much overhead on the load of the firewall. This would prove costly 

resulting in less overall firewall throughput despite the availability of higher capability ingress and 

egress links to the firewall. 

This work adds a sense of intelligence to decide which traffic should undergo deep packet 

inspection which not only reduces load on the firewall but also helps with higher throughput to the 

safe traffic and also increases the ability of the firewall to scale to greater new connections at a 

point of time. 

 

 

 

Vendor Product 

DPI 

Throug

hput 

Firewall 

Through

put 

IPS 

Throughput 

Concurrent 

Sessions 

(BiD) 

New 

Connecti

ons/Sec 

Dell 

SonicWall 

NSA 4500 

600Mbp

s 

2.75gbps 1.4gbps 400000 10000 

HP F5000   40gbps   400k 180k 

QOSMOS  

10Gbps 

on 

LINUX 

        

Endace  10Gbps         



24 
 

Cisco 

Systems 

control  

engine 

 8000 

  30Gbps   10,00,000 

max flow 

open rate 

15 

million 

flows per 

second 

Palo Alto 

 Networks 

vm300   1gbps 600mbps 250000 8000 

WatchGua

rd 

Technolog

ies 

XTM 515   2Gbps 1.6Gbps 40,000 24,000 

XTM 525   2.5Gbps 2Gbps 50,000 24,000 

XTM 535   3Gbps 2.4Gbps 1,00,000 28 

XTM 545   3.5Gbps 2.8Gbps 3,50,000 28,000 

Juniper 

Networks 

srx650   
7gbps(larg

e packets) 

1gbps 512k 35,000 

idp8200   10gbps   5000000   

CyberRoa

m 

Max of all 

 models 

  

1Gbps 

UDP & 

0.7Gbps 

TCP 

350 3,50,000 12000 

Ipoque 

Max of all 

 models 

  75Gbps   

6 million 

subscribers 

  

    

10 million 

packets/se

c 

  

240 million 

concurrent 

flows 

  



25 
 

 

Table 1: Firewall Throughput  

 

3. Processes on Firewall  

 

Modern firewalls support majority of the features like NAT, Routing, Switching, VLANs and 

DHCP along with their own functionalities like deep packet inspection and intrusion 

detection/prevention. While the earlier features are additional features and later comprise the core 

functionalities of the firewall devices. 

As part of the deep packet inspection, the firewalls process each packet’s header and payload 

against a set of known signatures. 

i. Deep Packet Inspection 

Inspecting the header of the packet is Shallow Packet Inspection whereas inspecting the header 

and payload of the packet is Deep Packet Inspection. Traffic is processed and matched with an 

existing set of signatures. 

ii. Intrusion Detection/Prevention System 

The attempts to breach information security are prevalent. Intrusion Detection/Prevention 

Systems (IDS) are designed to detect and prevent any possible attack or anomalous activity in 

the network and the goal is to keep the network services intact. 

The following are ideally the features of IDS [7]: 

 Monitor/Analyze the user/system activity 



26 
 

 Auditing system configuration and vulnerabilities 

 Assessing integrity of critical system and data files 

 Statistical analysis of system activities 

 Pattern match of known attacks 

Typical IDS has the following components and their functionalities are outlined below [7]: 

 Network Intrusion Detection System (NIDS) 

o Works in a promiscuous mode, and matches the traffic that is passed on the 

subnets to the library of knows attacks. 

o Once the attack is identified, or abnormal behavior is sensed, the alert can be 

send to the administrator. 

 Network Node Intrusion Detection System (NNIDS) 

o NNIDS monitors traffic on the single host only and not for the entire subnet. 

o Example – Installing NNIDS on a VPN device, to examine the traffic once it 

was decrypted. 

 Host Intrusion Detection System (HIDS)  

o Snapshot the host and matches for any modification/deletion or change in 

configuration of the host system 

Here, in our case the IDS on firewall would be NNIDS. Also it works in conjunction with the 

Deep Packet Inspection. 

 

4. Throughput Issues – Effects – Use Cases 

 



27 
 

In case of a firewall with above discussed features is deployed in the path of enterprise traffic, all 

the traffic will be inspected with DPI & IDS. This might cause unexpected delays, less bandwidth 

despite of the availability of higher networking capabilities and increased load on firewalls. 

i. Science DMZ [8] 

Science DMZ network architecture is tailored for higher performance applications distinct 

from general purpose network to benefit the educational/research groups. Stateful inspection 

and application-aware DPI on firewalls results in slower ingress and egress traffic rates, 

causing network bottlenecks when extremely high bandwidth sessions are flowing. Our 

demonstration of application-aware traffic steering addresses this issue by creating a fast path 

for science DMZ traffic to the OpenFlow switch as a flow definition for the remainder of the 

session once the application is identified. The measurements of delay elements for such a fast 

path redirection has not been reported within the context of a science DMZ to the scientific 

community. The session length will be compared with the total expected delay to illustrate the 

benefits and shortcomings of such a dynamic redirection mechanism. [8] 

As depicted in the below architectural overview diagram, ScienceDMZ traffic will not pass 

through the enterprise border router or firewall. For separating the ScienceDMZ traffic from 

the enterprise traffic, a dedicated ScienceDMZ router/switch is employed. Thus the 

ScienceDMZ traffic is separated and efforts were taken to compromise security polices for 

fullest utilization of bandwidth and gain in network performance. [8]  

Here as depicted in the Figure 6, instead of employing a dedicated ScienceDMZ router/switch 

we can utilize the SDN/OpenFlow paradigm for traffic separation and use the solution 

discussed in the forthcoming chapters for leap in the bandwidth for the ScienceDMZ traffic. 

After identification and separation we can offload ScienceDMZ traffic to the existing network 



28 
 

OpenFlow switch by maintaining a session on the firewall. For forwarding the traffic out of 

the enterprise that OpenFlow switch might need an uplink to the service provider or the 

destined networks. 

 

Figure 6: Science DMZ Architecture [8] 

ii. Multi-site Use Case  

In the following scenario as depicted in Figure 7, company ‘X’ has work sites at Houston and 

Atlanta. For the interconnectivity between the machines across these worksites, there exists an 

MPLS connectivity from the service provider with better Quality of Service. Network traffic 

egressing from work site at Houston/Atlanta is monitored by firewall at the corresponding 

network exit points. This remains true if the communication is across the work sites. It might 

not be essential to have the highest level of security enforcement for traffic between the work 

sites. As we discussed earlier in the ‘Firewall Bottleneck’ section, firewall to perform deep 

packet inspection of all in/out traffic at line rate might not be possible and might effectively 

cause a bandwidth dip at the firewall. So, offloading deep packet inspection of trusted network 



29 
 

traffic (from worksite @ Houston to worksite @ Atlanta), trusted applications from firewall 

can benefit in avoiding bottlenecks at the firewall. This also benefits in providing line rate 

highest security policy enforcement to the un-trust (application) traffic. 

 

Figure 7: Multi-site Use Case 

 

 

 

 

 

 

 

 

 



30 
 

Chapter 3 

 

Overview  

 

1. Application Identification with DPI 

 

Unlike protocol traffic, shallow packet inspection might not identify/classify application traffic. 

Inspecting header and payload of a packet, DPI is required. 

 

DPI is performed by one or more of the following methods [9]  

 Well known port the application is using 

 Pattern match with already existing database of identified signatures of applications, 

worms, virus etc.  

 Statistics and/or behavioral study 

 

It is expected that a firewall DPIs every ingress packet. This requires huge processing capabilities 

to maintain line rate with ongoing DPI. This results not only in a bottleneck but also huge 

difference in possible bandwidth and actual throughput of the device after DPI.  

DPIBench is an industry accepted method for evaluating the performance of Deep Packet 

Inspection.[10] This approach benchmarks by classifying the tests into two classes – for 



31 
 

performance evaluation and validation whether the DPI choke point successfully stops the threats 

from entering the network. 

 

i. Study on Number of Packets to Identify Applications 

Known that DPI identifies application, it would be interesting to know approximate number of 

packets required to identify an application by DPI engine. It is understood that it varies with 

application and DPI vendor logic. 

The study by ‘Performance of OpenDPI in Identifying Sampled Network Traffic’ by Jawad 

Khalife and Amjad Hajjar, quantifies approximate number of packets required to identify our 

daily use applications. Majority of the applications can be identified with less than 10 packets 

and protocols like iMESH and bit torrent takes more than 20 packets for identification [11]. 

 

2. Offload DPI of Classified Applications 

 

We know that DPI is one of the prominent service running on most of the firewalls, which will 

positively identify the application. Also, this service consume lot of resources on the firewall as it 

requires huge processing capabilities which might also lead to bottlenecks as discussed in Section 

1 of Chapter 2. To avoid such bottlenecks and improve the effective throughput of the firewalls, 

DPI of trusted applications can be offloaded. In the subsequent sections, we will discuss on 

leveraging SDN for such offload process. In the subsequent sections, we will 

 Examine the sequence of events on firewall, OpenFlow switch and controller, which 

result in offloading load of trusted applications from the firewall.  



32 
 

 Conclude on the minimum length of the sessions on the firewall to benefit from such 

an offloading solution.    

i. Leverage SDN Paradigm for Offloading DPI 

Based on the fact that application will be positively identified by the DPI engine on firewall, 

application based configurations are done on the firewalls. We can use this application 

identification for redirecting the traffic (bypass traffic from being sent to firewall). 

In this section, we will discuss how this application based traffic offload can be realized 

through SDN. With OpenFlow, the traffic forwarding can be done based on a set of match, 

action pairs as specified in OpenFlow specification. 

We leverage firewall DPI to map all application traffic to OpenFlow flow rules. Traffic 

matching the application based rule set defined can be offloaded by translating them to a set of 

OpenFlow flow definitions. The same are pushed to the OpenFlow switch by the OpenFlow 

controller. 

 

 

 

 

 

 



33 
 

Chapter 4 

 

Objective 

 

‘What is the ideal length of session on the firewall to benefit from intelligent application steering 

based DPI offload solution?’  

 

For the application traffic to benefit from this intelligent offload of deep packet inspection solution, 

determining the ideal length of the session on the firewall is the objective of this work. In other 

words, ‘How Long Does it Take to Offload Traffic from the Firewall?’ determines the ideal length 

of the session on the firewall for this intelligent offload solution. 

 

 

 

 

 

 

 



34 
 

Chapter 5 

 

Framework 

 

1. XEN Virtualization Platform 

 

Xen is an x86 open source virtualization platform which allows us to create multiple virtual 

machines running different Operating Systems on a physical host [12]. For virtualization, Xen 

allows only driver domain or domain 0 to control all physical interfaces. All the guest virtual 

machines will communicate through the domain 0 to access physical NICs. Xen has driver set to 

access the physical NICs and a set of back-end interfaces to communicate with the guest domains. 

The back-end interfaces and the physical drivers are connected by a software bridge (linux bridge 

or Open vSwitch) inside the kernel of the domain 0. All communication from guest virtual 

machines will be through driver domain or domain 0 and vice versa. Virtual machines having pre-

defined number of vCPUs and memory share physical resources like pCPUs and physical memory. 

Performance and network latency varies as per the sharing based on scheduling of Xen in 

background. [13] 

In our experiment, we have the AppServer, Firewall, Client and Server as virtual machines on the 

host running Xen. The below tabulation mentions the resources allocated for the virtual machines. 



35 
 

The below resources are shared from the below available resources on the physical Xen host. Also 

the Figures 8 & 9 show the available processor and memory resources on our Xen host. 

 

Table 2: Virtual Machine Specifications 

 

 

Figure 8: Available pCPUs on Xen Host 



36 
 

 

 

Figure 9: Memory share of VMs on Xen Host 

 

Note – In Figure 9, memory allocation is shown for AppServer and Firewall virtual machines 

 

2. Network Elements 

In this section, network elements involved in the experimental topology are discussed – which 

include OpenFlow Switch, Firewall, AppServer, Floodlight Controller, Client and Server.  

i. OpenFlow Switch 

OpenFlow Switches use OpenFlow protocol to program the flow tables. These switches has 

three principal components – the flow table, secure channel to connect to the controller and 

OpenFlow protocol. [14] OpenFlow switches can be hardware or software switches. Let us 

discuss Open vSwitch & Pica8 in each category respectively. 

a. Open vSwitch 

Open vSwitch is defined as ‘a production quality, multilayer virtual switch designed to enable 

massive network automation through programmatic extension supporting standard 



37 
 

management interfaces and protocols (e.g. NetFlow, sFlow, SPAN, RSPAN, CLI, LACP, 

802.1ag).’  [15] 

In our experimental setup, the Xen Host1 has the Open vSwitch to switch traffic between the 

guest virtual machines. It maintains a flow table to look up and direct traffic accordingly. In 

case of no flow rule matching the incoming traffic, a packet-in is sent to the controller to which 

it is connected to and writes the packet-out/flow-mod into its flow table and switch traffic 

accordingly. Also, we can write the flow rules through static flow pushes to the controller or 

through ovs-ofctl tool set. 

b.  PICA8 

Pica8 is a hybrid switch which operates in either OpenFlow or legacy modes or both 

simultaneously. The PICA8 OpenFlow switch is the hardware implementation of Open 

vSwitch. It is a switching platform with Debian linux on it to support custom applications 

development. 

For our experiment, the Pica8 Pronto 3290 is used as the OpenFlow hardware switch in the 

Open vSwitch mode.  

  

ii. vArmour SDSec Virtual Application 

vArmour Virtual Firewall Appliance is a novel network security solution which provides: 

 Capabilities to dynamically allocate and provision workloads  

 Spread of virtualized security across the data center 

 Software Defined Security(SDSec) solution – eliminates the provisioning, topology, 

performance and scaling bottlenecks that plague both traditional security solutions and 



38 
 

host-based virtual security solutions when applied in dynamic, agile, and often 

virtualized environments. [6] 

 Inter-operability with traditional and software-defined networks.  

For our experiment, we have raised an instance of vArmour virtual appliance as a virtual 

machine on the Xen Host. This security solution is built on Debian distribution of linux. 

iii. vArmour Application Server 

vArmour Application Server can be any machine (physical or virtual) which runs the vArmour 

AppServer java application. This acts as an interface between the security administrator and 

firewall for making the deep packet inspection offload decisions. Firewall communicates the 

information on the on-going sessions to the AppServer, which pushes static flow pushes to the 

controller based on the system administrator’s application input on which application traffic to 

be offloaded. 

For our experiment, we have raised an Ubuntu VM with the AppServer.jar running on it. The 

software provides us the below listed options. The Figure 10 shows the CLI of the AppServer 

and the debug logs that appear when offload rules are configured on the AppServer. 

 

  

 

 

 

 

 

 

-a <file>         application map file name 

-c <controller>   controller url 

-D <debug>        all | debug | info | error 

-f <file>         flow file name 

-l <file>         log file name 

-n <network>      managed network 

-p <password>     password of HTTP basic authentication 

-r <file>         rule file name 

-u <username>     username of HTTP basic authentication 
 



39 
 

This is invoked by  

 

 

 

 

 

Figure 10: AppServer Log 

 

Figure 11: AppServer Controller Connection 

java -jar vArmourAppServer.jar -a applications.txt -D debug –c 

http://172.16.1.10:8080/ -t floodlight 



40 
 

The Figure 11 displays the connectivity of the AppServer with the OpenFlow controller and 

this connection should remain active for pushing the new offload flow rules on to the 

OpenFlow controller which in turn pushes the same on to the attached OpenFlow switch. 

Whereas the Figure12, displays information of the OpenFlow controller attached switches 

where we expect the new offload flow rules to reach. Also this interface fetches and displays 

information of the connected hosts and their attached ports on the OpenFlow switch.  

Figure14 gives information about the interface to program the default rules which direct all the 

network traffic to the firewall. Figure 15 shows the interface to configure the safe application 

list and also the path in which we (network administrator) would like to redirect the required 

application traffic.  

 

Figure 12: AppServer connected Controller attached OpenFlow Switches 



41 
 

 

Figure 13: Default Flows on AppServer connected controller attached OpenFlow Switches 

 

Figure 14: Offload Flow Rules configured on AppServer 



42 
 

iv. Floodlight Controller 

Floodlight Controller is an enterprise-class java-based OpenFlow controller.  Let us discuss 

more about the Floodlight Controller in relevance to our experiment. 

a. Static Flow Pusher API 

Static Flow Pusher is a module, exposed via REST API, which allows us to program flows into 

one or more OpenFlow switches connected to it. [16] 

b. Match Action Pairs 

The OpenFlow standard defines the Match and Action pairs. There are various interfaces based 

on the OpenFlow Controller in use and they provide different interfaces to write flow entries 

on to the OpenFlow switches (one or more) dynamically. Here in our experiment we have used 

Floodlight Controller to manage OpenFlow switches in our topology. Floodlight Controller 

provides a REST API to push flows with these Match, Action combinations. Detailed 

documentation of the Static Flow Pusher REST API is available at 

http://www.openflowhub.org/display/floodlightcontroller/Static+Flow+Pusher+API.  [16] 

Out of available, we use only the below listed Match/Action pairs for our experiment. 

 Match 

field 

Value Notes 

ingress-port <number> 

switch port on which the packet is 

received  

Hexadecimal or Decimal 

src-mac <mac address> xx:xx:xx:xx:xx:xx 

http://www.openflowhub.org/display/floodlightcontroller/Static+Flow+Pusher+API


43 
 

dst-mac <mac address> xx:xx:xx:xx:xx:xx 

vlan-id <number> Hexadecimal or Decimal 

vlan-

priority 

<number> Hexadecimal or Decimal 

ether-type <number> Hexadecimal or Decimal 

tos-bits <number> Hexadecimal or Decimal 

Protocol <number> Hexadecimal or Decimal 

src-ip 

<ip address> 

xx.xx.xx.xx[/xx] 

[/mask] 

dst-ip 

<ip address> 

xx.xx.xx.xx[/xx] 

[/mask] 

src-port <number> Hexadecimal or Decimal 

dst-port <number> Hexadecimal or Decimal 

Key  Value Notes 

Output <number>  no "drop" option  

 all  

(instead, specify no action to drop 

packets)  

 controller    

 local    

 ingress-port    

 normal    

 flood   

 



44 
 

Table 3: OpenFlow Match/Action pairs on Floodlight REST API [16] 

c. Interfaces to Push Flows – CURL/AVIOR 

CURL is a tool to transfer data from or to a server. cURL has a large of list of supported 

protocols like HTTP, FTP etc. The supported list protocols are on the cURL webpage. The 

command is designed to work without user interaction [17].  In our experiment, curl is widely 

used to push flows onto the OpenFlow network.  

Whereas AVIOR gives us a user interface to push flows manually [18].  Figure 15 depicts the 

interface to connect to the Floodlight Controller. Figure16 displays the screen where we can 

fetch all the information about the Floodlight Controller attached OpenFlow switches, active 

ports on the same, interface statistics and also the active flows on the switch. Whereas the 

Figure 17 shows the interface to configure and push new flow rules on to the OpenFlow switch 

of your choice which is attached to the Floodlight Controller. 

 

Figure 15: Avior Controller Connection Interface 



45 
 

 

 

Figure 16: Avior – Controller connected switch flow rule summary 

 

 

 

Figure 17: Avior - New flow rule setup Interface 



46 
 

v. Tools 

a. OpenFlow Dissector Wireshark Module 

It is not possible to dissect the OpenFlow packets with the regular wireshark application as the 

libraries for dissecting OpenFlow protocol messages are not built with-in. We need to compile 

by downloading the source available at the below link 

http://archive.openflow.org/wk/index.php/OpenFlow_Wireshark_Dissector 

In this experiment the measurements are based on the OpenFlow wireshark dissector. Tshark 

is the CLI based interface for wireshark. 

b. Tcpdump 

Tcpdump is a packet capture application generally built within the kernel for all Linux 

distributions [19]. 

 

 

 

 

 

 

 

 

 

http://archive.openflow.org/wk/index.php/OpenFlow_Wireshark_Dissector


47 
 

Chapter 6 

 

OVS Based Experimental Setup 

 

1. Virtualization Setup 

Our experimental setup is built on the XEN virtualization platform. Client, Server, Firewall, 

AppServer virtual machines (VMs) are hosted on Xen. Floodlight Controller is hosted separately 

as a standalone server on the network. 

 

 

 

Figure 18: Open vSwitch based Experimental Setup 



48 
 

The various network servers/components depicted in the above diagram are explained hereunder. 

In this context, here are the main components of our measurement setup: 

 Client is Ubuntu VM communicating with a server VM using SCP (secure copy 

protocol) and HTTP applications                           

 Server is a web server on an Ubuntu VM 

 Firewall is a distributed virtual firewall appliance fabric from vARMOUR Networks, 

Inc. supporting OpenFlow protocol. Note that vArmour appliance has a firewall rule 

setup that enables firewall bypass through a “permit steering” configuration for 

preferred DPI traffic. 

 Controller is a server on the network that is running Floodlight 

 AppServer is a basic static flow push application for the preferred DPI traffic, hosted 

on a VM on the network. Note that this application keeps track of all ongoing sessions 

on the firewall and passes the required session information to Floodlight with the 

translation of that particular session into an OpenFlow flow definition. 

The experiment has the following expected events & each event is diagrammatically depicted: 

 Client packets start being transmitted with DPI in the firewall. Note that OVS that is 

forwarding traffic to/from firewall has been pre-configured with the particular 

client/server flows so that firewall is the choke point for any sessions of the 

client/server. 

 

 



49 
 

 

Figure 19: Default Flow Rules on Open vSwitch 

 

 

Figure 20: Pushing Static Flows 

 After a few packet transmissions through the DPI module, an emulated classified 

application is identified by the firewall DPI function. We assumed SCP and HTTP in 

this experiment. However, there are many other protocols and applications that can be 

identified and translated into an OpenFlow flow definition. 

 

 



50 
 

Figure 21: Data Plane 

 

 Firewall is configured to invoke the ‘permit steering’ rule for all applications that are 

identified as being in a session. The rule configuration at the firewall is: 

 

 

 

Where z1 and z2 represent zones from which the classified traffic is coming in and 

sent out respectively. 

 

Figure 22: Firewall Configuration 

 

 AppServer gets updates from the firewall about the ongoing sessions on the firewall. 

 On the AppServer UI, the required action pertaining to the offload of the 

identified/classified application is to be configured. 

 

 

set policy z1-z2 zone z1 z2 rule PERMIT-ALL action permit steering app-

server 



51 
 

 

 

Figure 23: Offload rule generation – Firewall – AppServer - User 

 AppServer translates the received session information as update from the firewall and 

the above mentioned action configured into a static flow push message for the 

controller.  

 

 

Figure 24: Injection of Offload flow rules 



52 
 

 A static flow push OpenFlow message is sent from Floodlight to the corresponding 

OpenvSwitch (OVS). Note that this flow push would initiate the bypass of the firewall 

for the particular application traffic. 

 

 

 

 

Figure 25: Flow Mod Time Stamp 

 The identified/classified traffic goes through the OVS and bypasses the firewall with 

the new flow rule and goes directly to the destination server. 

 

 



53 
 

 

 

Figure 26: Offloaded rules 

 

 

 

Figure 27: Data Plane - Offloaded Path 

 

 

 

 



54 
 

i. Dom0 OVS & Networking 

 

 

Figure 28: Xen Center – Virtual Network’s 

 

The Open vSwitch instance is attached to the Floodlight Controller in the network. 

 

Figure 29: Open vSwitch Controller Info 

 

i. DomU’s & Networking 

The attachment points of the guest virtual machines to the OVS instance on the Dom 0 

are as below & the below tabulation explains the attachment points of various DomU’s 

involved in our experiment: 



55 
 

 

Figure 30: Open vSwitch Active Ports 

Attachment Point: xenbr1 

Virtual 

Machine 

Port#OVS 

Virtual 

Network 

VLAN 

Connectivity 

VMs 

Remarks 

Client vif29.0: 100 Network_1 6 

Server, 

Data Network Firewall 

in_port 

Server vif30.0: 103 Network_1 6 

Client, 

Firewall 

out_port 

Data Network 

AppServer vif31.0: 106 fabric_OF 5 Firewall 

Fabric/Control/ 

Steering 

Network 

Firewall 

In: tap11.2: 60 Network_1 6 Server,Client Data Network 

Out: tap11.3: 

61 

Network_1 6 Server,Client Data Network 



56 
 

Fabric Int: fabric_OF 5 AppServer 

Fabric/Control/ 

Steering 

Network 

 

Table 4: VM/Port/Virtual Network Mapping 

ii. Data Plane & Control Plane (Data & Fabric Network) 

Data Plane is where the Client and Server communication happens. In our experimental setup, 

Network_1 comprises of the Data Plane and is called as Data Network. 

Control Plane in our experimental setup will comprise of the ‘fabric_OF’ network. It connects 

the fabric interface of the Firewall and the AppServer. Firewall updates AppServer of the 

ongoing sessions through the fabric network.  

iii. Client & Server VMs 

The Client and Server machines are the Ubuntu virtual machines raised on the XEN host and 

are connected to the ‘Network_1’ i.e., the data network. These are isolated from the Control 

plane i.e., the ‘fabric_OF’ network. These VMs have the Apache web server installed in them 

and also are capable of generating the SCP, VOIP traffic etc. 

iv. Setup flows on OVS to pass C  S traffic via FW 

Initially, traffic between Client and Server VMs not necessarily pass through the Firewall, as 

both the VMs are bridged under ‘OVS-d’ in Figure 30. The controller assigned to the bridge 

or the default flow with action ‘NORMAL’ will establish reachability. i.e., the incoming Client 

traffic on port number 100 will be forwarded through ‘103’ port on OVS-d and vice versa.  



57 
 

We need the traffic between Client and Server (and vice versa) to be monitored. For the same 

we have pushed flows on to the OVS-d to pass the traffic through the firewall. i.e., the incoming 

Client traffic on port 100 is forwarded through the firewall connected port 60 and the egress 

traffic from the firewall connected port 61 is forwarded through the server connected port 103 

and vice versa. Here, the firewall operates in layer2 mode.   

The above mentioned flows can be made available to switch in two ways: 

 

 

 

 

 

 

 

 

 

 

 

 

v. Traffic Generation & Session on FW 

We generated http & scp traffic between the Client and Server passing through the firewall. 

 

Sample static flow pushes through the controller: 

curl -d '{"switch": "00:06:00:16:b9:0e:06:00", "name":"flow-mod-1", "priority":"0", 

"ingress-port":"100","active":"true", "actions":"output=60"}' 

http://172.27.140.250:8080/wm/staticflowentrypusher/json 

curl -d '{"switch": "00:06:00:16:b9:0e:06:00", "name":"flow-mod-4", "priority":"0", 

"ingress-port":"61","active":"true", "actions":"output=103"}' 

http://172.27.140.250:8080/wm/staticflowentrypusher/json 

Sample flow rules on the Open vSwitch through the ovs-ofctl tool kit: 

ovs-ofctl add-flow xenbr1 in_port=100,actions=output:60 

ovs-ofctl add-flow xenbr1 in_port=60,actions=output:100 

 



58 
 

SCP: Secure Copy protocol uses Secure Shell for file transfer between hosts on a network. It 

runs on TCP port 22. A big file transfer is monitored between the Client and Server. The 

measurements were made in iterations of this process. 

HTTP: Web traffic is generated by installing a web server in the Server VM and the traffic is 

monitored through firewall. The measurements were made in iterations of this process. 

vi. Session Offloading Flow Setup 

The sessions between Client and Server are being monitored at the firewall. As mentioned in 

the earlier sections, every packet of the session will be deep packet inspected. Here, in case of 

higher bandwidth requirements for known/trusted traffic sessions, we can employ the 

‘Intelligent DPI Offloading through Application Steering’. We can offload the session on to 

the Open vSwitch to enable direct communication between Client and Server (bypassing 

firewall). 

In the AppServer UI, the trusted applications are to be selected and offload rules can be pushed. 

The firewall communicates about the on-going sessions. AppServer uses this information in 

conjunction with user selected applications, during the Offload rules flow push.   

 

2. Network Delays & Measurement Points 

 

It is important to find the below delay’s, which contribute to ‘time to offload’ a deep packet 

inspection of an application. The below listed delays and the measurement points are defined in 

the table 5. The corresponding T1,T1a, T2, T3 & T4 refer to the Figure18. Please note that some 

of these definitions are limited to the experiment based on the virtualized setup only. 



59 
 

 Controller setup time 

 Static Flow Processing Time 

 OVS Setup Time 

 Controller to OVS Network Delay  

 

Measurement Points 

T1 @Floodlight –  

Static Flow Push Arrival 

Time 

T1a @Floodlight - Flow Mod Sent Out Time  

T2 @OVS –  

Arrival of Flow Mod 

T3 @OVSd - Arrival of last data packet on Firewall 

T4 @OVSd - Arrival of first offloaded packet onto the Server connected port of OVSd 

Delay Measurement 

Static Flow  

Processing Time 

Difference between the arrival time of Static Flow (HTTP 

POST) from AppServer and Flow Mod Sent Out time i.e., 

(T1a-T1) 

Floodlight to OVS 

 Network Delay 

Difference between the Arrival Time of FlowMod on OVS 

and Flow Mod Sent out Time on Controller 

(T2 - T1a) 

Controller Setup Time 

Difference between the Arrival Time of FlowMod on OVS 

and Static Flow Push received Time on Controller (T2 - 

T1) 

mailto:T1@Floodlight%20–%20Static%20Flow%20Push%20Arrival%20Time
mailto:T1@Floodlight%20–%20Static%20Flow%20Push%20Arrival%20Time
mailto:T1@Floodlight%20–%20Static%20Flow%20Push%20Arrival%20Time


60 
 

 

Table 5: Measurement Definitions 

3. Measurements 

Based on the above definitions of the Network delays, measurements are made and below are the 

sample plots. The observations drawn from the below results are listed in the below section. 

 

Figure 31: Network Delay Plots 

4. Observations 

From the above plots summarizing the controller setup time, static flow processing time, network 

delay and OVS setup time, the following observations are made: 

OVS Setup Time 

Difference between the time stamp of Last packet on the 

firewall and the time of first offloaded packet directly on to 

the server connected port on the OVSd (T4-T3) 



61 
 

 Static Flow Processing Time (FPT) varies in the range 2.5 to 4.1 milliseconds 

 Controller Setup Time (CST) varies in the range 3.5 to 10.1 milliseconds 

 Network Delay (ND) varies in the range 2 to 8 milliseconds 

 In many cases, OVS Setup Time (OST) is ranging in two clusters; one ranging 10 to 14 

milliseconds and the other ranging between 28 to 35 milliseconds; which is huge. 

 CST = FTP + ND; with the inconsistent network delay, variation in CST is huge. 

On investigation, we found following reasons for the above variations/ inconsistency: 

 T2 and (T1, T1a) are on different machines. Clock synchronization is an issue. 

 Delays due to virtualization are a major cause. 

 

5. Xen Virtualization Delays 

For understanding the delays caused by virtualization, we need to understand the following 

concepts: [20] 

 pCPU – refers to physical CPU  

o It is a physical CPU core if hyper threading is unavailable 

o a logical CPU when hyper threading is available 

 vCPU – refers to virtual CPU 

o a VMs virtual Processor 

o vCPU runs on a pCPU 

o ‘It is an execution context on a pCPU and, like a process, a vCPU can be in running 

state, ready state, wait state or wait_idle state’ [20] 

 XEN Resource Scheduling 



62 
 

o In case of many VMs instantiated on one Xen Host, it is understood that all these 

VMs use the same physical machine's hardware. The XEN resource scheduling 

does the resource-sharing between VMs. Specifically, the CPU, hard disk and 

network card are involved. 

Firstly, there is no relation between the number of vCPUs to be allocated to a pCPU or x pCPUs. 

Also there is no consideration for the above to ensure good performance. This is done only by 

estimating the work load on the virtual machines.  

Also, on Xen virtualized environments, researchers made the below observations: [13] 

 Processor sharing cause very unstable TCP/UDP throughputs 

 Packet RTT abnormally varies – Unstable network performance 

In this context, let us recall the physical resources and the virtual machine share of the available 

physical resources in Table 5 & Figure 5. The variance caused in ICMP RTT due to XEN 

virtualization is explained in 'The Impact of Virtualization on Network Performance of Amazon 

EC2 Data Center' [21]. Also, our OST measurements are justified in the explanations in 'Explaining 

Packet Delays under Virtualization'. [21] 

Here in our case, the network latency is much more because of the following aspects: 

 High number of vCPUs allocated which in-turn is huge work load on the Xen host 

 Resource sharing and scheduling for data transfer on 20 virtual network interfaces on 

Xen host with 4 bridging instances of Open vSwitch 

 

 



63 
 

Chapter 7 

 

Setup with Open Flow Hardware Switch & 

Distributed VM’s 

 

The earlier setup with all the VMs (Client, Server, AppServer & Firewall) on the same Xen host 

yielded highly variable output, which will be discussed in the next chapter. 

Experimental setup with OpenFlow hardware switch is built. Also the VMs are distributed across 

multiple Xen hosts and the measurement point is introduced by tapping wire.The experimental 

setup is built with Pica8. 

1. Experimental Setup 

 

Figure 32 depicts experimental setup with OpenFlow hardware switch. The network connections 

and elements are explained below. 



64 
 

 

Figure 32: Experimental Setup with Hardware OpenFlow Switch 

 

1. Client VM communication to Server VM will happen through the OpenFlow switch. 

2. Client/Server VM to communicate with the other, will reach the OVS-br3/OVS-br4 

respectively. 

3. The physical NIC on Xen Host2 & Xen Host3 are bridged to the OVS-br3/OVS-br4 

respectively. 

4. Flows are written on OVS-br3/OVS-br4 such that the incoming traffic from the 

Client/Server is forwarded to the physical NIC, which in-turn is connected to the Pica8 

OpenFlow hardware switch. 

Also, flows are pushed on to the Pica8 such that the client to server traffic will not take the normal 

path, but will be forwarded to the firewall hosted PC. 

 



65 
 

 

5. Traffic ingresses the XenHost1 physical NIC1 which is bridged to OVS-br2 & flow rules 

written on the OVS-br2 will input the traffic to the firewall port. 

6. Firewall DPIs traffic, identifies the application and sends out on the firewall out port. So, 

the traffic again arrives at the OVS-br2. Now, the traffic is forwarded to physical NIC2 

(bridged to OVS-br2) of XenHost1. 

7. Traffic arrives again at Pica8, on which the flow rules which were written already, directs 

the traffic to the Server connected port. Similarly the traffic coming from server follows 

the path directed by the flows written on the Pica8 and OVS-br2, OVS-br3, OVS-br4 

8. App-Steering configuration on firewall, dictates to inform the AppServer about the on-

going sessions as UDP messages. 

9. In case of any offload rules already configured in AppServer, populates the static flow 

pushes with the information received in the form of UDP messages in conjunction with 

user application input.  

10. These static flow pushes are sent to the Floodlight Controller, which in-turn sends out the 

OpenFlow Flow-Mod messages to the Pica8 OpenFlow Switch. 

11. The traffic will be directed as per the new offload rules written on the Pica8 switch with 

the higher priority, dis-regarding the earlier flow rules. 

 

 

 



66 
 

Chapter 8 

 

Network Delays  

 

1. What is minimum length of a session on firewall to benefit from offloading? 

After a session is identified on the firewall, before it is offloaded, the following are the sequence 

of events: 

 

Figure 33: Offloading Events 



67 
 

In a broader sense, the above delays are to be characterized, analyzed and measured to answer the 

bigger question ‘What is Minimum length of a session on firewall to benefit from offloading?’ 

 

i. Firewall to AppServer Network Delay 

o Firewall through the Fabric Interface, attached to OVS-br1, sends out a UDP 

message with the on-going session information on the firewall 

 

 

 

 

 

 

 

 

 

 

 

o Time taken for UDP messages to reach the AppServer from fabric interface. 

Difference of timestamps between the UDP messages received on the firewall 

fabric connected port of OVS-br1 and AppServer connected port of OVS-br1 is the 

internal fabric network switching delay. 

 

set policy z1-z2 zone z1 z2 rule PERMIT-ALL match source-address Any 

set policy z1-z2 zone z1 z2 rule PERMIT-ALL match destination-address Any 

set policy z1-z2 zone z1 z2 rule PERMIT-ALL match service Any 

set policy z1-z2 zone z1 z2 rule PERMIT-ALL match app-group Varmour::Any 

set policy z1-z2 zone z1 z2 rule PERMIT-ALL action permit steering app-server 

set profile app-steering app-server server-ip-address 10.0.2.20 

set profile app-steering app-server server-port 30273 

set profile app-steering app-server server-protocol udp 

set profile app-steering app-server resend-interval 3 

set profile app-steering app-server session-timeout 30 



68 
 

ii. AppServer Processing Delay 

o AppServer after receiving the UDP message, processes the same and generates the 

Static Flow Push message to setup flows to the controller along with the user-input 

of the application. 

o The time difference of the reception of the UDP message and the outgoing Static 

Flow Push (HTTP POST) is measured and this is the AppServer processing delay.  

iii. AppServer to Floodlight Network Delay 

o The AppServer sends out the generated Static Flow Push messages to the Floodlight 

Controller 

o To characterize this one-way delay between AppServer and Floodlight Controller 

for relaying the Static Flow Pushes, the following methods are considered – 

 {POST – OK} 

 Static Flow Push messages are sent as HTTP POST.  

 HTTP OK messages are received in response.  

 Difference of timestamp between the HTTP POST and HTTP OK 

messages are calculated and can be termed as the AppServer to 

floodlight network delay. 

 But this would not be the exact network delay. This also has a 

component of delay of processing the HTTP POSTs and generating 

a HTTP OK in response. 

 RTT 

 ICMP RTT: 

1. Generally network delay are measured with ICMP RTT. 



69 
 

2. AppServer to Floodlight one-way network delay can be 

measured Rx-Tx of the ICMP messages 

 TCP RTT: 

1. This delay can be measured more realistically, by measuring 

the Rx-Tx  of TCP ping messages with the load same as the 

Static Flow Pushes and the port number on which the 

floodlight is listening the Static Flows.   

o The measurements are made at the wire tap PC from a hub. The hub introduced 

delay needs to be subtracted from the measurement. 

iv. Floodlight Processing Time 

o Floodlight Controller, generates and sends out the OpenFlow Flow-Mod messages 

to the Pica8 switch 

o The difference in timestamp between the reception of HTTP POST message and 

outgoing OpenFlow Flow-Mod message on the Floodlight Controller is the 

Floodlight processing time. 

v. Floodlight to OF Switch Network Delay 

o The OpenFlow Flow-Mod’s sent out of the controller reaches the Pica8 switch and 

the flow table is modified accordingly. 

o At the wire-tap PC, difference between timestamps of OpenFlow Flow Mod 

messages received directly from the Floodlight and the OpenFlow Flow Mod’s 

received on a different interface of the Wire Tap which is connected to the mirrored 

port of the Flow Mod receiving port on Pica8. 

 



70 
 

2. Determining Minimum Length of Session to Benefit from Offloading 

The minimum length of the session on the firewall should be greater than or equal to the delays 

introduced by the offload process to get benefitted from the intelligent DPI bypass through offload 

rules. In the above chapters, we understood various events that all combine to result in the offload 

process. Also, we have attempted to determine how long does it for each event 

(network/processing delay) to occur. It is evident that, the sum of all the network and processing 

delays introduced by the offload process is the minimal length of the session on the firewall to get 

benefited from the intelligent DPI bypass. 

 

 

 

 

 

 

 

 

 

 

 

 



71 
 

Chapter 9 

 

Measurements 

 

1. Measurement Points on the Experimental Setup 

 

Let us quickly recall the measurement points on the experimental setup: 

 Pica8 connected interface on the Floodlight Controller 

 Firewall fabric & AppServer connected interfaces on OVS-br1 

 Hub connected interface on WireTap PC 

 AppServer interface in the firewall fabric network   

2. Measurements 

The time differences are measured on the above interfaces as per the delays defined in Chapter 8. 

i. Firewall to AppServer network delay: 

 The below graph explains Firewall to AppServer network delay 

 The OVS switching delay is the prime component of this firewall to AppServer delay 

as both the Virtual Machines are present on the same physical machine 



72 
 

 From the below graph, it is evident that the delay mostly ranges between 0.2 & 0.3 

milliseconds – This can also be accounted to the flow lookup and forwarding time 

matching the ingress traffic on the switch attached ports 

 

Figure 34: Firewall to AppServer Network Delay 

ii. AppServer Processing Time: 

 The below graph depicts the AppServer Processing Time 

 After reception of the UDP message from the firewall with the session info, the 

AppServer takes typically 2 to 6 milliseconds to generate Static Flow pushes on to the 

controller linked to it 

 Remember that this delay component has the delay component added up by the 

virtualization. 

 

Figure 35: AppServer Processing Time 

0.000

2.000

4.000

6.000

8.000

10.000

M
ill

is
ec

o
n

d
s

AppServer_Processing_Time



73 
 

iii. Flow Setup Time: 

 This delay is the sum of the Floodlight processing time and the network delay between 

the Floodlight and the OpenFlow switch. 

 It is understood that the Floodlight Controller takes generally 2.2 to 4 milliseconds to 

process the static flow pushes. 

 But often we can see the spike in the processing time of the static flow pushes 

 It is found that these additional delays in the Floodlight static flow processing time is 

due to the Java garbage collection. 

 Though the network delay is consistent, due to the variance in floodlight static flow 

processing time, this varies! 

 

 

Figure 36: Sum of Floodlight Static Flow Processing Time and Floodlight to OVS network 

Delay 

iv. Floodlight Processing Time: 

 As discussed above, it is observed that the floodlight processing time varies between 2 

to 3.9 milliseconds mostly. 

0.000

2.000

4.000

6.000

8.000

10.000

m
ili

se
co

n
d

s

FlowSetupTime



74 
 

 Please note that the measurements are made at different times and not a stretch of 

measurements done at a particular time. 

 The additional delay in processing the static flow push and generating flow mod is due 

to the java garbage collection. 

 

 

Figure 37: Floodlight Processing Delay 

v. AppServer to Floodlight Network Delay: 

 The HTTP OK in response to the HTTP Static Flow Push sent by AppServer takes 

around 2.2 to 4.3 milliseconds on average 

 This delay(w/ hub introduced delay) has actually the following components: 

o  RTT of HTTP POST reaching the Floodlight from AppServer and the HTTP 

OK reaching the  AppServer 

o HTTP OK response generation time by the Floodlight Controller 

o The HTTP OK response generation time has more variance in this measurement 

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

m
ill

is
ec

o
n

d
s

Floodlight_Processing_Time



75 
 

 

 

Figure 38: AppServer to Floodlight Network Delay 

 

 

 

 

 

 

 

 

 

 

 

 

0.000

2.000

4.000

6.000

m
ill

i s
ec

o
n

d
s

AppServer to FL Delay 

AppS to FL NW_Delay with HUB(milliseconds)

AppS to FL NW_Delay W/O HUB Delay(milliseconds)



76 
 

Chapter 10 

 

GENI Experimentation 

 

The experimental setup for Intelligent DPI offloading by Application Traffic Steering is built on 

the GENI [22] network resources and the network delays are measured.  

1. GENI TOPOLOGY 

The compute resources are reserved through the flack interface on the Protogeni [23] resources 

and the next section describes the below network topology. 

 

Figure 39: GENI Topology 



77 
 

2. Realization of Experimental Network Nodes on GENI 

Let us discuss briefly how the topology is realized on the compute nodes: 

 OpenFlow Switch – Open vSwitch is installed on a raw PC node; which is connected 

to the Client,Server and the Firewall in and out ports. A bridge is configured attaching 

the connected ports to the above mentioned network nodes. Flow rules are installed on 

the bridge to switch all the traffic passing from client to server to the firewall for deep 

packet inspection. 

 AppServer – A raw PC node with Ubuntu operating system, is configured to be 

AppServer 

 Client/Server – Linux VMs for passing traffic across. 

 Floodlight – A raw Ubuntu PC on which the Floodlight Controller is running. 

 WireTap – The measurement point on the topology. 

 

 

 

 

 

 

 



78 
 

Chapter 11 

 

Results 

 

 

As discussed in the Chapter 9, the experimentation is done and Firewall to AppServer network 

delay, AppServer processing time, AppServer to Floodlight network delay, Floodlight processing 

time & Floodlight to OpenFlow switch network delay are found. The below graphical 

representations summarize the above delays: 

i. Firewall to AppServer Network Delay 

 

 

Figure 40: Firewall to AppServer Network Delay 



79 
 

 Graphical representation of the same is made in  Figure 40. 

 Firewall and AppServer are connected through a measurement point node, WireTap. 

 UDP traffic from the firewall to AppServer flows through WireTap. 

 Additional delay caused by traffic flowing through WireTap is not measured for the 

following reasons: 

o Ideally the Firewall/AppServer/Controller cannot be directly connected nodes 

o All of them will be connected through a switching element. Implies they would be 

one hop away from each. 

o In the above case, say the delay from the firewall to the switching element and 

switching element to the AppServer is visualized as the delay from firewall to 

WireTap and then from WireTap to the AppServer. 

 As the Firewall is a Virtual Machine on the KVM hypervisor on a Raw PC 

o This delay component has the KVM bridge delay component too. 

o The overall Firewall to AppServer network delay constitute 0.125 to 0.175 

millisecond range. Average delay is 0.169 milliseconds on a set of 7000 

measurement points. 

o Please note that this is not the Round Trip Time. It is just one way UDP message 

AppServer reaching time from the Firewall. 

 

ii. AppServer to Floodlight Network Delay: 

 Please refer to the definition and measurement options in section 1 of Chapter 8. The 

three possibilities are plotted in As discussed in the above mentioned section, network 

delay is not the only component in the {POST-OK} method. So the RTT methods are 



80 
 

employed to find the one way network delay between the AppServer and Floodlight 

Controller. For further considerations TCP based measurement is used. 

 On the topology built on raw physical nodes on GENI, AppServer to Floodlight 

network delay ranges from 0.15 to 0.175 milliseconds. This is the ICMP one-way 

network delay. The same is plotted in Figure 10.3(a). Average delay is 0.1543 

milliseconds 

 On the WireTap, the difference between the timestamp’s of HTTP POST message from 

the AppServer and HTTP OK sent in response for the HTTP POST are plotted in Figure 

10(b). Average delay is 5.191 milliseconds 

 The AppServer to Floodlight one way network delay is measured by generating TCP 

packets with same frame size as the Static Flow Push messages (278 bytes in this 

experiment) and sent with destination port 80. The same is plotted in Figure 10(c). The 

average delay is 0.17 milliseconds 

 

Figure 41: AppServer to Floodlight Network Delay {POST-OK} (b) 



81 
 

 

Figure 42: AppServer to Floodlight Network Delay TCP RTT (c) 

iii. AppServer Processing Time: 

 It takes 4 to 6 milliseconds to typically process the UDP session info from the firewall and 

generate static flow pushes on to the Floodlight Controller 

 The spikes in the processing delay are due to java garbage collection. 

 

Figure 43: AppServer Processing Time 



82 
 

iv. Floodlight to OVS Network Delay: 

 On the GENI emulation topology shown in Figure10, the average one-way network 

delay between the Floodlight Controller and OVS is 0.115 milliseconds 

 After the Flow Mod reaching the Open vSwitch, it processes the Flow Mod and writes 

the same to the flow table. 

 

 

Figure 44: Floodlight to OVS Network Delay 

v. Floodlight Processing Time: 

 It takes 4.5 to 6 milliseconds generally to process a static flow push and generate a flow 

mod to the switch it is connected with. 

 The spikes in the processing delay are due to the Java garbage collection. 

 It takes relatively less time for the Floodlight Controller to generate a reactive flow rule 

from its already learnt topology. 



83 
 

 On average Floodlight took 4.94ms to process the Static Flow Pushes and convert to 

OpenFlow Flow Mod’s 

 

 

Figure 45: Floodlight Processing Time 

All the above mentioned delays sum up to the minimum length of the session on the firewall 

to benefit from the intelligent offloading as discussed in the section ‘Determining the Minimum 

length of session to benefit from Offloading’. 

The below graph represents the total time it takes to push the new offload rules to the 

OpenFlow switching element after identifying the application on the firewall. 



84 
 

 

Figure 46: Offload rules to OVS 

 

vi. How  long does it take to identify SCP application on firewall? 

Experiments are conducted to find out the average time it takes to identify the SCP application 

traffic on the firewall.  

 The below graph depicts the SCP application identification times for number of 

iterations.  

 It is found that the SCP application identification time ranges between 20.1 

milliseconds and 21.8 milliseconds.  

 Also, the time difference between the iterations is greater than the session expiration 

time on the firewall. 

 Hence, for every iteration the firewall identifies the application and maintains the new 

state information. 



85 
 

 

Figure 47: SCP Application Identification Time on Firewall 

 

The below graphs are the representations of all the network delay’s it takes to offload the fast 

path rules to the OpenFlow switch(OVS in our case) 

 

Figure 48: Offload Delay Measurements (a) 

19

20

21

22
Ti

m
e

 in
 m

ill
is

e
co

n
d

s

Iterations

SCP Identification Time on Firewall



86 
 

 

Figure 49: Offload Delay Measurements (b) 

 

 

 

 

 

 

 

 

 



87 
 

Chapter 12 

 

Conclusion 

 

From the results yielded from the experiment to find out the time it takes for the new offload rules 

to reach the OpenFlow switch, the following conclusions can be made: 

For the virtualized setup, the following conclusions can be drawn: 

 Mean time and the 99th percentile time for the new offload flows to reach OpenFlow 

switch for the fast path are calculated. 

 It takes 22.11 milliseconds on average to push the new offload rules to the OpenFlow 

switch for the fast path and the 99th percentile is 32.7435 milliseconds. The split of all 

the delays involved are tabulated and graphed below. 

 The Floodlight Processing Time takes 83.68% of the 99th percentile of total time to 

offload and 77.55% of the mean total time to offload. 

 

Please note that the following terms are used further: 

 FLPT – Floodlight Processing Time;  

 ASPT – AppServer Processing Time;  



88 
 

 AS2FL – AppServer to Floodlight network delay;  

 FL2OVS – Floodlight Controller to Open vSwitch network delay;  

 FW2AS – Firewall to AppServer network delay  

 

DELAY FLPT ASPT FL2OVS AS2FL FW2AS 

99th 

Percentile 

27.4 4.497 0.27 0.394 0.1825 

Mean 17.14892 3.873931 0.562724 0.373621 0.152914 

 

Table 6: Mean & 99th Percentile of Total Time to Offload on Virtualized Setup 

 

 

Figure 50: Mean & 99th Percentile - Time to Offload - Virtualized Setup 



89 
 

For the hardware PC setup, the following conclusions can be drawn: 

 Mean time and the 99th percentile time for the new offload flows to reach the OpenFlow 

switch for the fast path are calculated. 

 It takes 9.223 milliseconds on average to push the new offload rules to the OpenFlow 

switch for the fast path and the 99th percentile is 16.066 milliseconds. The split of all 

the delays involved are tabulated and graphed below. 

 

Delay FLPT ASPT FL2OVS AS2FL FW2AS 

Mean 4.903049 3.909264 0.112401 0.154378 0.143981 

99th Percentile 8.84 6.884523 0.159 0.1335 0.0495 

 

Table 7: Mean & 99th Percentile of Total Time to Offload on Physical PC Setup 

 



90 
 

 

Figure 51: Mean & 99th Percentile - Total Time to Offload - Physical PC Setup 

 

The following observations provide insight on which measurements can be generalized out of the 

arrived results: 

 Network Delays have minimal variance on comparison to the processing delay’s on 

iterations & virtualization causes additional processing delays due to the 

processor/resource sharing between the VMs. 

 On the virtualized setup, Floodlight processing time takes 55.023% of the 99th 

1percentile of Total Time to offload and 53.16% of the mean total time to offload 

whereas it is a much different scenario when the physical PC experimental setup results 

are considered. 



91 
 

 In majority of the cases, network delays will be in the same order as arrived results. 

The setup is built considering the network architecture of firewall placement and most 

probable placements (number of hops) of AppServer, OpenFlow controller. 

 Consideration on the type of the machine (physical or virtual) and virtual to physical 

resource mapping (in case of virtual machines) is required for measurement of 

Floodlight & AppServer processing times. We have mentioned the resources 

specifications of the experimental PCs we have used. Measured Floodlight & 

AppServer processing times may be considered accordingly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



92 
 

 

 

Chapter 13 

 

Future Work 

 

 

The following are the important further aspects to study in regard to the current work: 

 Determining CPU and Memory Utilization savings on the firewall by offloading safe traffic 

 Understand the variation in response time of OpenFlow switch flow match when the flow 

rule has minimal match criteria & the flow rule using maximum tuples. 

 AppServer enhancements like: 

o Capability to configure offload rule’s to identify different streams of the same 

application traffic between two nodes  

o Integrate AppServer with the OpenFlow controller 

o Switch based profile selection menu instead of existing drop down selection 

 Use Case – AppServer attached to multiple controllers & each controller 

having multiple OpenFlow switches attached. 

 

 



93 
 

References 

 

1. CISCO systems, "Deploying Firewalls Throughout Your Organization." Accessed 

January 8, 2014.  

http://www.cisco.com/en/US/prod/collateral/vpndevc/ps5708/ps5710/ps1018/prod_white

_paper0900aecd8057f042.pdf.  

2. Luo, Shengmei , Zhaoji Lin, and Xiaohua Chen. ZTE Corp., Shenzhen, China, 

"Virtualization security for cloud computing service." Last modified December 14, 2011. 

Accessed January 8, 2014. 

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6138516&url=http://ieeexplore.ie

ee.org/xpls/abs_all.jsp?arnumber=6138516. 

3. The Open Networking Foundation, "Software-Defined Networking (SDN) Definition." 

Accessed January 8, 2014. https://www.opennetworking.org/sdn-resources/sdn-

definition. 

4. The Open Networking Foundation, "OpenFlow Specification 1.4." Last modified October 

14, 2013. Accessed January 8, 2014. 

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-

specifications/openflow/openflow-spec-v1.4.0.pdf. 

5. Curran, Dominic. Citrix Systems Inc, "Open vSwitch & OpenFlow in XCP & 

XenServer." Last modified November 30, 2012. Accessed January 8, 

2014.http://www.slideshare.net/xen_com_mgr/under-the-hood-open-vswitch-openflow-

in-xcp-xenserver. 

http://www.cisco.com/en/US/prod/collateral/vpndevc/ps5708/ps5710/ps1018/prod_white_paper0900aecd8057f042.pdf
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps5708/ps5710/ps1018/prod_white_paper0900aecd8057f042.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6138516&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6138516
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6138516&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6138516
https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
http://www.slideshare.net/xen_com_mgr/under-the-hood-open-vswitch-openflow-in-xcp-xenserver
http://www.slideshare.net/xen_com_mgr/under-the-hood-open-vswitch-openflow-in-xcp-xenserver


94 
 

6. vARMOUR Networks Inc, "Software Defined Security - SDSec." Accessed January 8, 

2014.http://www.varmour.com/technology.html. 

7. SANS Institute, "Understanding Intrusion Detection Systems." Accessed January 8, 

2014.http://www.sans.org/reading-room/whitepapers/detection/understanding-intrusion-

detection-systems-337?show=understanding-intrusion-detection-systems-

337&cat=detection. 

8. Eli Dart, Lauren Rotman, Brian Tierney, Jason Zurawski, and Mary Hester. "The Science 

DMZ: A Network Design Pattern for Data-Intensive Science."SuperComputing 13.  

9. Triwedi, Uday. "A self-learning stateful application identification method for Deep 

Packet Inspection."International Conference on Computing Technology and Information 

Management (ICCM) : 416-421. 

http://ieeexplore.ieee.org.ezproxy.lib.uh.edu/stamp/stamp.jsp?tp=&arnumber=6268534(a

ccessed January 8, 2014).1 

10. Shaw, Chris. "Security Focus Focus of new EEMBC benchmark suite." Accessed January 

8, 2014. http://www.newelectronics.co.uk/electronics-news/security-focus-of-new-

eembc-benchmark-suite/26872/. 

11. Khalife, Jawad M, Jesus Díaz-Verdejo, and Amjad Hajjar. "Performance of OpenDPI in 

Identifying Sampled Network Traffic." Academy Publisher. no. 1 (2013): 71-81. 

http://ojs.academypublisher.com/index.php/jnw/article/view/8396/0 (accessed January 8, 

2014). 

12. Wikipedia, "XEN." Accessed January 8, 2014.http://en.wikipedia.org/wiki/Xen. 

13. Wang, Guohui, and T.S. Eugene Ng. "The Impact of Virtualization on Network 

Performance of Amazon EC2 Data Center." INFOCOM'10. : 1163-1171. 

http://www.varmour.com/technology.html
http://www.sans.org/reading-room/whitepapers/detection/understanding-intrusion-detection-systems-337?show=understanding-intrusion-detection-systems-337&cat=detection
http://www.sans.org/reading-room/whitepapers/detection/understanding-intrusion-detection-systems-337?show=understanding-intrusion-detection-systems-337&cat=detection
http://www.sans.org/reading-room/whitepapers/detection/understanding-intrusion-detection-systems-337?show=understanding-intrusion-detection-systems-337&cat=detection
http://ieeexplore.ieee.org.ezproxy.lib.uh.edu/stamp/stamp.jsp?tp=&arnumber=6268534
http://www.newelectronics.co.uk/electronics-news/security-focus-of-new-eembc-benchmark-suite/26872/
http://www.newelectronics.co.uk/electronics-news/security-focus-of-new-eembc-benchmark-suite/26872/
http://ojs.academypublisher.com/index.php/jnw/article/view/8396/0
http://en.wikipedia.org/wiki/Xen


95 
 

http://www.cs.rice.edu/~eugeneng/papers/INFOCOM10-ec2.pdf (accessed January 8, 

2014). 

14. McKeown, Nick, Hari Balakrishnan, Scott Shenker, Guru Parulkar, Tom Anderson, and 

Larry Peterson. "OpenFlow: Enabling Innovation in Campus Networks.” 

http://archive.openflow.org/documents/openflow-wp-latest.pdf (accessed January 8, 

2014). 

15. "Open virtual Switch." Accessed January 8, 2014. openvswitch.org. 

16.  BigSwitch Networks Inc, "Static Flow Pusher API." Accessed January 8, 2014. 

http://www.openflowhub.org/display/floodlightcontroller/StaticFlow Pusher 

17. cURL, "cURL Manual Page." Accessed January 8, 2014. 

http://curl.haxx.se/docs/manpage.html. 

18. Marist College, "What is Avior?." Accessed January 8, 

2014. http://openflow.marist.edu/avior. 

19. TCPDUMP/LIBPCAP public repository, "TCPDUMP & LIBPCAP." Accessed January 

8, 2014.http://www.tcpdump.org/. 

20. Virtual Byte | virtualization & More, "Some thoughts about pCPU/vCPU." Accessed 

January 8, 2014.http://virtualbyte.wordpress.com/2010/12/01/some-thoughts-about-

pcpuvcpu/. 

21. Whiteaker, Jon, Fabian Schneider, and Renata Teixeira. "Explaining packet delays under 

virtualization."ACM SIGCOMM Computer Communication Review. no. 1 (2011): 38-44. 

http://dl.acm.org/citation.cfm?id=1925867(accessed January 8, 2014). 

22. GENI, "GENI - Exploring Networks of future." Accessed January 8, 

2014. http://www.geni.net. 

http://www.cs.rice.edu/~eugeneng/papers/INFOCOM10-ec2.pdf
http://archive.openflow.org/documents/openflow-wp-latest.pdf
http://openflow.marist.edu/avior
http://www.tcpdump.org/
http://virtualbyte.wordpress.com/2010/12/01/some-thoughts-about-pcpuvcpu/
http://virtualbyte.wordpress.com/2010/12/01/some-thoughts-about-pcpuvcpu/
http://dl.acm.org/citation.cfm?id=1925867
http://www.geni.net/


96 
 

23. Protogeni, "WikiStart - Protogeni." Accessed January 8, 2014. 

http://www.protogeni.net/wiki. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.protogeni.net/wiki


97 
 

Appendix  

1. GEC 16 POSTER 

 

 

 

 

 

 

 

 



98 
 

 

2. GEC 17 POSTER 

 

 

 

 

 

 

 

 

 



99 
 

 

3. GEC 18 POSTER 

 

 

 

 

 

 

 



100 
 

 

 

 

Bibliography 

 

I. Describes the updated OpenFlow switch specifications added to the already existing 

features. The latest updates of the OpenFlow protocol messages are listed. 

Open Networking Foundation 

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-

specifications/openflow/openflow-spec-v1.4.0.pdf 

II. Explains the need for programmable switches and networks. Describes the OpenFlow 

switch and Controller with mention of the new flow rule based switching capabilities. 

The flow tables & flow table lookup for switching the traffic are explained. 

OpenFlow: Enabling Innovation in Campus Networks | March 14, 2008 

Nick McKeown, Stanford University; Tom Anderson, University of Washington  

Hari Balakrishnan, MIT ;Guru Parulkar, Stanford University  

Larry Peterson, Princeton University ; Jennifer Rexford, Princeton University  

Scott Shenker, University of California, Berkeley; Jonathan Turner, Washington 

University in St. Louis 

http://archive.openflow.org/documents/openflow-wp-latest.pdf 

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
http://archive.openflow.org/documents/openflow-wp-latest.pdf


101 
 

III. Extensive mention about the existing/updated configuration and operational limitations of 

the HP ProCurve switch. Detailing on the VLAN virtualization and Aggregation Modes 

is available. 

http://bizsupport2.austin.hp.com/bc/docs/support/SupportManual/c03512348/c03512348.

pdf 

IV. Using the property that many of the application flows have correlated flows and they can 

be identified by existing DPI methods, a novel approach is proposed. Keeping 

information of identified flows during an unidentified flow and when enough records are 

found, correlation of the unidentified flow with identified flow is made which results in 

concluding the unidentified flow being part of an identified flow application. This 

method identifies application flows with the help of correlation flows and statistical 

analysis. Also discussion on existing DPI methods like port based, pattern based, flow 

statistics and flow behavior based.  

A Self-learning Stateful Application Identification – Method for Deep Packet Inspection 

Uday Trivedi 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6268534 

V. Comprehensively discussed the need for Science DMZ. Aspects like Architecture, 

design, implementation, security, performance tuning, application selection of the science 

DMZ has been shared. Use cases of successful implementation of the Science DMZ at 

the University of Colorado at Boulder, The Pennsylvania State University & Virginia 

Tech Transportation Institute, The National Oceanic and Atmospheric Administration 

and National Energy Research Scientific Computing Center. Abilities and advantages of 

http://bizsupport2.austin.hp.com/bc/docs/support/SupportManual/c03512348/c03512348.pdf
http://bizsupport2.austin.hp.com/bc/docs/support/SupportManual/c03512348/c03512348.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6268534


102 
 

OpenFlow to dynamically modify security policies for large flows between trusted zones 

are discussed.  

The Science DMZ: A Network Design Pattern for Data-Intensive Science 

Eli Dart,Lauren Rotman, Brian Tierney, Mary Hester, Jason Zurawski 

http://www.es.net/assets/pubs_presos/sc13sciDMZ-final.pdf 

VI. Leveraging capabilities of Software Defined Networking with OpenFlow protocol new 

architectural proposals have been examined on SC11 SCinet Research Sandbox 

demonstrator with in the science-network. Explained how ECSEL (using ESNet's 

OSCAR service) benefits a campus implementing a data transfer service can leverage 

OpenFlow for end-to-end connectivity and flexibility. Discussed implementation & 

challenges of complex use cases like having multiple science centers, OpenFlow/SDN 

science DMZ architecture, and Dynamic Science collaborations.  

Software-defined networking for big-data science – Architectural models from campus to 

WAN : Inder Monga, Eric Pouyoul, Chin Guok,  Energy Sciences Network 

http://www.es.net/assets/pubs_presos/ESnet-SRS-SC12-paper-camera-ready.pdf 

 

VII. Network traffic study is conducted at 10 data centers of three variants like University, 

Enterprise and Cloud. SNMP polls, Network Topology and packet traces are collected for 

analysis. Interesting findings include 'Most flows in the data centers are small in size (≤ 

10KB), a significant fraction of which last under a few hundreds of milliseconds, and the 

number of active flows per second is under 10,000 per rack across all data centers'. 

Application Communication patterns including Flow-level communication characteristics 

http://www.es.net/assets/pubs_presos/sc13sciDMZ-final.pdf
http://www.es.net/assets/pubs_presos/ESnet-SRS-SC12-paper-camera-ready.pdf


103 
 

like Flow Sizes, Flow lengths, packet sizes, Number of active flows, Flow inter-arrival 

times’ are observed.  

Network Traffic Characteristics of Data Centers in the Wild             

Theophilus Benson∗, Aditya Akella∗ and David A. Maltz†               

∗University of Wisconsin–Madison †Microsoft Research–Redmond 

http://bnrg.cs.berkeley.edu/~randy/Courses/CS294.S13/3.4.pdf 

 

VIII. Developed tool, cbench to quantify OpenFlow controller performance like number of 

flow setups per second a controller can handle. The measurements can made in 

throughput mode and latency mode.  

On Controller Performance in Software-Defined Networks      

Amin Tootoonchian  University of Toronto/ICSI        

Sergey Gorbunov  University of Toronto              

Yashar Ganjali  University of Toronto     

Martin Casado  Nicira Networks               

Rob Sherwood  Big Switch Networks 

http://dl.acm.org/citation.cfm?id=2228297 

IX. OFLOPS, a tool to measure performance and test the capabilities of an OpenFlow 

software and hardware switches. Tests to find out packet processing time, Flow table 

update rate, OpenFlow monitoring capabilities, impact of interaction between OpenFlow 

operations are made. 

OFLOPS: An Open Framework for OpenFlow Switch Evaluation 

Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob Sherwood and Andrew W. Moore 

http://bnrg.cs.berkeley.edu/~randy/Courses/CS294.S13/3.4.pdf
http://dl.acm.org/citation.cfm?id=2228297


104 
 

http://www.net.t-labs.tu-berlin.de/papers/RSUSM-OOFOFSE-12.pdf 

 

X. Switching times are measured for hardware and software OpenFlow implementations. 

Based on these a model has been proposed to measure the blocking probability and 

forwarding speed of an OpenFlow switch with OF Controller. Packet sojourn time and 

probability of lost packets has been measured with this model. Patterns of Forwarding 

delay of OpenFlow switch (hardware and software) with payload is found out.  

Modeling and Performance Evaluation of an OpenFlow Architecture 

Michael Jarschel, Simon Oechsner, Daniel Schlosser, Rastin Pries, Sebastian Goll, 

Phuoc Tran-Gia 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6038457 

 

XI. A common testing Methodology has been proposed for performance measurement of 

Deep Packet Inspection of Firewalls. DPI Benchmarking is done at different scalability 

levels (number of flows) of network appliances.  

Performance and Measurement of DPI Technologies   

Proposal for a Common Testing Methodology: DPIBench       

White Paper v1.3 | Jeff Caldwell, SonicWALL Markus Levy, EEMBC 

XII. pS, performance tool kit, is a framework of performance tools, middleware, 

visualizations and alarms .This tool set measures the network performance with the 

parameters like jitter, achievable bandwidth, latency using tools like NPAD & NDT, 

OWAMP and BWCTL  

Firewall Port Recommendations for the pS Performance Toolkit  

http://www.net.t-labs.tu-berlin.de/papers/RSUSM-OOFOFSE-12.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6038457


105 
 

Internet2 Performance Working Group, March 2013     

  

Edited by J. Zurawski (Internet2), A. Brown (Internet2), A. Lake (ESnet),K. Miller (The  

Pennsylvania State University), M. Swany (Indiana University),B. Tierney (ESnet), and 

M. Zekauskas (Internet2) 

http://psps.perfsonar.net/toolkit/20130628-Firewall-PerfWG.pdf 

 

XIII. Impact of virtualization on RTT (round trip time) is measured on Linux-VServer and 

XEN. Results are Round trip time is dissected and analyzed. It is found out that heavy 

network traffic from competing virtual machines can introduce significant delay to RTT 

measurements  and most delay is introduced while sending packets (as opposed to 

receiving packets).  

Explaining Packet Delays under Virtualization 

Jon Whiteaker, Fabian Schneider, Renata Teixeira           

UPMC Sorbonne Universites and CNRS               

ACM SIGCOMM Computer Communication Review 

http://www.net.t-labs.tu-berlin.de/~fabian/papers/ccrJan11whiteaker-paper.pdf 

 

XIV. Measurements to characterize the impact of virtualization on the network in Amazon 

Elastic Cloud Computing. Processor sharing, packet delay, TCP/UDP throughput and 

packet loss are measured on virtualized environments. Some of the worthwhile 

observations include that the virtual machines receive processor share of 40% - 50%, this 

results in very unstable TCP/UDP throughput, abnormal packet delays due to long 

http://psps.perfsonar.net/toolkit/20130628-Firewall-PerfWG.pdf
http://www.net.t-labs.tu-berlin.de/~fabian/papers/ccrJan11whiteaker-paper.pdf


106 
 

queuing delays at the driver domains of the virtualized machines. Also abnormally 

unstable network performance can dramatically skew the results of certain network 

performance measurement techniques.  

The Impact of Virtualization on Network Performance of Amazon EC2 Data Center 

Guohui Wang T. S. Eugene Ng 

Dept. of Computer Science, Rice University 

http://www.cs.rice.edu/~eugeneng/papers/INFOCOM10-ec2.pdf 

 

XV. Proposes a framework to solve current security vulnerabilities and threats (like attack 

between VMs or attack between VM and VMM,VM escape, VM controlled by host 

machine, Denial of Service, VM Sprawl) in two blocks – one being virtual security and 

the other being virtualization security management mechanisms. [15] 

 

“Virtualization security for cloud computing service”, International Conference on 

Cloud and Service Computing, Shengmei Luo,Zhaoji Lin,Xiaohua Chen ZTE Corporation 

and Zhuolin Yang, Jianyong Chen, Shenzhen University, Shenzhen, China 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6138516 

 

 

 

 

 

http://www.cs.rice.edu/~eugeneng/papers/INFOCOM10-ec2.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6138516


107 
 

 

 

 

 

INDEX 

Application Layer, 13 

AppServer, 30 

AppServer Processing Time, 69 

AppServer to Floodlight Network Delay, 69 

AVIOR, 38 

behavioral study, 25 

Clock synchronization, 51 

Configuration Management, 17 

Control Layer, 13 

Controller, 14 

Controller setup time, 50 

Controller to OVS Network Delay, 50 

CURL, 38 

Data Centers, 11 

data plane, 13 

Deep Packet Inspection, 20 

Deep Packet Inspection throughput, 19 

Distributed Firewalls, 12 

domain 0, 30 

DPIBench, 25 

Firewall, 30 

Firewall Bottleneck, 19 

Firewall Placement, 11 

Firewall to AppServer Network Delay, 69 

Floodlight, 32 

Floodlight Processing Time, 69 

Floodlight to OpenFlow Switch, 69 

flow tables, 32 

flow_mod, 16 

forwarding plane, 13 



108 
 

GENI, 67 

guest domains, 30 

Host Intrusion Detection System (HIDS), 21 

HTTP OK, 60 

HTTP POSTs, 60 

intelligent, 73 

Intrusion Detection/Prevention System, 20 

Intrusion Prevention System throughput, 19 

Network Intrusion Detection System, 21 

Network Node Intrusion Detection System 

(NNIDS), 21 

Open vSwitch, 32 

OpenDPI, 25 

OpenFlow, 14 

OpenFlow dissector Wireshark, 40 

OVS Setup Time, 50 

Packet Out, 16 

Packet_In, 16 

pCPU, 52 

pCPUs, 30, 31 

Pica8, 32 

PICA8, 32 

Protogeni, 67 

Science DMZ, 21 

SCP, 42 

SDSec, 33 

Shallow Packet Inspection, 20 

Software Defined Security (SDSec), 17 

Static Flow Processing Time, 50 

static flow push, 42 

Tcpdump, 40 

the time to offload, 50 

vARMOUR, 33 

vCPU, 52 

Virtual Firewalls, 12 

virtualization, 30 

wire tap, 60 

XEN, 30 

XEN Resource Scheduling, 52 

 


