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Abstract

Industrial applications such as production of high performance polymer-

nanocomposites, semiconductor fabrication, and catalysis involve molecular level

phenomena governed by interfacial interactions. Precise control of these interac-

tions will leverage the performance of materials in these applications. However, the

ability to tailor the molecular characteristics is hindered by incomplete understand-

ing of the controlling factors. This dissertation is broadly divided in three parts

discussing the development and application of modern computational methods to

elucidate such characteristics.

In the first part, detailed atomistic simulations of polymer-nanoparticle sys-

tems are performed by coupling preferential sampling techniques with connectivity-

altering Monte Carlo algorithms to address the challenges in modeling polymer

melts in proximity to a solid. The results reveal that polymer architecture holds a

prominent role in systems with nanoscopic particles. Furthermore, a scheme for

developing coarse-grained models of polymers with specific chemistry in contact

with the solid surface is presented and quantitatively evaluated. These models are

necessary to address the larger length scales required for study of polymer-particle

mixtures.

Interfaces and substrate interactions play an important role for increasingly

thinner polymer films employed in the semiconductor industry. There is a clear

need to develop predictive models capable of describing reaction-diffusion phe-

nomena in chemically-amplified resists and analyze their performance as a func-

tion of film thickness. In this dissertation, using mesoscopic models it is found that

a central aspect governing reactions is the anomalous diffusion of the photogen-

erated acid. The anomalous diffusion coupled with a simple second-order acid
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annihilation scheme quantitatively captures experimental data for all practical con-

ditions - with only two adjustable parameters. The need to combine the developed

scheme with substrate interactions is demonstrated.

Finally, the mechanism of zeolite crystal growth in solutions in the presence of

growth modifiers is probed by employing atomistic simulations. It is hypothesized

that molecules preferentially bind to specific crystal surfaces, which alters the crys-

tal morphology. Using free energy calculations, the affinity of these molecules to

interact with model zeolite surfaces is estimated. Distinct free energy minima and

orientations of the inhibitor molecule in these minima are characterized and quan-

tified providing a unique molecular understanding of the phenomena.
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Chapter 1 Introduction

The interfacial boundary separating the two phases, e.g., melt and solid, has

distinct characteristics [3, 11, 12] which can be at the origin of unique chemical

and physical material properties. One of the examples containing such boundaries

are polymer-particle mixtures, which are essential for designing materials with im-

proved mechanical, electrical, barrier and fire retardant properties [13,14]. In these

materials, interfacial layers often termed as “bound polymer layers” can provide

steric stabilization and hinder aggregation of nanoparticles [11]. Such stabilization

can address the challenge of dispersing nanoparticles in a polymer matrix [15,16].

Good dispersion of nanoparticles facilitates interfacial contact with the polymer and

is critical in achieving desired properties [17,18]. In addition, bound layers formed

around the individual nanoparticles can form a percolating network (Figure 1.1),

which can provide superior mechanical properties to the nanocomposite [19, 20].

For getting appropriate nanocomposite properties, various interactions in the im-

mobilized layer must be fine-tuned [21].

In polymer bound layers, interactions of the polymer and nanoparticle at the

interface are a key parameter [15, 22–24] and are determined by both enthalpic

and entropic contributions. Despite extensive studies [20, 25–30], quantitative

measures of the interactions between nanoparticles and polymers remain chal-

lenging and several studies have aimed at providing significant insight into such

phenomena [3, 20, 29–36]. A broad set of techniques ranging from self-consistent

field theory [18, 37–41], lattice models, molecular simulations (Monte Carlo and

molecular dynamics) and properly designed experiments have been employed. It
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Figure 1.1: Schematic representing percolating network formed by interacting poly-
mer bound layers. Yellow spheres depict nanoparticles and red beads
represent polymer bound layers.

is established that nanoparticles impose significant structural changes to a poly-

mer melt leading to stark differences in properties such as the glass transition

temperature [42] and average shear and Young’s modulus [13]. Enthalpic and en-

tropic contributions coupled with polymer-mediated inter-particle interactions (for

any finite concentration of nanoparticles) [11,20,43,44] also affect the mechanical

strength of these materials. In addition, nanoparticle curvature [6, 45–48] signif-

icantly alters the properties and conformation at polymer-nanoparticle interface.

The local stiffness of polymer [6, 49] has also been shown to play crucial role in

properties of polymer-nanoparticle interface. Chapter 3 of this dissertation dis-

cusses such effects with the help of atomistic simulations.

Another interesting application of the interfacial phenomena is realized in the

semiconductor fabrication, where polymer films are deposited on a substrate. Fab-

rication of next-generation microelectronics devices at sub-22 nm resolution with

minimal line-edge roughness (LER) require materials, which are highly sensitive

to radiation. Chemically-amplified (CA) resists can meet the requirement of sen-

sitivity to radiation, however mechanically unstable features due to high aspect

ratio pose a significant challenge. Ultrathin films can be instrumental in addressing
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such issues, but quantitative understanding of chemical and physical parameters

that control image formation in ultrathin films still lacks. Furthermore, interfacial

effects near the substrate and the free surface (Figure 1.2) become important in

ultrathin films [50, 51] and affect image formation [52]. Dimensional control in thin

film resists is mediated by the diffusion and reaction of photogenerated acid within

a polymer resist matrix [53]. A coupled reaction-diffusion process has been de-

scribed by a number of studies in past [4, 51, 54–57], which include continuum

models for predicting temporal evolution of reaction-diffusion front by numerical

simulations [4,51,54] and mesoscale 2D Kinetic Monte Carlo simulations [58,59].

In spite of these efforts, the quantitative prediction of the image formation pro-

cess in high spatial resolution remains an aim for industrial applications. Efforts

for quantitative estimation of physical parameters by 3D simulations incorporating

existing knowledge of interfacial phenomena in thin films [60, 61] are discussed in

a section of this dissertation.

Figure 1.2: Snapshot depicting interfacial effects in chemically amplified resists. A
broadening of deprotected feature shape due to higher mobility near the
free surface and narrowing near the substrate due to slower diffusion is
illustrated.

Zeolites e.g. ZSM-5 have extensive applications in catalysis [62] owing to the

large interfacial area they offer for the reactants. In addition, shape selectivity of

zeolites plays a pivotal role in their application as molecular sieves [63]. It is de-

sired to precisely control zeolite morphology to overcome severe mass transport

limitations and inferior shape selectivity. Morphology control is often directed at
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minimizing the diffusion path length and reducing the tortuosity of channels. In a

bio-inspired approach, Lupulescu and Rimer [1] employed zeolite growth modifiers

(ZGMs) in combination with structure directing agents (SGA) showing a promise

to control the zeolite crystal growth. The mechanism of growth control is hypothe-

sized as preferential binding of ZGMs at the zeolite-solvent interface to the specific

crystal surface [1]. As demonstrated in Figure 1.3, ZGMs attach on a preferred

crystal surface and hinder the crystal growth. This leads to non-preferred crys-

tal surface grow faster. In this dissertation, free energy simulations of ZGMs and

model zeolite surfaces are employed to validate the hypothesis of preferential ad-

sorption. The results from these simulations attempt to explain the thermodynamic

origin of growth inhibition phenomena.

Figure 1.3: Growth inhibitor molecules (depicted by filled red circles) are hypothe-
sized to alter the natural growth (left) of the zeolite crystals to provide thin-
ner crystal along specific crystal dimension by preferential binding (right).
Adapted from Lupulescu and Rimer [1].
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1.1 Outline

Chapter 2 provides background of the simulation problems discussed in this

dissertation. Chapter 3 presents simulation methods developed for the atom-

istic simulations of the polymer in proximity of the surface. Results from these

simulations for characterizing the polymer bound layers are discussed in detail.

Furthermore, a methodology for developing coarse-grained models for polymer-

nanoparticle interactions is provided in Chapter 4. Chapter 5 outlines simulations

of chemically amplified resists and provides a discussion on the quantitative insight

gained from the results. Chapter 6 presents molecular simulations of the zeolite

growth modifiers and details the findings of free energy calculations. Finally, Chap-

ter 7 summarizes the results and provides a brief discussion on the future research

directions.
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Chapter 2 Background

2.1 Molecular Simulations of Polymers-Nanoparticle Systems

2.1.1 Simulations of Polymer Melts

Molecular Dynamics (MD) and Monte Carlo (MC) simulation methods are

widely used for studying polymer melts and nanocomposites. One of the biggest

challenges in simulation of polymer melts is sufficient sampling of uncorrelated and

drastically different polymer configurations that are part of the studied ensemble.

The relaxation times (τ ) scale with polymer molecular weight (M ) as τ ∝M3.4 [64].

Therefore, relaxation and conformational sampling of higher molecular weight poly-

mers by MD simulations becomes infeasible due to inaccessible computational

times. To address these issues and overcome the limitations on sampling the poly-

mer configurations, previous studies [2,65–69] have proposed connectivity altering

moves for sampling polymer configurations more efficiently in less computational

time than MD and classical MC simulations. In addition to the classical MC moves

at local length scales, connectivity altering MC moves (Figure 2.1 and Figure 2.2A)

are also incorporated in the simulations of polymer-nanoparticle systems. Some of

such MC moves used in simulations are 1) volume fluctuation, 2) random monomer

displacement, 3) reptation, 4) configurational bias of heads and tails, 5) rebridging

configurational bias (RCB) of inner sections [66], and 6) configurational bias double

bridging (DB) [2,69].

Some of these moves propose unphysical changes in the polymer conforma-

tion. Volume fluctuation and random monomer displacement moves change the
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structure at local length scales and are important for equilibrating the polymer melt

and getting polymer properties in agreement with the experimental measurements.

Other moves, namely reptation, configurational bias of heads and tails, rebridg-

ing configurational bias of inner sections and configurational bias double bridging

change the chain conformation at higher length scales. Configurational bias of

heads and tails and rebridging configurational bias of inner sections involve one

chain whereas configurational bias double bridging involves two polymer chains.

Figure 2.1: Moves incorporated in polymer melt simulations (a) volume fluctuation, (b)
random monomer displacement, (c) reptation, (d) configurational bias of
heads and tails, and (e) rebridging configurational bias of inner sections.
Beads in blue color on the left side of arrow show the chain segment se-
lected for the move. Dotted beads show the proposed trial positions and
beads in blue color on the right side of arrow show new position of selected
segment after the move.

In configurational bias of heads and tails, head or tail of a polymer chain is

selected and a selected number (randomly chosen) of monomers adjacent to the

head or tail are cut and regrown. Similarly, in configurational bias intra bridging, a

selected number of monomers excluding the monomers adjacent to head and tail

are cut and regrown within the chain. In these moves, a number of trial directions

are selected in order to find an appropriate bridging position. Often, a large number
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of trial directions (up to 64) are attempted for each move in order to find a suitable

bridging position. These moves change chain conformation much rapidly than the

classical MC moves.

A)

B)

Figure 2.2: A) Figure illustrating configurational bias double bridging move. The sec-
tions to be excised from the two chains are highlighted. Arrows show
the position, where excised parts connect on the other chain. B) End-to-
end autocorrelation function for polyethylene chains with 1000 monomeric
units at 600 K. MC simulations [2] with connectivity altering moves provide
rapid relaxation.

The most important and radical move is the configurational bias double bridg-

ing of chains. Figure 2.2A shows local configurations of two chains before config-

urational bias double bridging move. In this move, a bridge containing a selected

number of atoms on two chains is excised from the chains participating in double

bridging. Then, end of the bridge on the first chain (ich) is connected to the site
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created due to excising the bridge on the second chain (jch). Similarly the end of

the bridge on the second chain is joined to the vacancy created on the first chain.

This move creates chain configurations (ich′ and jch′) which are radically different

than the initial chain configurations. This drastic change in chain structure leads

to faster diffusion of chain center of masses and enables better sampling of chain

conformations. Figure 2.2B shows the end-to-end vector autocorrelation function

for polyethylene melt containing 1000 monomers at 600 K temperatures. A decay

of this function to zero is an indicator of polymer relaxation. The connectivity alter-

ing MC algorithms facilitate rapid equilibration of the conformations, which is not

attainable by MD simulations within accessible computational times.

Another possible way of achieving enhanced sampling of polymer conforma-

tions involves coarse-grained (CG) representation of polymers. Use of CG models

to represent polymer and particle comes from the motivation of reducing the num-

ber of energy calculation to be performed in the simulations. During the coarse-

graining process, chemical structure of monomers is suppressed [70] and a num-

ber of atomic monomeric units are bundled into a CG bead. It is imperative to

choose CG bead mapping so that the number of potential terms used in defining

the polymer structure are reduced without compromising with the predicted struc-

tural properties.

A number of coarse-graining approaches are mentioned in literature [7, 71,

72]. Automatic simplex optimization method [71] optimizes nonbonded and bonded

interaction parameters for CG mapping of atomistic models. The simplex optimiza-

tion targets at matching the structural properties such as radial distribution func-

tions (RDF) obtained from CG and atomistic models. The objective function in this

method is a least squares difference of the CG system RDF gCG(r) and target RDF

from atomistic simulations gt(r).
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Iterative Boltzmann Inversion (IBI) method [7] uses a simple Boltzmann in-

verse of RDF g(r), which leads to free energy

F (r) = −kBT ln g(r). (2.1)

This free energy can be used as an initial guess of potential V0(r). The initial guess

is then corrected by a correction term −kBT ln[g0(r)/g(r)]. In an iterative scheme,

corrected potential can be calculated by

Vi + 1 = Vi(r) − kBT ln

(

gi(r)

g(r)

)

. (2.2)

The potential convergence is tested by calculating least squares difference of

gCG(r) and gt(r). [73] The convergence of this iterative process indicates a valid

unique solution for the potential V (r), which will reproduce the RDF g(r).

Harmandaris et al. [72] prescribed a hierarchical modeling approach for

coarse-graining of polystyrene (PS). A similar procedure was used in a previous

study for coarse-graining of flexible polymer chains consisting of CH2 units [74]. In

this approach probability distribution function PCG for bonded interactions, which

in general are unknown functions of the CG bond lengths r, bending angles θ and

dihedral angles φ can be factorized as [75]

P CG(r, θ, φ, T ) = P CG(r, T )P CG(r, θ)P CG(r, φ). (2.3)

The independent probability distribution function can then be used for calculating

CG potentials by inverse Boltzmann relations

UCG(r, T ) = −kBT lnP CG(r, T ) + Cr, (2.4)

UCG(θ, T ) = −kBT lnP CG(θ, T ) + Cθ, (2.5)

UCG(φ, T ) = −kBT lnP CG(φ, T ) + Cφ, (2.6)

where Cr, Cθ and Cφ are constants for setting minimum potential to zero. Non-

bonded interaction potentials are given by potential of mean force (PMF) between
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atomistic units representing CG beads at different separations of center of mass.

This approach requires rigorous sampling of configurational space for obtaining

the PMFs representative of nonbonded interactions at a given separation.

In case of polymer-particle systems, it is essential to have good estima-

tion of polymer-particle interaction potential parameters for predictive simulations.

Such potential parameters can be calculated by rigorous density functional calcu-

lations [76] accounting for many body interactions [77–79]. Alternatively, analytical

expressions providing the basis for calculation of interaction potentials [80–83] in

systems with polymer in contact with a surfaces are also available. Another ap-

proach [84] incorporates IBI method to derive effective potentials for CG repre-

sentation of polymer and nanoparticle. Following section provides details of the

studies focusing on polymer-particle systems employing the interaction potentials

derived using some of approaches mentioned here.

2.1.2 Simulations of Polymers at Interfaces

Atomistic models of polymers and nanoparticles are predominately used for

simulating single particle in the matrix of polymer chains or two particles in sol-

vent [85]. Atomistic simulations of a single particle immersed in the polymer matrix

are described in literature for studying polymer properties in the vicinity of graphite

sheets [30,31,86] and silica nanoparticles [6,33,36,87,88].

Early studies of atactic polypropylene on graphite surface [31] using Monte

Carlo (MC) simulation method showed that a region of 1 nm from the surface ex-

hibits significantly different properties than bulk polymer. In these simulations,

graphite interaction with polymer were modeled by “soft-wall” potentials. It was

shown that polymer chains orient with their longest dimension along the graphite

plane, while backbone bonds try to orient themselves parallel to the graphite plane.
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MD simulation studies [86] showed that dynamics properties vary over a layer of

1.5 nm or almost twice the thickness over which density profile varies. Almost

similar findings were reported in another fully atomistic MD study of poly(ethylene

oxide) (PEO) oligomers and silica nanoparticles, [87] where flattened PEO back-

bone and a dynamic layer extending over twice the width of density fluctuation

layer was observed. While these studies considered oligomers or relatively shorter

chains, Brown et al. [33] used united atom (UA) polyethylene chains up to degree

of polymerization of n = 1000 with atomistic silica nanoparticles of radius up to

6.0 nm. Interactions between polymer and particles were considered to be purely

repulsive in nature. These systems contained more than 700,000 atoms. The MD

simulations of 1500 ps were used for providing estimated properties of these sys-

tems. It was observed that irrespective of polymer molecular weight and particle

radius, perturbations in polymer density were observed up to 2 nm from the particle

surface.

In another atomistic MC simulation study of polyethylene on graphite sur-

face [30], the interactions of graphite surface and polymer were defined as a com-

bination of 10-4 and 9-3 potentials. Such kind of potentials for modeling substrate

were mentioned in previous work [70]. This study followed Scheutjens-Fleer the-

ory [27, 89] to characterize the polymer conformation in the vicinity of graphite

surface. The polymer chains adsorbed on the graphite surface were subdivided

into train, tail and loop segments. It was observed that limiting length of train seg-

ments was 2.5 times the Kuhn segment length of polymer. Also, train segments

showed a tendency of forming all-trans sequence on the graphite surface. This

is similar to the observations of flattened backbone [86, 87] in previous studies.

The probability distribution of train segment lengths showed a sharp minima at

train lengths of 4-5 bonds. A maximum probability for train segment length of 7

bonds was followed by a subsequent monotonic decay for longer train segments.
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One interesting finding of these distributions was an extremely high probability of

train segments equal to chain length in case of shorter (∼ 40 monomers) chains,

however for long enough chains this probability drops to zero. Entropic penalty

for having whole chain adsorbed is compensated by enthalpic interactions with

the graphite for short chains, whereas effective interactions of longer chains are

dominated by the entropic losses and longer train segments are not favored.

Recent MD studies [36,88] used atomistic models of 20 monomer atactic PS

chains and silica nanoparticles to study the interface between silica nanoparticles

and PS melt. Both bare and grafted nanoparticles were studied. It was observed

that perturbations in density diminish at a distance beyond ∼ 2 nm from the silica

surface. Furthermore, for grafted particles an increase in grafted chain density

lead to reduced interpenetration between grafted chains and free chains. This

reduction becomes unfavorable for the mechanical stability of silica nanoparticles

in PS matrix, which is undesirable for well-reinforced composite material.

Experimental studies using silica filled elastomers [42] have shown a gradient

in glass transition temperature (Tg) near the particle surface. This gradient in Tg

was attributed to a glassy layer of polymer formed around the nanoparticles. All of

the above atomistic simulation studies have observed higher polymer density near

the particle surface. In fact, presence of dense polymer in near surface regions

supports the formation of a glassy layer, which is attributed to enhanced mechani-

cal properties of filled polymers in previous simulations studies [13,90]. The extent

of this glassy layer or immobilized bound layer also depends upon the size and

curvature of the nanoparticle. Harton et al. [3] employing a suite of experimen-

tal techniques measured the thickness of these layers. For poly(2-vinylpyridine)

around 15 nm silica nanoparticle, the bound layer thickness was found to be ∼

1 nm, which was significantly lower than 4-5 nm thick layer in the proximity of flat
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silica surface. These effects observed by experiments make the study of inter-

face of polymer melt and particle surface even more intriguing. In addition, lattice

simulations based upon self-consistent mean-field theory [26, 27] revealed ≈ 50%

decrease in the root-mean-squared bound layer thickness (δRMS)for particles of the

size comparable to polymer Kuhn length as compared to δRMS at a flat surface

(Figure 2.3).
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Figure 2.3: Predictions based upon self-consistent mean-field theory showing particle
size dependence of polymer bound layer thickness. Adapted from Harton
et al. [3].

While above mentioned atomistic simulation studies provide a good insight

on polymer conformation in the limit of very dilute dispersion of particles, the more

interesting scenario of a finite concentration still remains to be investigated. To the

author’s best knowledge, there are no fully atomistic simulations of “long” polymer

with multiple particles. However few studies have tried to study oligomer grafted

nanoparticles in solvents [85]. As mentioned previously, the large system size re-

quirement of fully atomistic models [6, 33] renders simulating finite concentration

of particles in explicit polymer matrix in atomistic details infeasible. Approaches for

addressing such limitations in the computational studies of more than one nanopar-

ticles in the polymer matrix become essential for elucidating the complex interac-

tions at the contact of polymer and nanoparticles. One way of addressing these
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challenges is use of CG description of polymers and nanoparticle.

A number of studies have used CG representations of different polymers in

contact with the particles to investigate the polymer-particle interface. Some of

these studies focused on studying the structure and properties of bare and grafted

single particle immersed in polymer matrix [32, 35, 46, 84, 91–93]. Doxastakis et

al. [32] used a bead-spring model of polymer to study depletion layer near the sin-

gle nanoparticle. It was observed that the thickness of depletion layer was roughly

of the order of Rg. Furthermore, the polymer segments close to the nanoparticle

were found to align themselves parallel to the surface. The polymer chains in the

proximity of the particle assumed a structure of flattened ellipsoid. Beyond the

structure of polymer chains, CG models have also been used for understanding

effects of polymer-particle interactions upon polymer dynamics.

A MD simulation study [91] using Kremer-Grest bead-spring model of poly-

mer and variable strength of nanoparticle-polymer interactions discussed the poly-

mer transport in nanocomposites. The interactions were defines as “repulsive,” “at-

tractive” and “strongly attractive.” Potential terms for polymer-particle interactions

were obtained by integrating the Lennard-Jones (LJ) interactions potentials. The

results showed that chain diffusivity is increased by 15%-20% near the repulsive

surface, whereas a reduction of 40%-50% is observed near the strongly attrac-

tive surface. While the strength of interactions is the only parameter considered

in polymer dynamics near bare particles, the entanglements between grafted par-

ticles and surrounding polymer melt can influence polymer dynamics. Employing

bead-spring model of polymer and grafted nanoparticles, effects of grafting den-

sity on entanglements were investigated [46]. The nanoparticles were composed

of particles of monomer diameter σ and density ρNP distributed uniformly over the

sphere of radius R. Effective potential between polymer and particle was obtained

by integrating truncated and shifted LJ potential. Following the MD simulations,
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primitive path analysis [94] (PPA) was performed to study entanglements between

the grafts and polymer matrix. It was observed that maximum entanglement den-

sity coincided with the monomer density peak and scaled with grafting density (Σ)

as Σ1.4. Also, the fractions of graft-melt entanglements were found to scale with

product of graft and melt monomer densities and indicated “binary” entanglements.

The above mentioned studies used simplistic CG representation of a polymer

molecule, but during the recent years focus has shifted towards using polymer and

particle models, which account for the chemistry of polymer and particle surface.

Ghanbari et al. [84] used CG representations of bare and grafted silica particles

and atactic PS melt obtained from IBI method. In order to verify the transferabil-

ity of these CG potential, the polymer density distribution functions obtained from

CG simulation was compared to the atomistic density distributions. Both CG and

atomistic simulations showed that the perturbations in polymer density and pre-

ferred orientation of monomers persist within ∼ 2 nm distance from the surface.

The matrix chains shorter than grafts penetrated the brush, whereas longer ma-

trix chains were expelled. This wet-to-dry brush transition was found to be less

pronounced upon reducing the grafting density.

The results from the single nanoparticle simulations show that the effects of

nanoparticle immersion in polymer matrix such as density perturbations, preferred

orientation, polymer entanglements can be described by using CG representa-

tions. Still, understanding the effects on the stability of dispersion and mechanical

reinforcement needs further investigation of interactions between multiple nanopar-

ticles.

The studies involving multiple nanoparticles in explicit polymer in CG repre-

sentation [83, 95–106] have focused on addressing a number of topics of interest.

These topics include calculation of PMF between two particles as a function of
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their separation [98, 106], polymer entanglements [102], steric stabilization [100]

and self assembly of grafted nanoparticles [99,103–105].

Earlier studies by Vacatello [95–97] used 12-6 LJ potentials to describe

the polymer-polymer, polymer-particle and particle-particle interactions potentials.

These studies employed MC simulations to understand arrangement in polymer

nanocomposites. Chains were found to be interacting with multiple particles caus-

ing “bridging” interactions between multiple nanoparticles. The polymer chain in

nanocomposite was pictured as a sequence of interface, loops and bridges be-

tween particles. It was hypothesized that average length of these polymer seg-

ments depends upon the polymer stiffness, a result that has been recently empha-

sized by detailed atomistic simulations [6].

In fact, polymer rigidity is a very important factor that affects the interactions

of polymer with particles and should be accounted for in CG models of polymer

at the particle interface. Polymer density at the surface of particles is significantly

affected by local stiffness of polymer chains [6] although the effects of polymer

chain length upon the density are not as profound [83]. The structure and den-

sity of polymer at the interface has shown to have effects on the effective forces

between two nanoparticles [98]. A higher polymer density in interface region (for

strong polymer-particle interactions) provides a stable bulk phase in inter-particle

region. Strong polymer-particle interactions make aggregation of nanoparticles

entropically unfavorable.

Similar effects of changes in strength of polymer-particle interaction (ǫmp) on

the stability of dispersion demonstrated that weak interactions allow particles to

form a cluster whereas strong interactions lead to well dispersed arrangement of

particles in polymer matrix. Crossover from clustered arrangement to dispersed

state is marked by a sharp maxima in specific heat capacity of the system per
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nanoparticle [100]. These findings suggest that tuning polymer-particle interac-

tions can be one possible way of controlling the arrangement of nanoparticles in

polymer matrix. Another way of nanocomposite morphology control is grafting the

particles with polymer chains and fine tuning the length of these grafts relative to

matrix polymer chain length. Increasing bulk polymer chain length for a constant

length of grafted chain has shown a change in PMF between grafted nanoparticles

to go from purely repulsive to attractive [106]. Such effects of grafted chain lengths

can have significant impact upon self assembly of grafted nanoparticles.

Akcora et al. [103] studied the self assembly of grafted nanoparticles in im-

plicit polymer. In this study, grafted chains were modeled as bead necklace chains.

Interactions between polymer-polymer and polymer-nanoparticle were modeled by

hard-sphere potential, whereas interactions between two nanoparticles were mod-

eled by square-well attractive potential. It was shown that variation in the number

of grafted chains and graft length significantly alters the morphology of the self-

assembled structures. It should be noted that grafted chain induced forces be-

tween surfaces become significant only for for high grafting density, which lead to

extended conformation of grafts [101]. Both experiments and simulations illustrate

that polymer grafts can be used for manipulating interactions between nanoparti-

cles and hence tuning the mechanical reinforcement and morphology in polymer

nanocomposite melts [103,104].

The particles can serve as polymer entanglement attractors upon deforma-

tion [102, 107]. Using CReTA algorithm [108], Riggleman et al. [102] showed that

under normal condition, polymer entanglements near particles are reduced. But,

as the deformation of the matrix proceeds, particles trap the polymer primitive path

and cause increased number of entanglements. This increase however does not

alter the response of system to deformation.
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The CG studies listed above have used homopolymer models, where chemi-

cal structure of polymer was captured by a single bead substituting certain number

of atomistic units. The situation becomes more involved in case of copolymers,

where it becomes inevitable to use different kind of beads to depict chemistry of

different blocks of copolymer. Copolymer functionalized nanoparticles [105] using

AB copolymers with alternating or block sequences illustrate that variations in in-

teractions between copolymer monomers can direct the self assembly of particles.

Such findings emphasize the need of including chemical details of monomers in

modeling the polymer and their interactions with particle surface, which is a topic

discussed in detail in Chapter 4 of this dissertation.

2.2 Simulations of Projection Lithography

Projection lithography has emerged as an effective technique for fabrication

of microelectronic devices. Efforts to model the lithography processes as math-

ematical equations have paved the way for evolution of lithography as a science

rather than treating it as an art [109]. The first account of such mathematical

foundation of lithography was published by Dill [110] in 1975, which provided the

accurate description of semiconductor optical lithography [109]. It is noted that the

development of automated thin-film measurement equipments was a trigger event

behind the first quantitative expression in lithography commonly known as Dill’s

model [111]. The simulations employed in lithography have matured significantly

over past three decades. Earlier in 1985, two dimensional simulations were used

for modeling conventional resists. These simulations were scalar and absolute ac-

curacy of results was not expected. During recent years, simulations are capable of

modeling lithography processes in three dimensional details and implement vector

calculations [109].
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Following the Moore’s law, microelectronic devices are accommodating more

and more components per unit area. A direct implication of such growth is reduced

size of the features and patterns engraved on the microelectronic devices. Non-

photo technologies such as extreme UV (13.4 nm) and projection electron beams

are conceived as the next generation lithography technologies. These technolo-

gies require high resist sensitivity for wafer throughput. Development of chemically

amplified resists (CA) resists, which meet the expectations of such sensitivity have

accelerated the growth of microelectronics industry, but resolution limit of chem-

ically amplified resists due to acid diffusion or resolution limit of polymeric resist

remains a challenge [112].

One of the biggest challenge in modeling of CA resists is limited availabil-

ity of predictive modeling techniques. Experiments have shown a very strong front

propagation behavior in resists during post-exposure bake (PEB) [113,114]. Quan-

titative description of such behavior requires simulations with uncertainty in the

limit of ∼1nm. Such kind of stringent requirements make modeling of PEB more

challenging than modeling of point defects and concentration dependent diffusion

in silica [111]. Numerous studies in the past [4, 54–59, 113, 115–138] have at-

tempted to focus on modeling and simulation of different aspects of lithography

processes. These efforts range from modeling the whole lithography process [129]

to latest efforts for understanding the basic phenomena behind image formation

during PEB [54, 55, 59, 134, 138]. Following sections attempt to summarize the

modeling and simulation efforts to understand reaction-diffusion phenomena that

describes front propagation during PEB.

A variety of models have been implemented for studying the coupled reaction-

diffusion phenomena during PEB. Most prominently continuum models [4,55,113,

115,117–122,124,125,127,128,133,137,138] and mesoscale models [58,59,131,
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134,135] have been employed to develop quantitative understanding of front prop-

agation. Salient features and formulations for such models are discussed briefly in

the following sections.

The above mentioned models have been implemented in a numerous stud-

ies. Most commonly studies using continuum model relied upon numerical solution

of differential equations representing acid diffusion, polymer deprotection and acid-

trapping [4,54,55,138]. Mesoscale models employ stochastic simulations such as

kinetic Monte Carlo (KMC) method to obtain stochastic evolution of front propaga-

tion [58, 59, 116, 134]. A good description of KMC methodology can be found in a

comprehensive review by Chatterjee and Vlachos [139]. Some findings from the

numerical and stochastic simulations are discussed briefly in the following sections.

2.2.1 Continuum Models and Numerical Simulations

Continuum models represent reaction-diffusion phenomena as a set of cou-

pled differential equations. Earlier models to study the front propagation [4,54,55,

57,121,123] have focused on developing a quantitative understanding of the phys-

ical and chemical processes occurring in CA resists. Previous studies [123, 126]

modeled the PEB process using fully coupled reaction-diffusion kinetics. Some

continuum models described the diffusion of a photoacid generator (PAG) as Fick-

ian diffusion [121, 122, 127] and solved the standard diffusion equation coupled

with reaction kinetics to estimate quantitative parameters for reaction-diffusion phe-

nomena. It has been acknowledged that non constant diffusion coefficients can be

a possible avenue to be followed for improved resist modeling [127] and it has

shown significant effect on image quality in 22 nm fabrication [56]. Estimation of

an appropriate diffusion coefficient is a challenging task. A diffusion coefficient

appropriate for describing short time behavior may not be able to describe long
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time behavior observed in reaction-diffusion process. Unfortunately concentration

dependence of diffusion coefficient is not fully understood and several functional

forms are mentioned in literature [124]. Furthermore, extraction of realistic dif-

fusion coefficients by using any model should incorporate essential chemistry to

establish proper balance between reaction and diffusion. An incorrect estimation

of chemical deprotection rate may lead to overestimation of diffusion rate [57].

Zuniga and Neureuther [117] proposed a coupled reaction-diffusion model

implementing non constant diffusivity. This model used following differential equa-

tions to describe PEB process

P +H
kr−→ A,

∂A

∂t
= −kr(P0 − A)Hm, (2.7)

∂H

∂t
= ∇(D∇H) − klH, (2.8)

D = D0 exp(ωA), (2.9)

where m is reaction order, kl is acid loss rate and ω and D0 are constants de-

scribing non constant diffusion rate. This formulation reduces to a reaction kinetics

coupled with Fickian diffusion for ω = 0.

Beyond reaction kinetics coupled with Fickian diffusion, moving boundary

acid transport model considering generation of free volume in resist polymer are

also available in literature [119, 120]. It is hypothesized that thermal deprotection

catalyzed by the PAG leads to production of volatile products. These volatile reac-

tion products lead to generation of free volume, which enhances the local diffusivity

of the acid. Relaxation following the creation of free volume densifies the polymer

22



and inhibits diffusion by trapping the acid present at deprotected site [119]. Fur-

thermore, the time evolution of reaction-diffusion front in CA resists is self-limiting

and can not be reproduced by Fickian diffusion alone [113,117]. These arguments

lead to the concept of acid trapping mechanism.

A number of recent studies [4,54,55,137,138] have described the front prop-

agation as a combination of reaction, non-Fickian diffusion and trapping process.

The set of equations used in these models is expressed as

H0 = [PAG](1 − e−CE), (2.10)

dφ(x, t)

dt
= kPH(1 − φ(x, t)), (2.11)

∂H(x, t)

∂t
= DH

d2H(x, t)

dt2
− kTH(x, t)φ(x, t), (2.12)

where φ(x, t) and H(x, t) are the deprotection level and acid concentration respec-

tively. D denotes acid diffusion rate and kP and kT are reaction and acid trapping

rate constants. [PAG] is initial PAG loading and H is acid concentration after ex-

posure. E represents UV exposure dose and C is Dill’s constant. For a high

enough UV dose, initial acid concentration H0 is simply equal to the PAG concen-

tration [54]. Eqn. 2.11 shows first order dependence of deprotection rate upon acid

concentration and protected polymer fraction. Moreover, Eqn. 2.12 describes rate

of change of acid concentration with Fickian diffusion of acid combined with acid

loss attributed to trapping of acid molecules in deprotected polymer sites. The re-

sults obtained from such models by numerical simulations are discussed in later

sections.
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Vogt et al. [4] used numerical solution of acid diffusion, deprotection reac-

tion and trapping (Eqn. 2.11 and Eqn. 2.12) to model time evolution of deprotec-

tion profiles during post-exposure bake (PEB) of poly(methyladamantyl methacry-

late) (PMAdMA) films with di(tert - butylphenyl) iodonium perfluorooctanesulfonate

(DTBPI-PFOS) photo acid generator (PAG) at 130oC. The coupled differential

equations were shown to reproduce the self limiting behavior of reaction-diffusion

front (Figure 2.4). The values of parameters defining front propagation were found

to be kP = 30 nm3/s, kT = 0.4 s−1 and D = 1 × 10-12 cm2/s. In addition, it was

mentioned that such parameters are reasonable for a slow, strong photoacid such

as PFOS.
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Figure 2.4: Deprotection profiles at different post-exposure bake times from experi-
ments (symbols) and from numerical simulations (solid lines). Adapted
from Vogt et al. [4].

Kang et al. [54] studied poly(hydroxystyrene-co-tert-butyl acrylate) or

P(HOSt-co-tBA) resist with triphenylsulfoniumperfluorobutanesulfonate(TPS-

PFBS) PAG. In their work, they used data from single layer and bilayer

experiments to obtain the diffusion, reaction and trapping rates. Uniformly loaded

single layer deprotection data was used for fitting kP and kT values by using

Eqn. 2.11 and Eqn. 2.12 without considering the diffusion term. These kP and

kT values were then used for evaluating D by fitting the front propagation data
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obtained from bilayer experiments. This study provided kP = 0.51 ± 0.06 nm3/s, kT

= 0.028 ± 0.002 s−1 and D = 4.2 ± 0.3 nm2/s for bake temperature of 90oC. In

addition Arrhenius prefactor (A) and activation energy (Ea) were also calculated

for establishing the temperature dependence of kP, kT and D. Such information

is helpful in understanding average deprotection at different distances along

the reaction-diffusion front and in estimating the effective feature width, but

little information can be obtained about phenomena e.g., LER and photoacid

aggregation effects during PEB process. Such issues can be addressed by

mesoscale models and stochastic simulations as discussed in the following

section.

2.2.2 Mesoscale Simulations of Projection Lithography

Continuum models are used as a tool for fast simulation of resist performance

and predicting global inhomogeneities [59]. Also, such models consider average

quantities and assume homogeneous distribution of reacting species and prod-

ucts at smaller length scales. While informative in nature, such type of models

have limited resolution and unable to probe spatial details of inhomogeneous dis-

tribution of species at fine resolution. Due to rapid advances in technology, the

length scales of interest are approaching the size of individual resist molecule.

Moreover, stochastic effects that govern development of images in resist film re-

quire models, which can probe molecular length scales and allow introduction of

stochastic effects. Mesoscale models have been discussed in a number of stud-

ies [58, 59, 109, 131, 134, 135] and aim at capturing 2D [58, 59, 131] or 3D [134]

details of resist feature shapes.

In mesoscale models, a 2D or 3D lattice is used for depicting the resist film.

Each lattice cell depicts specified volume of protected polymer resist (e.g., 1 nm
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× 1 nm × 1 nm). Distribution of the protecting groups in the resist is assumed

to be uniform across the lattice [134]. Other additives, such as PAG, quencher

base etc. are generated following specific distributions. Specifically, for gener-

ating PAG distribution inside the resist film, a Gaussian probability distribution is

used [56, 130, 136]. More details about such distributions are discussed in a later

section. Mesoscale models are often coupled with stochastic simulation methods

e.g., kinetic Monte Carlo methods [134]. Simulations employing mesoscale mod-

els are capable of providing information about line edge roughness (LER), PAG

aggregation and stochastic behavior of events such as acid diffusion inside resist

film [59].

Studies with mesoscale models [58, 59, 131, 134, 135] target to provide high

resolution description of image formation. Mesoscale simulations for development

and rinse process using coarse-grained polymer models employing dissipative par-

ticle dynamics (DPD) were used to understand the origin of LER. In such simula-

tions, it was observed that soluble polymer diffuses into the solvent phase, which

leads to roughened line-edge constituted by residual polymer [135].

Recent simulation study by Lawson and Henderson [58] used a 2D

mesoscale model and the KMC method to probe the effects of photoacid

aggregation upon the LER. It was demonstrated that the larger size of aggregates

leads to an increased shape asymmetry of the resolved pattern, where as the

smaller aggregate size results in a reduction in LER. Furthermore, this study

revealed that higher photoacid diffusion lengths smooth out initial photoacid

distribution inhomogeneity.

Another study [134] using 3D mesoscale lattice model and KMC simulations

probed the relationship between gradient in polymer deprotection and LER. The

study concluded that gradient in polymer deprotection is a good indicator of LER
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in some cases, but in certain condition LER can be attributed to other effects such

as photoacid aggregation. These results indicate that 3D mesoscale simulations

can provide information beyond the average quantities during the reaction diffusion

front propagation.

2.2.3 Role of Acid Distribution

An important detail in modeling reaction-diffusion during PEB is generating

adequate initial photoacid distribution. With the objective of studying resolution

blur in resist films, Gaussian probability distribution functions were used in previ-

ous works [56, 130, 136]. Inhomogeneous distribution of PAG becomes a concern

with reducing the feature size as it has significant impact upon LER. In CA resists,

discrepancy between the ionization point and acid generation along with acid diffu-

sion point contributes to resolution blur. Furthermore, it was noted that even if acid

diffusion is suppressed, a resolution blur intrinsic to acid generation mechanism

is still observed [130]. These observations emphasize the need of incorporating

microfluctuations in acid concentration in modeling of PEB an CA resists. The mi-

crofluctuations are generated by multiplying the acid concentration by Gaussian

function fmod(x, y) given by

fmod(x, y) =
Ic

2πσs
2

exp

(

−x
2 + y2

2σs
2

)

, (2.13)

C ′

acid(x, y) = Cacid(x, y) ×
n

∏

i=0

(1 + (−1)mfmod(x− xi, y − yi)) , (2.14)

where m is a random number that generates 0 or 1, C ′

acid, Ic and σs are modu-

lated acid distribution, intensity of microfluctuations and size of microfluctuations

respectively. It is noted that effects of acid diffusion lead to smoothing of the effects

generated by microfluctuations [136].
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These models and methods available for studying the reaction-diffusion phe-

nomena in thin film CA resists have provided insight about qualitative and quantita-

tive aspects of front propagation, but more progress is needed in order to match the

growth driven by Moore’s law. Rapid advances in the technology and further reduc-

tion of feature size demands the simulations at very fine resolution with uncertainty

in the range of ∼1 nm. Furthermore, mechanical instability issues at nanosized

features require ultrathin film resists, which have significant interfacial effects at

substrate and free surface. Previous studies [50, 140–145] have discussed the

interfacial effects on mobility in polymer thin films. It has been mentioned that poly-

mer mobility is reduced close to the substrate [60, 61, 145], whereas enhanced

polymer mobility is observed near free surface. Interfacial effects in thin films were

not considered in previous works. These effects must be accounted for making the

models of front propagation more quantitative and predictive in nature.

2.3 Molecular Simulations of Zeolites

Zeolites have garnered significant interest in simulation studies. Both MD

simulations [146–151] and MC simulations [152–159] have been employed to study

diffusion and adsorption phenomena in zeolites. While adsorption and diffusion of

the alkanes and alcohols inside the zeolite channels was studies by a number of

studies, some studies have also focused on the adsorption on the external surfaces

of the zeolites [151, 160–165]. Framework flexibility [147, 149, 151, 152, 166–168]

and a surface representative of zeolites [160, 161, 169] are among the important

considerations in preparing model systems. For the framework flexibility, some

studies have demonstrated that a flexible framework is imperative for predicting

adsorption and diffusion in zeolites in agreement with the experiments [168]. On

the other hand, a number of studies have claimed that framework flexibility does
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not alter adsorption and diffusion estimates in zeolite channels significantly [147,

166,167].

The issue of a representative model zeolite surface is of greater importance

in the study of zeolite growth. Among the studies evaluating the model surfaces,

Slater et al. [160] performed atomistic simulation of LTA zeolite surfaces. It was

demonstrated that the surface shows three stable terminations, but the relative

stability of these surfaces varies with the composition. Also, cations were found

to cause extensive framework distortion. Another study [161] showed that the

nanoscopic surface structures in zeolites do not arise simply from optimal pack-

ing of silicate tetrahedra, but the complex reactions of siliceous oligomers with

the zeolite surface play a role in the determination of surface structure. Díaz et

al. [169] probed surface structure of the MFI zeolites. It was found that different

structure directing agents (SDAs) facilitate growth of different crystal morphologies.

Tetrapropylammonium (TPA) cation was found to produce a hexagonal prismatic

crystal morphology, whereas a trimer of TPA favored the growth of leaf-shaped

platelike crystals. The differences in the morphologies in presence of different

SDAs were attributed to capability of SDA to fit in the zeolite crystal structure and

adsorption kinetics of SDAs on the external surface of growing crystals. It should

be noted that during the synthesis of zeolites, intermediate crystal surfaces differ-

ent than the most stable crystal surface may be formed [169]. However, consider-

ation of all intermediate morphologies in simulation studies may not be feasible. A

number of simulation studies [149, 151, 166, 167] have employed the most stable

morphology as the model zeolite surface.

There are no previous molecular simulation studies probing the growth inhibi-

tion phenomena in the zeolite synthesis. Although, recently Salvalaglio et al. [170]

have studied a similar phenomena during urea crystallization. This study employed

well-tempered metadynamics [171] to investigate effect of additives such as biuret
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and acetone on urea crystal growth. The free energy profiles from these simula-

tions were shown to quantify the surface selectivity of the additive molecules. The

simulations revealed that a higher selectivity of biuret molecule provides effective

growth inhibition for [0 0 1] crystal surface. Similar free energy simulation method-

ologies can be employed for elucidating the mechanism of growth control realized

by zeolite growth inhibitor molecules. A quantitative insight of growth inhibition

mechanism will help in predicting inhibitor efficacy and achieving optimal growth

control.
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Chapter 3 Polymer Bound Layers and Nanoparticles

3.1 Introduction

The properties of interface between a polymer melt and a solid surface are

at the heart of emerging technological applications, e.g., the design of nanocom-

posites with improved mechanical, electrical, barrier, and fire retardant properties.

To a large extent, the polymer-nanoparticle interactions are considered an impor-

tant parameter [15, 22, 23] in determination of the region within which perturba-

tions to polymer structure are observed, which is often termed as “bound polymer

layer” [11] or “immobilized layer” [3]. The thermodynamically stable bound layers

are instrumental in providing steric stabilization and hinder aggregation of nanopar-

ticles [11]. Furthermore, significant impact on the barrier properties of the resulting

material is attributed to the interfacial layers [14]. During the past decades ex-

tensive number of studies have focused on quantitative measures of the polymer-

nanoparticle interactions, but gaining quantitative insight remains challenging in

spite of the broad set of techniques e.g. self-consistent field theory, lattice and

molecular simulations (Monte Carlo and molecular dynamics) employed to study

such phenomena [3,20,29–36,172].

In particular, Monte Carlo (MC) algorithms are very efficient when employed

moves drastically sample the configurational space of the system [173]. It was

recognized in the early lattice simulations that in polymer melts, altering polymer

connectivity can facilitate such sampling [174]. The approach of altering connec-

tivity has been applied to study a wide range of polymer melts in atomistic detail,

e.g., polyethylene [65, 175, 176], polyisoprene [67, 177, 178], polybutadiene [68],
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polyethylene oxide [179] and more recently non-linear polymers [180,181].

Despite the proven ability for the polymer melt simulations, connectivity-

altering MC faces several challenges for the study of polymers in presence of

interfaces. One of such challenges is manifested during the application of pow-

erful end-bridging algorithm, which introduces polydispersity. Addressing the issue

of polydispersity requires careful tuning of the spectrum of chemical potentials cor-

responding to chain lengths [182]. Alternatively, double-bridging technique can

be used to accomplish the goal of drastic sampling, which allows consideration

of strictly monodisperse systems [2, 69]. Unfortunately, double-bridging displays

an exceedingly low acceptance rate in atomistic simulations (1 in 105 at 450K for

polyethylene), which prohibits consideration of large systems that are often re-

quired to study interfaces between polymers and solid surfaces. Furthermore, the

efficiency of the move in proximity of a surface is decreased compared to bulk.

This decrease is due to reduction in free-volume and interaction of polymer with

the surface.

Daoulas et al. [30] employed double-bridging moves to avoid polydispersity

for study of polyethylene (PE) at a graphite surface (systems ≈ 20,000 atoms)

and noted the difficulty in sampling tail, train and loop segments of the poly-

mer in contact with surface as defined by the pioneering work of Scheutjens and

Fleer [26, 27, 89]. Furthermore, system sizes required to avoid finite-size effects

exceed multiple times the root-mean-square of the polymer radius of gyration R0
g

of the bulk unconstrained melt [145], these challenges are exacerbated when long

macromolecules (where connectivity-altering MC is advantageous [65]) are con-

sidered.

In recent studies, free-energy simulations employing preferential sampling
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schemes [183] were designed for the systems where solvent contributions are crit-

ical to the phenomena studied [184, 185]. For small molecular solvents where

simple molecular displacements are applicable, such techniques are clearly benefi-

cial, nevertheless it is unclear whether a similar approach can be employed for long

chain polymer molecules having substantial conformational degrees of freedom. In

this chapter, we discuss the development and application of connectivity-altering

Monte Carlo moves as local updates for polymer in proximity to a surface, coupled

with global hybrid molecular dynamics (MD). The main subject of this study is a

PE melt on a silica surface or around a nanoparticle and the changes induced by

high-curvature of nanoparticles for the case where particle radius is comparable to

the polymer Kuhn segment length.

The dispersion of nanoparticles is known to be significantly affected by the

size of nanoparticles [24] and recent studies [45, 46] examined the curvature in-

duced effects at the polymer-nanoparticle interface. Hone and Pincus [47] stated

that entropic contributions have a critical role in preferential adsorption of poly-

mer at the surfaces with low curvature. It should be noted that simple geomet-

ric arguments [186–188] can provide an interpretation of reduction in the thick-

ness of adsorbed polymer layer upon decreasing the particle size up-to the Kuhn

length [3,13,186–189].

An assumption that the polymer mass adsorbed per unit area is independent

of particle size was made by Garvey et al. [187] Considering this assumption to be

true, the effective layer thickness δeff defined as the ratio of total volume of adsorbed

polymer layer on a particle to surface area should be reduced upon decreasing

particle size or increasing curvature. However Baker et al. [188] questioned the

extent of this reduction due to solely geometric arguments. In a recent study by

Harton et al. [3], the self-consistent mean-field theory of Scheutjens and Fleer and

experiments were employed for particles larger than the polymer Kuhn-length. It
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was shown that thickness of the polymer bound layer for the particles of radius

equivalent to the polymer Kuhn-length decreases by approximately a factor of 2

relative to planar surfaces. Such findings unquestionably establish a decrease of

the adsorbed layer. Still the scaling law for these effects, specifically for the particle

sizes smaller than the polymer Kuhn segment length, is unclear as intrinsic polymer

stiffness becomes important at such length scales.

Daoulas et al. employed self-consistent-field calculations for the worm-like

chain models incorporating local stiffness to provide a better description of adsorp-

tion of PE molecules [190]. For particles in solutions, Ganesan et al. demonstrated

the dependence of equilibrium characteristics on persistence length and correla-

tion length both, provided the second is comparable to the first [191]. It was noted

that scaling laws governing the concentration and radii dependence of the deple-

tion layer thicknesses are nontrivial in nature. The worm-like chain model supports

the effects of changes in rigidity upon interfacial layers and resulting barrier prop-

erties of the nanocomposites material [14]. Polymers with higher rigidity showed

dominant interfacial effect leading to an enhancement in free volume, which re-

sulted in increased penetrant diffusivities for all filler concentrations.

Linse and Kallrot have shown the effect of polymer flexibility on the adsorp-

tion of homopolymers from a solution onto a flat surface [192]. It was demonstrated

that rod-like polymers ehxibit single adsorbed layer, whereas flexible polymers ad-

sorb in two layers. An increase in the polymer-surface attraction lead to flatter

polymer conformation with increased number of adsorbed beads. In this chapter,

such phenomena in polymer melts are probed with the help of simulations. New

MC methods capable of addressing conformational characteristics of long macro-

molecules in atomistic detail are designed and applied. It is shown that due to

intrinsic stiffness at local length-scales, decreasing the particle size has a pro-

found impact as polymer chains form an increased number of shorter contacts that
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favor planar configurations of train segments. The findings in this chapter highlight

the role of local rigidity on the scaling of bound layer with the particle size with

implications on the properties of polymer-particle mixtures.

3.2 Models and Systems

3.2.1 Polyethylene Melt

Polyethylene is modeled as a sequence of CH2 united atoms (UA) with ter-

minal CH3 beads. Non-bonded interactions between pairs of CH2 or CH3 are de-

scribed by a pairwise-additive Lennard-Jones 12-6 potential computed as

u(rij) = 4ǫij

[

(

σij

rij

)12

−
(

σij

rij

)6
]

, (3.1)

where rij is separation and ǫij and σij are interaction parameters provided by the

Transferable Potential for Phase Equilibria (TraPPE) force field given by Martin and

Siepmann [193]. For CH2, σ = 0.395 nm, ǫ = 0.382 kJ/mol and for CH3, σ = 0.375

nm and ǫ = 0.815 kJ/mol.

Interactions between unlike atoms are calculated by Lorentz-Berthelot com-

bination rules

σij =

(

σii + σjj

2

)

, (3.2)

ǫij =
√
ǫiiǫjj. (3.3)

Polymer intra-molecular interactions (harmonic bond, bond angle bending

and torsional potential) are implemented following Nath et al. [194]. The harmonic

bond potential is given by
V (r)

kB
=
Kr

2
(r − beq)

2, (3.4)
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where K r = 80,235 kJ mol−1 nm−2 and beq = 0.154 nm. The bond angle bending

potential is given by
V (θ)

kB
=
Kθ

2
(θ − θeq)

2, (3.5)

where K θ = 519.66 kJ mol−1 rad−2 and θeq = 114.0◦. The torsional potential is of

the form

V (φ)

kB
= V0 + V1(1 + cosφ) + V2(1 − cos 2φ) + V3(1 + cos 3φ), (3.6)

where V 0 = 0, V 1 = 355.04 K, V 2 = -68.19 K and V 3 = 701.32 K.
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Figure 3.1: A) Comparison of predicted densities for PE melts at 450 K and 1 bar to
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We found that incorporation of CH3 terminal beads and flexible bond-

stretching potential terms leads to excellent agreement with the thermodynamic

and conformational properties mentioned in literature. For example, Figure 3.1A,

presents the density as a function of chain length at 450 K temperature and 1 bar

pressure which is in quantitative agreement to experimental data [5]. A hyperbolic

fit,

ρ(N, T ) =
ρ∞(T )

1 + a0(T )
N

, (3.7)

results to ρ∞ = 0.766 g/cm3 at the limit of infinite molecular weight. Figure 3.1B

shows characteristic ratios calculated from average squared end-to-end distances

using the equation

C(N) =
< R2 >

(N − 1)l2
, (3.8)

where l = 0.154 nm is mean CH2-CHx (x = 2, 3) bond length. Using the expres-

sion [195]

C(N) = C∞ +
a1

(N − 1)
+

a2

(N − 2)
+

a3

(N − 3)
, (3.9)

a value C∞ = 8.91 is obtained, which is in the range 8.7 to 10.5 determined by

experiments [196] at 400 K.

Figure 3.2: Static single chain structure factor for PE500 and PE1000 (symbols) and
fit with Debye function (solid lines) with an estimate of the Kuhn length.
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Finally, results for the static single chain (intra-molecular) structure factor

were obtained as described in the literature [197]. For a polymer chain consist-

ing of N diffraction centers located at the backbone carbon positions, the static

single chain structure factor is given by

g(q) =
1

N

N
∑

i=1

N
∑

j=1

sin qrij

qrij

, (3.10)

where q is the scattering vector. Figure 3.2 provides this property for polyethylene

(PE) chains of N = 500 (PE500) and N = 1000 (PE1000) at 450K and 1 atm. The

chain form factor P (q) = g(q)/g0 can be fitted using the Debye function [198], which

describes the polymer chains as a sequence of independent Gaussian segments

up to vanishing length scales. A fit using the Debye function

P (q) =
2

x2
(x− 1 + exp(−x)), (3.11)

with

x = q2R0
g

2
= q2 bL

6
, (3.12)

where R0
g is polymer radius of gyration, L is polymer contour length and b is the

Kuhn length, leads to an estimate of b = 1.47 nm with R0
g = 5.62 nm for PE1000

chains. It is important to note that for small values of the scattering vector q (larger

length scales) the Gaussian coil provides a satisfactory description, but this is not

true for length scales (≈ b) where local stiffness plays a significant role.

3.2.2 Fullerenes

For fullerene, Lennard-Jones interactions are used as σC = 0.347 nm and

ǫC = 0.275 kJ/mol [199]. As in all our models, Lennard-Jones interactions are

excluded between atoms interacting through intra-molecular terms. For fullerene,
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Table 3.1: Force field parameters for silica according to the BKS force field [9].

i-j Aij (kJ/mol) bij (nm−1) cij (kJ mol−1 nm6) Atomic Charges
O-O 133,996 27.6000 0.016885 qO = -1.2
Si-O 1,737,099 48.7318 0.012884 qSi = 2.4

a Morse bond potential, a harmonic cosine of the bending angle, and a 2-fold

torsion potential were used, which have a functional form of

U(rij, θijk, φijkl) = KCr(ξij − 1)2 +
1

2
KCθ(cos θijk − cos θC)2 +

1

2
KCφ(1 − cos 2φijkl),

(3.13)

where

ξij = e−γ(rij−rC). (3.14)

Here rij, θijk and φijkl represent distance, bond angles and torsion angles between

bonded atoms. KCr = 478.9 kJ/mol, rC = 0.1418 nm , γ = 21.867 nm−1, KCθ =

562.2 kJ/mol, θC = 120◦ are taken from the work of Guo et al. [200]. and KCφ =

25.12 kJ/mol following Walther et al. [201].

3.2.3 Silica Nanoparticles

Silica nanoparticles are represented using fully flexible atomistic models. van

Beest et al. [9] proposed the BKS model for interatomic potential of the form

φij =
qiqj
rij

+ Aij exp(−bijrij) −
cij
r6
ij

, (3.15)

which involves a coulomb term and a covalent contribution in the usual Buckingham

form. Parameters proposed in the BKS model are listed in Table 3.1.

The BKS potential suffers with unphysical behavior of divergence to -∞ for

very small separation of Si-O atoms. In order to reach these small separations,
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Table 3.2: Parameters for correcting unphysical behavior of BKS force field [10]
.

i-j σij (nm) ǫij (kJ/mol)
Si-Si 0.0 0.0
Si-O 0.1313635 0.299
O-O 0.1779239 0.101

Si-O atom pairs need to overcome a potential barrier, which is of the order of 5000

K [202]. Thus simulations at high temperature can lead to algorithmic problems.

To overcome this limitation when performing simulations at high temperature, a

correction term is introduced in the BKS potential as described in the literature [10].

The corrected potential includes a 30-6 term and is formulated as

φij = φBKS
ij + 4ǫij

[

(

σij

rij

)30

−
(

σij

rij

)6
]

, (3.16)

where φBKS
ij is the original BKS potential given by Eq. 3.15. Parameters used in

correction term are listed in Table 3.2.

This modified BKS potential was used for creating structures of amorphous

silica by simulated annealing. For our main MC simulations at low temperature

(450K), the BKS was replaced by Lennard-Jones interactions together with bond

and angle potentials between neighboring Si and O atoms (as in the literature [33]).

We derived a set of parameters kb and kθ, which gives a distribution of bond lengths

and angles very close to that obtained from modified BKS potential (Figure 3.3).

The harmonic bond potential for Si-O bonds is given by

φr(rij) =
kℓ

2
(rij − ro)

2, (3.17)

where kℓ=242,000 kJ/mol-nm2 and ro=0.1608 nm. The angle bending potential is
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Figure 3.3: Comparison of A) Si-O bond lengths distribution and B) Si-O-Si and O-Si-
O angles distributions as obtained from the BKS model and bond-angle
potentials.

formulated as

φθ(θ) =
kθ

2
(cos(θ) − cos(θo))

2, (3.18)

where k θ = 140.0 kJ/mol and θo = 167.5◦ for Si-O-Si angle and k θ = 235.0 kJ/mol

and θo = 109.3◦ for O-Si-O angle. For Lennard-Jones interactions, Si atoms are

omitted owing to their small size and polarizability (σSi = ǫSi/kB = 0.0). For O atoms

a σO = 0.27 nm and ǫO/kB = 1.913 kJ/mol was used [203].
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Preparation of Silica Nanoparticles

A methodology involving a melt-quenching process for preparing amorphous

silica given by Vollmayr et al. [202] is used as a precursor to nanoparticle prepara-

tion. In this method, the α-quartz unit cell was taken as initial structure. A super

cell of 5 × 5 × 5 unit cells containing 1125 atoms was equilibrated at 300K temper-

ature and 1 bar pressure for 200 ps with a time step of 1 fs using the molecular dy-

namics (MD) program Gromacs [204]. For the MD equilibration, the modified BKS

potential (Eq. 3.16) was used. The cut-off distance was 0.9 nm for Lennard Jones

interactions and 0.8 nm for electrostatic interactions. The Particle Mesh Ewald

(PME) method of order 4 was applied for calculating electrostatic contributions.

Long range corrections for energy and pressure were also taken into account. The

temperature was successively increased to 1000 K, 2000 K, 3000K and 4000 K.

At each temperature, an equilibrated structure was obtained, which served as ini-

tial structure for successive equilibration at a higher temperature. The equilibrated

molten silica at 4000 K temperature and 1 bar pressure was then quenched by

using the simulated annealing protocol of Gromacs [204] to 100 K at a rate of -10

K ps-1 to obtain solid amorphous silica. This amorphous silica structure was repli-

cated for constructing a 3 × 3 × 3 super cell containing 30375 atoms. Atomistic

configurations and topologies of silica nanoparticles of 1.0 nm, 1.5 nm, 2.0 nm, 2.5

nm and 3.0 nm radius and slabs of approximately 3.2 nm width were prepared by

following a process similar to Brown et al. [33]. Preparation of a silica nanoparticle

with nominal radius Rn or a slab with half-width Wh involves the following steps:

1. Read the bulk configuration of amorphous silica obtained from the melt-

quench process.

2. Define the point of intersection of diagonals of super cell as the center of

cell. For nanoparticle, discard all Si atoms at a distance beyond Rn and all O
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atoms beyond Rn + 0.2 nm from the center. For slab, discard all Si atoms at

a distance (along z-axis) beyond Wh/2 and all O atoms beyond (Wh/2) + 0.2

nm from the center of cell.

3. Define all atoms at a distance more than rn from the center of cell as surface

layer atoms for nanoparticle. For slab, define all atoms with distance (along z-

axis) from the center of cell more than rn as surface layer atoms. In previous

studies, [33] a value rn = 0.9 nm was used.

4. Define all O atoms within 0.19 nm from Si atoms as neighboring oxygens.

Minimum image convention is used while calculating the distances for slab in

order to maintain continuity of structure in x-y plane. Discard all Si atoms in

the surface layer with less than 4 neighboring oxygens.

5. Find out Si atoms within 0.19 nm from O atoms as neighboring silicons.

6. Discard all O atoms in surface layer without neighboring silicons.

7. Label O atoms with just one neighboring silicon as nonbridging oxygen. Up-

date connectivity table by adding a bond for both atoms.

8. Label Si atoms with a nonbridging oxygen neighbor as surface silicon.

9. Visit all surface silicons and change neighboring oxygens labeled as non-

bridging oxygens to bridging oxygens. Update connectivity table by adding a

bond between surface silicons and neighboring bridging oxygens.

10. Loop over all the bridging oxygens and find all neighboring nonsurface sil-

icons with a distance (actual distance for nanoparticles and distance along

z-axis for slab) more than rn distance from the center of cell. Label the sili-

cons as surface silicons. Update the connectivity table.
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11. If number of nonbridging oxygens added at Step 8 or number of surface sili-

cons added at Step 9 is nonzero, go to Step 8.

12. Label bridging oxygens with less than two neighboring surface silicons as

regular core oxygen. Keep the connectivity table unchanged.

13. Update the connectivity tables by indicating bonds between the core silicons

and their neighboring oxygen atoms (within a distance of 0.19 nm).

Figure 3.4: Schematics illustrating the construction of silica nanoparticles and their
insertion into polymer matrix.

The use of the above method for constructing nanoparticles results to highly

asymmetric non-spherical shapes for particles with a radius less than 1 nm which

provided a motivation to include fullerenes (C60) as nearly spherical nanoparticles

at sub-nanometer size for this study. Figure 3.4 represents the schematics of the

preparation of nanoparticles and their subsequent insertion into a polymer ma-

trix. It should be noted that certain surface roughness exists in these models of

nanoparticles as expected in any chemically synthesized nanoparticle. Keeping
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this in mind, an explicit determination of size and area was performed for each of

the constructed nanoparticle.

Assessment of surface area and volume of silica nanoparticl es

A method for determining the surface area and volume of molecular assem-

blies provided by Eisenhaber et al. [205] as implemented in the Gromacs [204] tool

g_sas was used. In Gromacs parameter files, the radii of Si, O and C atoms were

set to half of the collision diameters (σ), which is equivalent to 0.0 nm for Si, 0.135

nm for O atoms and 0.1735 nm for C atoms. Using a probe of radius 0.1975 nm

(half of the σ for CH2 UA) polymer accessible surface areas and volumes were cal-

culated as listed in Table 3.3. It is emphasized that small fluctuations are expected

due to flexibility of particle models. Effective radii of nanoparticles (Reff) were cal-

culated as the radius of sphere with volume equal to polymer accessible volume of

nanoparticle, further corrected by half of the σ for CH2 UA (Table 3.3).

Table 3.3: Abbreviations and calculated polymer accessible surface areas (A), vol-
umes (V ), effective radii of nanoparticles (Reff), ratio of Reff to bulk polymer
Kuhn segment length b and enthalpic interactions with a single CH2 probe
(well depth, ε0). Reproduced from Ref. 6, Copyright 2012, American Insti-
tute of Physics.

Particle (Abbrev.) A(nm2) V (nm3) Reff(nm) Reff/b ε0 (kJ/mol)
C60 7.12 1.66 0.54 0.37 -2.40
Silica (SIL-1.0) 25.71 8.66 1.08 0.73 -0.85
Silica (SIL-1.5) 53.43 24.71 1.61 1.09 -0.55
Silica (SIL-2.0) 89.79 51.91 2.12 1.44 -0.72
Silica (SIL-2.5) 130.95 92.62 2.61 1.77 -1.09
Silica (SIL-3.0) 184.30 152.51 3.12 2.12 -0.99
Silica (Slab) -0.92
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Enthalpic Interactions of Nanoparticles with Polymer Probe P article

It is important to characterize the strength of enthalpic interactions between

the polymer and different nanoparticles. A method implementing random probe in-

sertion technique, which is a modification of the method used by Brown et al. [33]

for calculating polymer accessible volume was used for this purpose. A probe of

size equivalent to CH2 was placed at large number of random trial positions and

the potential energy of the probe particle was calculated with all the nanoparticle

atoms as per Eq. 3.1 to construct smooth potential curves. The well depth ǫ0 ob-

tained from these plots is listed in Table 3.3. It can be observed that the silica slab

and nanoparticles with larger radii (Rn = 2.5 nm and 3.0 nm) have almost similar

enthalpic interactions with the probe. The smaller nanoparticles present a slight

decrease in the well depth. An increase for Rn = 1.0 nm is due to somewhat larger

surface density of interaction sites (O atoms). The fullerene C60 shows significantly

stronger enthalpic interactions as compared to any of the silica nanoparticles due

to the larger density of interaction sites on the surface of this nanoparticle.

3.2.4 Systems Studied

Particles were inserted into equilibrated polymer melt configurations by first

introducing a cavity using a repulsive potential. To avoid finite-size effects the edge-

length of each simulation cell was on average ∼ 6.5 ×R0
g of bulk polymer plus the

diameter of respective nanoparticle. For slabs, dimensions along the normal to

the surface were ∼ 8 ×R0
g. These requirements lead to very large system sizes

(Table 3.4). Keeping the computational feasibility in mind, flat surfaces with polymer

chain lengths up to N = 500 were considered, whereas particles were studied for

lengths N ≤ 200. C60 was the only particle studied with N = 300.
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Table 3.4: Systems studied, ratio of Reff/R0
g, number of chains (nchains), total number of

atoms (natoms) and average dimensions of the simulation box. Reproduced
from Ref. 6, Copyright 2012, American Institute of Physics.

System N Reff/R
0
g nchains natoms L (nm)

PE48-C60 48 0.49 300 14,460 7.71
PE100-C60 100 0.32 492 49,260 11.52
PE150-C60 150 0.25 746 111,960 15.11
PE200-C60 200 0.21 906 181,260 17.75
PE300-C60 300 0.17 1080 324,060 21.49
PE48-SIL-1.0 48 0.99 532 25,876 9.36
PE100-SIL-1.0 100 0.64 734 73,740 13.19
PE150-SIL-1.0 150 0.50 1020 153,340 16.79
PE200-SIL-1.0 200 0.43 1184 237,140 19.40
PE48-SIL-1.5 48 1.48 726 36,005 10.41
PE100-SIL-1.5 100 0.96 922 93,357 14.23
PE150-SIL-1.5 150 0.74 1224 184,757 17.85
PE200-SIL-1.5 200 0.64 1390 279,157 20.46
PE48-SIL-2.0 48 1.94 944 47,966 11.40
PE100-SIL-2.0 100 1.26 1128 115,454 15.25
PE150-SIL-2.0 150 0.98 1440 218,654 18.87
PE200-SIL-2.0 200 0.85 1602 323,054 21.48
PE48-SIL-2.5 48 2.39 1196 62,479 12.38
PE100-SIL-2.5 100 1.55 1354 140,471 16.24
PE150-SIL-2.5 150 1.20 1674 256,171 19.87
PE48-SIL-3.0 48 2.86 1488 80,105 13.39
PE100-SIL-3.0 100 1.86 1610 169,681 17.25
PE150-SIL-3.0 150 1.44 1934 298,781 20.87

lz lx ly
PE48-Slab 48 122 10,982 12.23 4.42 4.68
PE100-Slab 100 152 23,896 16.68 5.90 5.96
PE150-Slab 150 250 53,217 21.37 7.86 8.08
PE200-Slab 200 220 59,717 25.19 7.86 8.08
PE300-Slab 300 234 90,600 29.17 8.84 9.36
PE500-Slab 500 302 185,653 36.07 11.79 11.91

3.2.5 Initial Configurations

Equilibrated polymer melt configurations were used as the initial configuration

with particular attention towards avoiding finite-system size effects. Insertion of

47



nanoparticles was performed by placing a fictitious interaction site at the center of

the box with a very high repulsive potential to create a cavity:

V (r) = Vo

[

1 − tanh

(

r −Rc

δ

)]

, (3.19)

where Vo is strength of the potential, Rc is the radius of the cavity and δ is the layer

width, over which the repulsive potential drops to zero. In this work, these param-

eters were set to Vo = 50000 kJ/mol and δ = 0.1 nm. Values of Rc were gradually

increased from zero to a value slightly greater than the nanoparticle radius so that

the cavity created could accommodate the nanoparticle without creating overlaps

with the surrounding polymer.

A different method was applied for preparing polymer-silica slab systems.

Cubic simulation boxes with edge-lengths fitting with the x− y surface of slab were

prepared. These boxes were replicated along the z-axis in order to obtain a simu-

lation box of desired length along z-axis. The slab was then introduced at one end

of the simulation box and box length along z-axis was adjusted in order to remove

the overlaps between the polymer and silica atoms. Coordinates of atoms in the

simulation box were translated along z-axis in order to place slab at the center of

the box. The systems containing silica nanoparticles and fullerene and Slabs in

polymer matrix were further equilibrated by performing MD NPT simulations at 1

bar pressure and 450 K temperature and subsequent long MC simulations with our

algorithms.

3.3 Simulation Methodology

For all the systems listed in Table 3.4, NPT MC simulations were performed

at 450K temperature and 1 bar pressure. Interatomic potentials were smoothly
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switched to zero between 1.2 nm and 1.3 nm by using a switch function as in the

free simulation software Gromacs [204]. Two snapshots in the Figure 3.5 represent

two systems studied (PE500-Slab and PE200-SIL-2.0) and demonstrate the chal-

lenges encountered during modeling such systems. Polymer molecules in contact

with the surface are identified using a 0.6 Å distance criterion from any atom of

the nanoparticle or surface [182]. These systems are highly heterogeneous, which

can be readily observed. As discussed in later sections in more detail, the first

layer consists of loop and train segments followed by a second regime dominated

by tail segments interacting with the bulk polymer melt. In order to achieve rea-

sonable equilibration, adequate sampling in both of the aforementioned domains

is essential.

The simulations included global update moves such as standard hybrid NVE

molecular dynamics (MD) and volume fluctuations (implemented only along z-axis

for the slab systems). Due to the large system sizes, maintaining finite acceptance

of the hybrid NVE MD move (acceptance criteria considering change of the total

Hamiltonian) requires small timesteps (500 steps of ≈ 0.5 fs each for each hybrid

NVE MD move, ≈ 30,000 moves accepted for each simulation). The hybrid NVE

MD moves account for significant computational cost, nevertheless the moves were

kept in the mix of MC moves to facilitate adequately sampling of the fluctuations of

atoms of the solid surface or the nanoparticle (along with other moves e.g. a simple

MC displacement for the center of mass, COM, of the slab or particle). 0.01% for

hybrid NVE MD moves and 0.1% attempts for volume changes were allocated in

the mix of moves.

MC moves extensively applied in past studies e.g. configurational bias (CB)

reptation, CB rearrangement of chain ends and rebridging CB of inner sections [66,

69] formed the second set of moves. These moves first select a chain and then

an inner segment or end of this polymer chain to rebuild. For the large systems
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Figure 3.5: Snapshots of systems showing polymer molecules in contact with the sur-
face explicitly in black. The train segments belonging to different chains
are depicted for a flat surface in the right upper snapshot. Reproduced
from Ref. 6, Copyright 2012, American Institute of Physics.

considered, chains in contact with the surface are only a fraction of the polymer

melt. For example, the PE500-Slab system has approximately 23% of the chain

molecules in contact with the surface, whereas for the PE200-SIL-2.0 system this

population drops to just 3.5% of the total polymer chains (≈ 54 out of 1602 chains).

These numbers indicate the need to enhance sampling in proximity of the surface

by selecting chain molecules more often. This was accomplished for the second

set of moves by selecting polymer chains based on the distance RCM(chain) of the
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chain COM from the surface of the slab or the nanoparticle according to

Psel(chain) =
1

2
A0

(

1 − tanh

(

RCM(chain) −R0
g

R0
g

))

+ (1 − A0), (3.20)

where the constant A0 was set to 0.75. R0
g is the average radius of gyration of

the polymer in the bulk. For selecting a chain molecule, normalization of the cal-

culated Psel(chain) with the sum of similar probabilities for all the chains leads to

Psel
norm(chain). A prefactor to the regular acceptance criterion of the move, equal

to the ratio of Psel, new
norm (chain)/Psel, old

norm (chain) was introduced to maintain detail bal-

ance. A power-law prefactor of 1/R2
COM-COM using the separation of chain COM to

particle COM to account for the three-dimensional increase in the number of chains

was introduced for the nanoparticles. In principle, any functional from can be used

for preferential sampling, however it was shown in previous works [184, 206] that

a rapidly decaying power law is not necessarily the most efficient. Furthermore,

in current study the layer was scaled with R0
g due to the increased polymer size

of longer chain molecules. Maintaining an unnormalized probability for each chain

and the sum of these probabilities for all chains, followed by updating them upon

acceptance of any MC move obviously does not add any significant computational

cost.

Sampling of the spatial extent of loops and tails is accomplished by the

connectivity-altering double-bridging moves with an implementation following the

algorithm of Banaszak and de Pablo [69]. The double-bridging technique allows

construction of bridges of variable number of bonds (from 4-6 bonds or 3-5 atoms),

which increases candidate pairs and reduces the shuttling effect. A biased selec-

tion of two pairs (i.e. (i, j) and (i + 6, j - 6) for bridges of 5 atoms) along two chains
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ichain and jchain respectively is performed as:

P(pairs) =
P1(i

bridge to−−−−→ j) × P2(i+ 6
bridge to−−−−→ j − 6)

Z
, (3.21)

where i and j are selected appropriately to maintain monodispersity (Z is a nor-

malization constant). The intra-molecular probabilities denoted by P ()’s are either

pre-computed or calculated “on-the-fly” [66, 207]. In the systems studied, a large

number of bridging pairs with significant probability exist, but only a few out of

these pairs are in proximity to the surface. For example, in the PE200-SIL-2.0 sys-

tem representative numbers are found to be ≈ 6,500 for bridging with 4 bonds, ≈

17,500 for 5 bonds and ≈ 30,000 for 6 bonds. Eq. 3.21 coupled with Eq. 3.20 max-

imizes sampling in the vicinity of the surface and renders a Psel(pairs) based on

the COM of the four beads serving as starting and ending points of bridges (shown

in Figure 3.6A). While these beads at start and end points are not displaced by the

construction of new bridges, still probabilities have to be recalculated for the pro-

posed move and introduced in the acceptance criterion considering the fact that

normalization factor is altered due to new positions of the bridging atoms.

It was found that with the moves described up to this point, it remains chal-

lenging to sample distributions of number of beads participating in formation of

tail, train and loop segments. Therefore a new reptate move was designed with

the motivation of transferring beads directly from/to within any part of the chain by

taking advantage of the increased free volume at the chain ends [208]. Specifi-

cally, CB growing/shrinking of inner segments was coupled with a parallel shrink-

ing/growing of a selected chain end to maintain the total chain length constant.

Conceptually this move is simple, but in practice, for any model with stiffness the

acceptance rate by random selection of the inner segment remains exceedingly

small. In order to overcome this limitation, the pairs that bound the inner segment
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A)

B)

Figure 3.6: A) Double-bridging pairs are preferentially selected based on the COM
of four atoms serving as start and end points. B) Schematics of shrink-
ing/growing of inner segment coupled with a growing/shrinking of ran-
domly selected end. Within a pre-selected chain, the probability to select
a pair that bounds the segment to be regrown depends on the separation
between these atoms (shaded) that remain at the same position during
this move. Reproduced from Ref. 6, Copyright 2012, American Institute of
Physics.

to be regrown/shrunken were selected in a bias scheme using the intra-molecular

probabilities [66,69] employed in Eq. 3.21 in addition to the bias introduced for the

selection of a chain (according to Eq. 3.20). According to this algorithm, shrink-

ing of an inner segment was biased between a pair of atoms located at positions
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i and i + 6 along the chain provided their separation has a significant probabil-

ity P (5 bonds) as compared to all potential pairs available within the same chain.

Following a similar scheme, growing a segment of 6 bonds between two atoms pre-

viously separated by 5 bonds was biased towards the pairs that had a significant

probability P (6 bonds). This move was restricted to regrowing/shrinking of 5→6

(or 6→5) bonds which requires rebuilding of 5 (4) inner atoms and 1 (2) randomly

selected tail atom(s). An attempt to rebuild larger segments reduces the probabil-

ity of acceptance originating from the unfavorable interactions with intermolecular

neighbors. On the other hand for smaller segments, separations between bound-

ing pairs fail to simultaneously satisfy the intramolecular structure as shown by the

probabilities P ()’s [66] depicted in Figure 3.6B, which requires significant overlap

between P ()’s for both the initial and proposed configuration.

For maintaining detail balance, normalization with the sum of probabilities

over all potential pairs within the same chain for the forward move, calculation of

the normalized probability to select the pair for the reverse move and introduction

of the corresponding fraction as a prefactor to the overall acceptance criterion is re-

quired. Despite these efforts, the acceptance rate remained as low as 0.85%, how-

ever several advantages were observed even at such low acceptance. First, the

sampling of distribution of beads in tail, train and loop segments was enhanced sig-

nificantly; i.e., stretched train segments of 5 bonds are often replaced with longer

segments of 6 bonds that can form loop segments. Second, a refreshment of

the double-bridging lists (due to changes of indexes within a chain) enhanced the

connectivity-altering simulations [67, 176, 177]. Third, this move enabled transfer

of segments directly from the surface to the tails extending towards bulk polymer

(Figure 3.6B) that can be subsequently subjected to double-bridging with the bulk

polymer chains providing means to adsorb-desorb atoms without the limitations

imposed by polymer connectivity.
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3.4 Results and Discussion

3.4.1 Equilibration and Sampling
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Figure 3.7: Orientation autocorrelation function of unit vector along the chain end-
to-end vector shown for the selected systems, A) PE500-Slab and B)
PE200-SIL-2.0, for all chains and the molecules that remain in contact
with the surface (“tagged chains”). Reproduced from Ref. 6, Copyright
2012, American Institute of Physics.

The equilibration of the systems can quantitatively be examined by the decay

of the autocorrelation function of a unit vector along the chain end-to-end vector.

This approach alone can suffice for analyzing the equilibration of the bulk poly-

mer systems. However to gain more insight into equilibration and conformational
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sampling of chains on the surface, these molecules were “tagged” and their reori-

entation was calculated only while they maintain at least a single bead in contact

(at the expense of further decrease in statistics for long intervals since chains can

desorb by exchanging segments with bulk molecules).

Figure 3.7A presents the computed autocorrelation function for all chains (to-

tal) as well as for the tagged chains for the PE500-Slab system. In absence of

preferential sampling, even after more than two months of simulation time on 8

processing cores, decorrelation of tagged chains was not complete. Introduction

of preferential selection as described earlier, enabled satisfactory sampling of both

total and tagged molecules. For the long chains, e.g., N = 500, standard MD does

not provide sufficient equilibration as shown in the inset for a simulation of 10 ns

(1 fs timestep, total 1 month on 8 cores) with the highly efficient parallel software

Gromacs [204]. It should be noted that for shorter chains, connectivity-altering

MC is not as efficient [65] and solely MD, in principle, could be preferable. Ad-

ditionally, a 10 ns simulation with the extremely large systems (PE-200-SIL-2.0

≈ 323,000 atoms) considered in the study required more than 1 month simulation

time and even then complete decorrelation was not achieved (inset of Figure 3.7B).

In contrast focusing on the chains in proximity of surface which are a very small

fraction (≈ 3.5%), drastic sampling of conformations with the MC method resulted

in reasonable evolution of autocorrelation function for the bulk polymer (main Fig-

ure 3.7B).

The connectivity altering moves assist in sampling of disparate orientations

along the end-to-end vector, but the actual algorithm translates only a few atoms

belonging to the bridges built (6-10 atoms) and hence remaining moves are re-

quired to efficiently displace monomers in the system. The translation of the actual

polymer monomers (irrespective of parent chains) is examined by the mean-square

displacement of initially tagged segments along the normal to the surface for the
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Figure 3.8: A) Mean-square displacement (MSD) normal to the surface, B) fraction
of tagged monomers remaining on the surface. Reproduced from Ref. 6,
Copyright 2012, American Institute of Physics.

PE500-Slab system (Figure 3.8A). It can be observed from the slope that pref-

erential sampling induces an initial acceleration, but at the later stages the slope

decreases because a large fraction of the tagged monomers will be transferred

far away from the surface by then. To further expand on this and establish the

efficiency of the technique to sample the phase space Figure 3.8B presents the

fraction of monomers initially in contact with the surface or nanoparticle that re-

main tagged throughout the simulation. While some of these monomers remain in

contact with the surface, they still diffuse extensively parallel to the surface as can
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Figure 3.9: Mean-square displacement of initially tagged monomers along x−y plane.

be observed from lateral mean-square displacements shown in Figure 3.9.

3.4.2 Surface Concentration

The local density of the polymer in proximity of the surface is often viewed as

a measure of the strength of interactions between polymer-surface and a decrease

in the first peak of radial density profiles is expected with increasing curvature [36].

The inset in Figure 3.11A demonstrates that moving from a flat surface to smaller

nanoparticles indeed shows a decrease with the exception of the fullerene where

a significantly higher density is observed. At first this may appear to be consis-

tent with enthalpic interactions listed in Table 3.3. But the amplitude of the first

peak in the density profiles can be misleading for estimation of effective strength

of polymer-particle interactions due to the underlying assumption of the spherical

symmetry, which is fairly inaccurate for the models of nanoparticles used in this

study.

In order to investigate the concentration of monomers in contact with the sur-

face further, we followed a simple distance criterion (polymer chains in contact with

the surface have at least one atom within 0.6 nm from an atom of the surface) as
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Figure 3.10: Snapshot depicting tail, train and loop segments formed by a chain in
contact with the surface.

described in the study of Daoulas et al. [30] to decompose polymer segments ac-

cording to the Scheutjens-Fleer theory [27] into trains, tails and loops (Figure 3.10),

which are defined as following:

1. Tails are the segments which are hinged to the surface at one end while the

other end is dangling freely into the bulk polymer.

2. Train segments are the consecutive monomers in contact with the surface.

3. The loop segments are constituted by the monomers in-between two train

segments, which are not in contact with the surface.

Figure 3.11A demonstrates three distinct regimes for chains in contact with

the surface: a first layer of monomers in contact with the surface constituting train

segments, a second layer where a decay a decrease of loop segments density

dominates the density profile of chains in contact while tail segment density re-

mains constant and a third regime where tail segments extend into the bulk polymer

melt. The inset of Figure 3.11A shows that the area under the first peak becomes

significantly broader for the smaller particles, which is an expected outcome of the

increased roughness. Using the above definitions, the number of monomers in

contact with the surface can be evaluated without the approximation of spherical

symmetry.
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The mass of monomers in contact with the surface per unit area or surface

concentration (Φs) is calculated by integrating the density profile of the train seg-

ments using

Φs =

∫

∞

Reff
φtrain(r) dr

A
, (3.22)

where, Reff is radius of nanoparticle, φtrain is the density profile of the train seg-

ments and A is the polymer accessible surface area of the nanoparticle or surface
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(Table 3.3). Before further analyzing the data extracted from such analysis, it is im-

portant to discuss the effect of particle geometry when a distance criterion is used.

If the nanoparticles are hypothesized as spheres surrounded by a constant density

of polymer (ρ0) in a layer of ∆r thickness and volume ∆VShell accounting for the first

layer or monomers in contact, then the mass adsorbed is given by Ms = ∆VShell×ρ0

or, Ms = 4
3
π((r + ∆r)3 − r3)ρ0 and subsequently surface concentration can be de-

fined as

Φs =
(r + ∆r)3 − r3

3r2
ρ0, (3.23)

where a constant density ρ0 is multiplied with the ratio of the volume of a spheri-

cal shell representing first monolayer (∆VShell) to the surface area of a sphere (AS).

Such geometric arguments suggest that under the assumption of constant polymer

density independent of curvature, surface concentration should show a steep in-

crease upon decreasing the particle radius since the volume available for the first

adsorbed monolayer per unit surface area (∆VShell/As) increases significantly for

smaller particle sizes (Figure 3.12).
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Figure 3.12: A decrease in particle radius leads to a steep increase in (∆VShell/As).
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Using ρSlab as a reference density (ρ0 = ρSlab), predictions based on geo-

metric arguments are shown for different chain lengths by the dashed-lines in Fig-

ure 3.11B. It can be readily observed that a significant increase in surface concen-

tration is predicted, which is in sharp contrast to calculations showing a gradual

increase not at par with the predictions made by geometric arguments. These re-

sults demonstrate that the analysis provides a surprising initial increase of surface

concentration with increase in curvature, which falls significantly short of antici-

pated values by the use of volumetric definition suggesting a decrease in effective

polymer-particle interactions. It should also be noted that consideration of addi-

tional peaks (multi-layer adsorption) would further enhance this conclusion since

systematic lower ordering is observed upon moving to the smaller particles. One of

the striking results of this analysis is that surface concentration Φs for the relatively

smooth C60 particles is actually at par with the smallest silica nanoparticles in spite

of significantly higher enthalpic interactions. This observation suggests that collec-

tive properties beyond the enthalpic interactions between a single monomer and

the surface listed in Table 3.3 appear to play a critical role in determining surface

concentration.

To understand the molecular origin of the increase in surface concentration

being lower than expected, the histograms of train segments of specific lengths

similar to the work of Daoulas et al. for PE on graphite [30] are calculated. Among

the systems studied, one selected profile for the PE500-Slab system is shown in

Figure 3.13A which demonstrates a clear peak that corresponds roughly to a train

segment of the size of one Kuhn length (≈ 1.47 nm or 12 UA beads) with very

low populations for the train segment lengths exceeding 50 UA beads. If the train

segment length S is considered to be an order parameter for adsorption of a single

train segment, the associated free energy cost will follow −kT lnPtr(S). Despite the

limited statistics, the logarithms of such histograms are presented in Figure 3.13A
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Figure 3.13: A) Probability distributions of train segment lengths for PE200 systems.
B) Average numbers of train and loop segments per chain. Reproduced
from Ref. 6, Copyright 2012, American Institute of Physics.

where several features become evident. No significant differences for the slab sys-

tems were observed for N > 100. The profiles show almost linear decrease beyond

the maximum suggesting that addition of atoms beyond a Kuhn segment length is

unfavorable due to the entropic penalty associated (free energy difference ≈ kT

for an additional segment of length S = 50). The most interesting finding of this

analysis is observed upon increasing particle curvature, where the maxima moves

towards shorter segments and the probability of observing longer train segments

abolishes. Furthermore, the significant changes in the slope of the decay suggests
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an increased free energy penalty to augment a train segment. This finding is at-

tributed to intramolecular interactions, which favor planar all-trans train segments

hindering the formation of longer contacts on a highly curved nanoparticle surface.

This critical effect for the smallest nanoparticle C60 seems to overcome the higher

single atom-particle intermolecular interactions leading to increased populations of

shorter contacts between the polymer chains and nanoparticle surface.

Following the previous discussion, it remains to be examined whether an in-

crease in the number of shorter train segments facilitates the formation of multiple

contacts within the same chain or corresponds to an increased number of polymer

chains forming contacts with the surface. Figure 3.13B shows that the number of

train segments per chain increases with molecular weight for the slab systems, but

this is not the case for the particles even for the PE300-C60 system having a ratio of

Reff/R0
g ≈ 0.17. It is further demonstrated in Figure 3.14A, in the weak-adsorption

limit considered here, the decrease of the average length of train segments leads

to an increase in the number of chains interacting with particles with an almost

linear dependence on the particle curvature.

This phenomenon can serve as a rationale behind the lower than anticipated

increase in surface concentration. Train-segments on the surface (as shown in

the representative snapshot in Figure 3.5) can add more atoms as intramolecular

neighbors; an observation attributed to the well-established correlation hole effect,

which is further demonstrated by the lateral radial distributions in Figure 3.14B.

Therefore, upon increasing the particle curvature, local packing effects lead to the

calculated values of surface concentration that fail to follow the anticipated scaling

(Figure 3.11B) by recruiting sufficiently large number of chains in contact with the

surface. To conclude, as the particle curvature increases and size decreases, more

polymer chains form contacts of shorter length with the particle surface. This effect

eventually alters the amount of polymer melt interacting with the surface.
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3.4.3 Bound Layer Thickness

Another quantity of interest in quantifying polymer-particle interactions is the

adsorbance Γ, which is defined as the total mass of polymer bound per unit sur-

face area. Adsorbance can be calculated by integrating the density profile of the

polymer chains in contact with the surface following the expression

Γ =

∫

∞

Reff
φads(r) dr

A
, (3.24)
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where, Reff is the effective radius of nanoparticle, φads is density profile of the poly-

mer chains in contact with the surface and A is the polymer accessible surface

area. It is noted that the increased number of polymer chains forming contact

with the surface and length of tail segments (resulting from shorter trains) will di-

rectly alter the amount of polymer mass bound to the surface. Indeed, a monotonic

increase in adsorbance is observed for all the systems studied as shown in Fig-

ure 3.15A.

The extent of the polymer layer in contact with the surface can be quantified
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by defining an average thickness of the bound layer which serves a vital param-

eter in predictive design of dispersions and fine tuning of the degree of floccula-

tion [189]. Following the definition given by Scheutjens and Fleer [27]. the root

mean square (RMS) thickness of the bound polymer layer is given by

δRMS =

√

∫

∞

r=0
φads(r)r2 dr

∫

∞

r=0
φads(r) dr

, (3.25)

where φads is the density profile of the polymer chains in contact with the surface

and r is the distance from the surface. The calculated values of RMS thickness

of polymer bound layer on silica slabs (δSlab
RMS) are listed in Table 3.5. These values

have a magnitude of the order of the bulk polymer radius of gyration (R0
g) [27]. In

a recent study, Harton et al. [3] employed the lattice-based Scheutjens-Fleer self-

consistent mean-field theory [27] and found that the curvature can decrease the

bound layer thickness by 50% for the particles of size equivalent to polymer Kuhn

segment length relative to a flat surface. The origin of this effect lies in the geo-

metric arguments discussed earlier. As hypothesized by Garvey et al. [186, 187],

if the volume (mass) of polymer in contact with the surface per unit area remains

constant then an increase in particle curvature will result in decrease of thickness

due to excess volume available per unit area for a corresponding shell surround-

ing the nanoparticle. Baker et al. [188] recognized that geometrical corrections

“systematically undercorrect” the bound layer thickness.

The findings in this study agree with a reduction of the layer thickness. How-

ever, the additional feature emerging from the detailed atomistic simulations is

that the increased adsorbance for smaller particles presents a competing effect,

which leads to a lower reduction (30% to 35%) of the layer thickness as shown in

Figure 3.15B for the PE150 systems (all particle sizes considered for this chain
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Table 3.5: Bulk polymer chain size R0
g and corresponding RMS thickness of adsorbed

layer with silica Slab (δSlab
RMS). Reproduced from Ref. 6, Copyright 2012,

American Institute of Physics.

Chain Length R0
g(nm) δSlab

RMS(nm)
48 1.09 ± 0.01 1.14 ± 0.01
100 1.68 ± 0.03 1.74 ± 0.03
150 2.17 ± 0.02 2.11 ± 0.09
200 2.50 ± 0.06 2.33 ± 0.08
300 3.14 ± 0.04 2.88 ± 0.03
500 3.85 ± 0.04 3.12 ± 0.08

length). This analysis not only confirms the importance of volumetric correc-

tions [186–188], but it also establishes that variation in adsorbance originating

from local stiffness is an important contributing factor in curvature-induced effects

on RMS thickness of polymer bound layer. It should be noted that the variations

of bound layer thickness as a function of intrinsic rigidity of polymer have been ob-

served using the worm-like chain models in polymer solutions and nanocomposites

due to the changes in polymer structure along the normal to the surface [14,191].

In this chapter, the changes induced by packing along the surface due to curvature-

induced effects for the particle sizes comparable to the polymer Kuhn length were

reported and discussed in detail.

3.5 Conclusions

This chapter presented a detailed atomistic study of a polymer melt in the

proximity of a flat or highly curved surface and examined changes induced by

the particle curvature at length-scales comparable to the polymer Kuhn segment.

Large system sizes were prepared to avoid confinement effects and studied em-

ploying Monte Carlo algorithms involving a preferential sampling scheme that fo-

cuses on accelerating equilibration in the proximity of surface without sacrificing
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the explicit representation of bulk material. A new implementation of connectivity-

altering Monte-Carlo move together with an extended reptate algorithm was dis-

cussed. It was demonstrated that the extended reptate move facilitates transfer

of polymer mass from the surface to bulk polymer. The analysis performed in this

study elaborates that these new methods can enhance sampling significantly and

render the study of large systems of long macromolecules at interfaces feasible.

The findings show that the high surface curvature induces considerable

changes in the polymer-particle interactions that are dependent on the polymer

architecture. In particular, surface concentration is directly affected by the free

energy penalty imposed by extending long contacts of PE along the surface of

small nanoparticles. An increased number of train segments belonging to differ-

ent chains were shown to partially compensate for this phenomenon, but the local

packing characteristics such as the correlation hole effect hinder the anticipated

scaling. Eventually, shorter train segments allow formation of an increased num-

ber of contacts with different polymer chains surrounding the nanoparticle. The

latter effect (together with slightly longer tail segments) leads to an increase in the

adsorbed polymer mass per unit area on a highly curved surface. Previous exper-

imental [3, 186–188] and theoretical [3] studies have established that geometrical

arguments promote a decrease of the bound layer thickness. The atomistic sim-

ulations in this chapter support this decrease however the intriguing increase in

polymer mass per unit area in contact with the surface suggests that this effect

was overestimated in previous work [3].

It should be noted that this analysis of bound layers does not account for

variability in the strength of interactions for the contacts made. Train segments

of longer length are expected to exhibit increased interactions with the surface

therefore despite an increased number of chains in contact with the surface, the

bound layer could provide for overall decreased steric repulsion between multiple
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particles immersed in a polymer melt. Incorporation of a finite concentration of

nanoparticles to study such phenomena requires prohibitively large system sizes

in atomistic detail. An alternative approach to gain insight on the thermodynam-

ics of these bound layers is the study of solely a pair of particles to extract free

energy profiles as a function of separation [79, 184]. Another attractive avenue for

such studies is employing coarse-grain descriptions of polymer that account for lo-

cal rigidity [14,209,210] and faithfully capture the characteristics of polymer bound

layer. The next chapter will focus on developing such coarse-grained descriptions

to model polymer-particle interactions. It is anticipated that for all the cases men-

tioned above, the techniques described in this chapter that focus computational

effort in proximity to the surfaces will prove to be beneficial.
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Chapter 4 Hierarchical Modeling of Polymer-

Nanoparticles

4.1 Introduction

Interactions of polymers with nanoparticles are complex in nature and both

enthalpic and entropic contributions play significant role in determining the effec-

tive polymer-nanoparticle potential [15, 22, 23]. Polymer chains gain enthalpy by

interacting with the nanoparticle atoms, but restrictions posed on their conforma-

tional degrees of freedom due to presence of nanoparticle leads to loss of entropy.

Capturing such complex interactions is an outstanding challenge in predictive mod-

eling of polymer-nanoparticle systems. The pairwise additive forms used in mod-

eling homogeneous polymer melts are not necessarily appropriate in modeling

heterogeneous polymer-particle systems due to consideration of the many body

effects [77, 78, 191]. Moreover, chemical details of particle surface and polymer

also need to be considered in modeling [191]. Furthermore, stereo-regularity of

polymers has shown to have a significant effect upon visco-elastic properties of

polymer with different tacticity [211], which makes it imperative to incorporate the

effects of tacticity and chemical architecture in polymer models as well. Encom-

passing such a multitude of information in a few parameters describing the model

polymer-particle systems is the subject of this chapter.

Describing the structure and properties in good agreement with experiments

is not the only challenge in developing these models. Large system sizes required
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for avoiding finite size effects in polymer-particle systems up to polymer relax-

ation time [6] add up to the computational challenges in such studies. The limi-

tations posed by large system sizes can be partially addressed by using coarse-

grained (CG) models. Grest and Kremer [212, 213] provided one of the earliest

CG representation for model polymer. Their generic model represented the poly-

mer as a bead-spring system, the efforts in recent years have taken the chem-

ical details of polymers into consideration. Numerous studies in the past years

have focused on deriving effective CG potentials for various polymers with spe-

cific chemical architecture such as trans-1,4 Polyisoprene [71], poly(ethylene ox-

ide) [214], poly(methyl methacrylate) [209], polystyrene [72,73,210,215–218], and

bisphenol-A-polycarbonate [76]. On the other hand, some studies have also fo-

cused on developing CG representation of nanoparticles [84, 219–221]. Combin-

ing the coarse-grained models of specific polymers and nanoparticle surfaces is

not straight forward. Deriving the cross-interactions requires careful consideration

of the polymer-mediated interactions [92]. Such considerations require rigorous

methodologies [7,210] tailored for specific polymers and model particle surfaces.

It is important to acknowledge that significant progress has been made dur-

ing recent years in the simulation methods applied to polymer melts and polymer

nanocomposites [2, 6, 65, 66, 69, 195]. These advances in simulation methods in

addition to the progress in CG representation of polymer nanocomposite melts

can provide an effective tool for modeling the interface of polymer and nanopar-

ticles. The previous chapter discussed a simulation methodology, which allows

rapid equilibration of polymer in contact with the surfaces. In this chapter, efforts

are focused on developing CG representation to capture the polymer-particle inter-

actions incorporating effect of intrinsic stiffness of polymer at local length scales.

Polyisoprene (PI) at a silica surface is chosen as the system of study and CG inter-

action potentials are derived. As the results in this chapter will show, the potentials
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derived for polymer-particle interactions are able to predict the polymer bound layer

in quantitative agreement with the atomistic simulations.

4.2 Models and Systems

The atomistic model of trans-Polyisoprene prescribed by Faller et al. [178]

modified for cis-1,4 Polyisoprene (cis-1,4 PI) was employed to represent fully

atomistic polymer matrix as in the literature [222]. The atomistic models of sil-

ica nanoparticle and surface were same as discussed in the previous chapter. For

atomistic simulations of pure polymer melt, a system containing 100 cis-1,4 Poly-

isoprene 24mer chains (cis-1,4 PI24mer ) was employed. This system contained

31,400 atoms. The atomistic configurations were mapped to their CG equivalent

by applying a scheme adopted from the work of Reith et al. [7], where the center-

of-mass (COM) of the first and last carbon atoms of two successive monomers

were used as the CG interaction site. Figure 4.1 demonstrates the atomistic to CG

mapping scheme.

A) B)

Figure 4.1: A) CG mapping scheme for trans-1,4 Polyisoprene adapted from Ref. 7
and B) CG bead positions are shown for a cis-1,4 Polyisoprene 24mer
overlapped with the atomistic representation.
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A)

B)

C)

Figure 4.2: Atomistic (left) and mapped CG (right) representations for cis-1,4 Polyiso-
prene 24mer A) bulk polymer melt, B) with and flat surface (Slab), and C)
with SIL-2.0 nanoparticle.

While obtaining CG models of a bulk polymer melt is straightforward (Fig-

ure 4.2A), some amount of effort was required in preparing a cis-1,4 PI24mer Slab

system. The silica atoms were completely removed from the simulation box and

the atomistic chains were mapped to the CG interaction sites. Further to this point,
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the polymer chains in the box were translated such that each surface of the Slab is

represented by the extremities of the simulation box. The equivalent potentials to

mimic the Slab were incorporated by the means of wall potentials in Gromacs [204]

as shown in Figure 4.2B. There are two main advantages of this approach. First,

removal of the silica atoms leads to decreased number of beads in the system,

which reduces computational efforts during simulations. Second, efforts required

for deriving CG potentials for intraparticle CG interactions are avoided.

Going forward, CG interaction sites corresponding to the polymer chains were

obtained for the cis-1,4 PI24mer SIL-2.0 system and the SIL-2.0 particle was sub-

stituted by a single-site at the particle COM (Figure 4.2C). This mapping scheme

also has the advantages similar to the cis-1,4 PI24mer -Slab system. In addition to

the SIL-2.0 system, a series of systems with a CG representation of nanoparticle

ranging from nominal radius 0.5-2.5 nm were prepared for the study of curvature

induced effects by employing cis-1,4 PI-Silica systems.

4.3 Simulation Methodology

4.3.1 Atomistic Simulations

A 50 ns atomistic NPT molecular dynamics simulation of cis-1,4 PI24mer

bulk polymer melt system was performed using Gromacs v4.5.5 [204] (referred

to as melt simulations in later part). The non-bonded interactions were truncated

at a cut-off distance of 1 nm and a timestep of 1 fs was used for integrating the

equations of motion. Temperature was maintained at 413 K by applying velocity-

rescaling temperature coupling [223]. The Berendsen barostat [224] with a time

constant of 1 ps was employed to maintain an average system pressure of 1 bar.

Atomistic NPT molecular dynamics simulations of 400 cis-1,4 PI24mers in the
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presence of a silica Slab and 800 cis-1,4 PI24mers with a silica nanoparticle of

radius ≃ 2 nm (SIL-2.0) were performed. The cut-off distance, timestep, temper-

ature coupling and barostat were kept similar to the melt simulations, except that

separate temperature coupling for Slab/nanoparticle and polymer was employed

and for the polymer matrix containing silica Slab, semi-isotropic pressure coupling

was applied so that the dimensions of Slab surface perpendicular to z-axis remain

constant. The duration of the simulations exceeded 45 ns and 30 ns for the sys-

tems containing Slab and SIL-2.0 respectively.

4.3.2 Coarse-Grained Potentials for Polymers on Flat Surfac es

The first step in the development of CG interaction potentials for polymer-

polymer interactions was the generation of a CG simulation trajectory correspond-

ing to the atomistic melt simulations following the CG mapping scheme discussed

in the previous section. The distributions for bond lengths P (l), angles P (θ), radial

distribution function g(r) and dihedral angles P (φ) for mapped CG representations

were calculated. These distributions were utilized as the target distribution func-

tions for deriving CG bonded, angular, dihedral and nonbonded interaction poten-

tials. The initial guess potential for bonded interactions was given by

V 0
bonded(l) = −kBT ln(P (l)/l2). (4.1)

The initial guess for the angular potential was generated from

V 0
angular(θ) = −kBT ln(P (θ)/ sin θ). (4.2)
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The initial nonbonded potential between the polymer beads were derived from the

g(r) as

V 0
nonbonded(r) = −kBT ln(g(r), (4.3)

and for dihedral potentials

V 0
dihedral(φ) = −kBT ln(P (φ) (4.4)

was used.

Optimizing all of the above potentials simultaneously was found to be infeasi-

ble. Therefore, interaction potentials were optimized in the order of their successive

strength i.e. Vbonded → Vangular → Vnonbonded → Vdihedral [7]. The optimization of these

potentials was carried out following the Iterative Boltzmann Inversion (IBI) method

as described in the previous studies to optimize similar set of potentials [7, 225].

IBI method uses a simple Boltzmann inverse of probability distribution P (ξ) for an

order parameter ξ, which leads to free energy

F (ξ) = −kBT lnP (ξ). (4.5)

This free energy can be used as an initial guess of potential V 0(ξ). The initial guess

is then updated by a correction term −kBT ln[P 0(ξ)/P (ξ)] in an iterative scheme

and the corrected potential is calculated by

V i + 1(ξ) = V i(ξ) − kBT ln

(

P i(ξ)

P (ξ)

)

. (4.6)
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Following the above scheme, bonded, angular, nonbonded and dihedral po-

tentials were optimized by using

V i + 1
bonded(l) = V i

bonded(l) − kBT ln

(

P i(l)

P (l)

)

, (4.7)

V i + 1
angular(θ) = V i

angular(θ) − kBT ln

(

P i(θ)

P (θ)

)

, (4.8)

V i + 1
nonbonded(r) = V i

nonbonded(r) − kBT ln

(

gi(r)

g(r)

)

, (4.9)

and

V i + 1
dihedral(φ) = V i

dihedral(φ) − kBT ln

(

P i(φ)

P (φ)

)

, (4.10)

In order to evaluate the convergence of the above iterative schemes an ob-

jective function was applied, using the form

ftarget(ξ) =

∫

w(ξ)(P i + 1(ξ) − P i(ξ))2dξ, (4.11)

where

w(ξ) = exp(−ξ), (4.12)

is the prefactor that penalizes deviations at smaller values of ξ. Obviously, such

a penalty is meaningful only in the case of nonbonded interactions at shorter dis-

tances between the first neighbors to capture the first peak in the radial distribution

function. Therefore, w(ξ) was set to 1 in the objective functions for bonded, an-

gular and dihedral potential optimization scheme. For optimization of nonbonded

interactions, matching of g(r) alone is not sufficient as the average pressure of

the system may differ by orders of magnitude. To alleviate this problem, pressure

corrections were employed following the recipe provided by Wang et al. [226]. For

an iterative process with interactions being truncated at a cutoff distance rcut, the
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correction to the potential at ith iteration is given by

∆Vi(r) = Ai

(

1 − r

rcut

)

, (4.13)

where the ramp Ai is calculated following

−
[

2πNρ

3rcut

∫

0

rcut

r3gi(r)dr

]

Ai ≃ (P − Ptarget)V. (4.14)
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Figure 4.3: Variations in A) objective function ftarget and B) average system pressure
as a function of number of iterations. Notice that pressure correction steps
compete with matching g(r).

In Eq. 4.14 N is the total number of particles in a system of volume V , num-

ber density ρ and pressure P . Ptarget is the pressure to be achieved. Figure 4.3

79



presents an interesting aspect of the pressure corrections. It can be observed

that an improvement in the objective function ftarget is associated with deviations

in the average system pressure. Owing to this, corrections were performed al-

ternate in an alternating scheme. Pressure corrections were performed until the

relative change in pressure saturated to a predefined value and then corrections to

match g(r) were applied until the objective function converged to a certain degree.

The alternate steps of corrections were continued until a good match of g(r) was

obtained with an average system pressure ≈ 2 bar. This approach lead to the esti-

mates of the CG interaction potentials (Figure 4.4), which enabled NVT molecular

dynamics simulations with 3 fs timestep and 1.5 nm cut-off distance resulting in the

average system pressure very close to 1 bar (≃ 5 bar) and excellent quantitative

agreement between the target and CG probability distributions (Figure 4.5). These

CG potentials were further used in simulations of cis-1,4 PI with a flat surface (de-

noted by wall potentials) for estimation of effective CG polymer-surface interaction

potentials.

For estimation of effective CG interaction potentials between polymer bead

and silica Slab, atomistic simulations of the cis-1,4 PI24mer Slab systems were

performed. The target radial distribution function of the CG beads as a function

of distance from the Slab surface obtained from the mapped cis-1,4 PI24mer Slab

trajectory were used for deriving effective interaction potential following the IBI pro-

cedure. This iterative process followed the Eq. 4.9. No efforts were made to ap-

ply pressure corrections during this optimization process. It should be noted that

these optimizations are carried out in the NVT ensemble and in absence of periodic

boundaries along z-axis. It will be discussed along with results that the interaction

potentials estimated here not only reproduce the “Total” radial distribution of CG

beads, but also provide the distributions of tail, train and loop segments in good

quantitative agreement with the target distributions.
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Figure 4.4: Estimates of CG interaction potentials for cis-1,4 Polyisoprene derived
from IBI method. A) Bonded potential, B) angular potential, C) nonbonded
potentials, and D) dihedral potential.

4.3.3 Transferring CG Interactions to Nanoparticles

This section outlines a procedure, that provides estimates of the interaction

potentials between a polymer bead and a particle of arbitrary curvature based upon

the interaction potentials between the polymer bead and a flat surface. Nielsen et

al. [227] presented a scheme, where the interaction potential between a single in-

teraction site of the substrate and a polymer bead (single-site potential, u(ξ)) can

be derived by taking the second derivative of the effective interaction potential be-

tween the surface and the polymer (USlab(ξ)) and dividing it with a term accounting
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Figure 4.5: Comparison of A) bond length, B) bond angles, C) radial distribution func-
tion, and D) dihedral angles for cis-1,4 Polyisoprene obtained from the
derived CG interaction potentials with the respective target distributions.

for the number density of the interaction sites ρ. Using the functional form

u(ξ) =
U ′′

Slab(ξ)

2πρξ
, (4.15)

the single-site interaction potential between one interaction site on the Slab surface

and a CG polymer bead is shown in Figure 4.6A. Once the single-site potential is

calculated, the effective interaction potentials between the nanoparticles of any

arbitrary curvature i.e. radii can be calculated by integrating the interactions over

the particle volume within the cutoff distance (for details see Appendix A). Such

potential between a segment of cis-1,4 PI and silica particles are presented in

Figure 4.6B.
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Figure 4.6: A) Figure showing polymer-slab interaction potential Uslab(ξ), calculated
single-site potential u(ξ) and effective polymer-nanoparticle interaction po-
tential UNP(ξ) obtained from integration. B) Effective interaction potentials
between CG polymer bead and silica Slab (as a function of distance from
the surface), and effective interaction potentials from integration of single
site potential for nanoparticles of different radii. Part B: Reproduced with
permission from Macromolecules, ’submitted for publication’. Unpublished
work copyright 2013 American Chemical Society.

4.4 Results and Discussion

The effective interaction potentials between silica Slab/nanoparticles and

CG polymer beads were subsequently employed in a 15 ns CG NVT molec-

ular dynamics simulations of the matrix of cis-1,4 PI24mers containing silica
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Slab/nanoparticles. The results from these simulations are discussed in the fol-

lowing sections.

4.4.1 Density Around a Nanoparticle

The polymer density as a function of distance from the Slab surface or

nanoparticle center-of-mass (COM) was further decomposed into free chains and

polymer chains in contact with the surface (or adsorbed chains). Any polymer

chain with a bead within 4 Å from the effective surface (defined on the basis of

effective volumes reported in the previous chapter) of Slab or nanoparticle was de-

fined as a chain in contact. The radial distributions for the adsorbed chains were

further decomposed into the tail, train and loop contributions. Figure 4.7 shows the

comparison of the radial distribution functions and their decomposition into differ-

ent segments. It can be observed that the effective interaction potentials between

silica Slab and CG polymer bead obtained from the IBI procedure provide excel-

lent match for both the total radial distribution and the decompositions. The same

holds true for the systems containing SIL-2.0, a result that indicates the applica-

bility of effective potentials obtained from the integration of the single-site potential

in describing conformation of the polymer in contact with the Slab surface and the

nanoparticles.

4.4.2 Length of Contacts

In order to further investigate the accuracy of the derived effective poten-

tials, the probability distributions of tail, train and loop segments obtained from

the atomistic and CG simulations of Slab and SIL-2.0 systems were compared.

Figure 4.8A presents a good agreement between the segment probability distribu-

tions obtained from the atomistic and CG simulations. This result further indicates
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Figure 4.7: Radial distribution functions of cis-1,4 Polyisoprene 24mer beads and
their decomposition A) as a function of distance from the Slab surface
and B) as a function of distance from the COM of SIL-2.0 particle. Repro-
duced with permission from Macromolecules, ’submitted for publication’.
Unpublished work copyright 2013 American Chemical Society.

that the derived effective potentials not only capture the density fluctuations as a

function of distance from the surface of Slab/COM of nanoparticle, but they also

very well capture the variations in the lengths of the individual segments. To the

best of author’s knowledge this is the first time when such a quantitative agree-

ment is reported. Figure 4.8B shows the probability of train segment lengths for

different sizes of nanoparticles. It can be observed that the smallest nanoparticle

shows a significantly higher probability of forming shorter train segments and van-

ishingly small probability of forming long trains segment. In contrast to this, larger
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Unpublished work copyright 2013 American Chemical Society.

nanoparticles and the Slab show an appreciable probability of forming larger train

segments. In the previous chapter, similar trends as a function of particle size were

observed and attributed to the significant entropic penalty for forming larger train

segments at the surface of the smallest nanoparticles. This result demonstrates

that the effective interaction potentials derived in this study are capable of capturing

these phenomena quantitatively.
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4.4.3 Bound Layer Thickness

The effect of particle size upon the normalized RMS bound layer thickness

is shown as a function of the particle size relative to the polymer Kuhn segment

length. For polyethylene (PE), a Kuhn segment length of 1.47 nm was adopted

from the previous study [6]. For cis-1,4 Polyisoprene, a Kuhn segment length of

0.82 nm was adapted following Rubinstein. [64]. The plot reveals a very interest-

ing trend for the decrease in the value of δnorm. It can be observed that in spite

of the differences in the chemical architecture of polyethylene and cis-1,4 Polyiso-

prene, the scaling of δnorm with respect to the particle size relative to Kuhn segment

length seems to collapse on the same master curve. Such similarity in the scaling

of bound layer thickness may lead to more general scaling law for polymer with

different architectures.
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Figure 4.9: Normalized RMS bound layer thickness as a function of particle size rel-
ative to polymer Kuhn segment length. Reproduced with permission from
Macromolecules, ’submitted for publication’. Unpublished work copyright
2013 American Chemical Society.

.
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4.5 Conclusions

In this chapter, the methodology for developing coarse-grained models

for the polymer-particle interactions was outlined. A hierarchical modeling

approach started with the estimation of CG polymer-polymer interactions using

IBI method [7]. Using the methods available in literature [226], the potentials were

refined to provide a reasonable pressure in the system. These potentials were

subsequently used for parametrization of the interactions between a flat surface

and polymer in CG representation. It was demonstrated that the method [227]

for calculating the interaction potentials for particles of arbitrary curvature based

upon the CG interactions between polymer and flat surface not only reproduces

the “Total” radial distribution functions for the Slab and nanoparticle systems, but

also shows remarkable capability of capturing the density profiles for the tails,

trains and loops. Furthermore, the effects of curvature upon the train segment

distributions [6] are also captured with the potentials derived in this chapter. It is

emphasized that such kind of coarse-grained potential development methodology

not only reduces the effort required in optimization of potentials with particles of

different sizes, but also provides an excellent description of the polymer in the

contact with the nanoparticle surface. This was the first time when such accuracy

of CG models was demonstrated.

Up to this point, the studies were focused on the study of the interfacial phe-

nomena in the systems, which do not involve reactions. In the next chapter, a prob-

lem of significant industrial interest involving reaction-diffusion phenomena near

the interfaces is studied using the lattice simulations.
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Chapter 5 Stochastic Modeling of Reaction-

Diffusion in Chemically Amplified Resists

5.1 Introduction

During the recent years, the most advanced and sophisticated integrated cir-

cuits e.g. microprocessors and memory chips, are patterned with projection lithog-

raphy. The lithographic resolution (minimum feature size Rmin) controls the effi-

ciency of semiconductor devices. For keeping pace with the historic growth rates

given by Moore’s Law, future lithographic processes must attain the resolution limit

of 10 nm [228]. For meeting this challenge, imaging materials for next-generation

lithography must meet a number of demands, e.g., nanoscale resolution, near-

perfect pattern uniformity, and high sensitivity to radiation [?].

The process called chemical amplification is the basis of most sensitive re-

sists [229–231]. There are two principal components of chemically-amplified (CA)

resists: (i) A lipophilic polymer with acid-labile protecting groups; and (ii) a low

concentration of photoacid generator (PAG). Generation of a strong acid catalyst

is accomplished by exposing the resist to radiation, and subsequent heating at

moderate temperature promotes the acid-catalyzed decomposition of the protect-

ing groups along the polymer backbone. The deprotection reaction changes the

polymer polarity for development in an aqueous base. The high efficiency of CA

systems is attributed to each photon absorbed by the resist generating ca. 0.3-3

acid molecules [232, 233], and each of these acid molecules cleaves hundreds of
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bonds [229], therefore a low radiation dose is “amplified” through chemistry. How-

ever, there is a price for excellent sensitivity of CA resists due to limitations posed

on the pattern resolution and uniformity originating from the catalytic efficiency

and/or acid diffusion [57, 121, 228, 234, 235]. In addition, features with nanometer

resolution are mechanically unstable due to high aspect ratio. A potential remedy

to this issue is application of ultrathin films, but the potential effects of substrate

interactions [60] in ultrathin films need to be quantified.

Prediction of the spatial extent-of-deprotection with nanoscale resolution

clearly needs development of quantitative models of chemical amplification. It is

well documented that deprotection kinetics in CA resists are controlled by acid

catalyst diffusion [57, 121], but the mechanism cannot be described by a simple

Fickian diffusion model [4, 113, 122]. Previous works [56, 116, 119, 137, 236] have

proposed macroscopic models that include thermodynamic equilibria, free volume

generation, acid trapping reactions, or concentration-dependent diffusion coeffi-

cients to describe the deprotection kinetics. These studies aim to capture particu-

lar aspects of the deprotection reaction kinetics such as the fast initial conversion

or slow conversion at long times. In one of such efforts, Croffie et al. [119] intro-

duced concepts from polymer physics to describe an initially fast deprotection rate,

concurrent with the creation of free volume from escaping volatile by-products.

The additional free volume subsequently relaxes and leads to a dense polymer

resin that arrests the acid mobility. In a different approach, the overall deprotec-

tion rate is described as a series of thermodynamic equilibria between the acid

catalyst and protected or deprotected polymer [57]. Finally, a number of stud-

ies have employed a phenomenological concentration-dependent acid diffusivity

that increases with extent-of-deprotection [56, 118, 237]. In any of the cases men-

tioned here, it is unclear whether such descriptions can be successfully extended

to model material behavior at the nanoscale, where molecular parameters such as
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the distances between the reacting centers and acid-anion pair play a significant

role [238]. These challenges in capturing macroscopic behavior with a mesoscopic

model are further increased by the anticipated local fluctuations in composition and

density [239], and it is not certain that mean values of the estimated parameters

such as acid hopping times can adequately describe the transport mechanism

in a reacting glassy polymer matrix. In fact, previous studies have failed to re-

port a unified model of parameters (e.g., trapping rate constants) that captures the

extent–of–reaction at all acid loadings.

In this chapter, a concerted modeling and experimental approach is employed

to demonstrate that a surprisingly simple model of anomalous diffusive behav-

ior can predict macroscopic deprotection rates. This model is based on an acid

hopping process representing subdiffusive character, which generates extensive

short-time reaction followed by long-time limiting behavior. The model is able to

predict the higher-order dependence of deprotection rates on acid concentration

accurately. Based on the recent studies of anomalous diffusion in complex mate-

rials [240], it is proposed that deprotection rates are controlled by an underlying

non-exponential distribution of acid hopping rates. This study aims at providing a

unique framework to examine the effects of polymer dynamics on reaction front

propagation in CA resists. This is the first step towards quantitative modeling of

reaction-diffusion phenomena in polymer films. This work opens the route for fu-

ture efforts that will examine the effect of polymer film thickness.

5.2 Input from Experiments

The experiments were performed by Stein Research Group at the University

of Houston. The aim of experiments was to measure the extent–of–reaction in a

model chemically–amplified resist with infrared absorbance spectroscopy. These
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Figure 5.1: A-C) Deprotection levels as a function of time on linear and logarithmic
scales. The curves have similar shapes, and they can be superimposed
by assuming a nonlinear dependence on acid loading as illustrated in D)
Solid line is the best-fit profile to a first-order reaction. Reprinted with
permission from Ref. 8. Copyright 2012 American Chemical Society.

experiments were performed at variable catalyst loading, reaction temperature,

and reaction time. The reaction temperature was always maintained at least

50 K lower than the polymer’s glass transition temperature. A random copolymer

resin poly(4-hydroxystyrene-co-tertbutyl acrylate) (PHOST–PTBA), 60% PHOST

by volume, with molecular weight Mn = 10.4 kg/mol and polydisperty index of

1.8 was used with the photoacid generator (PAG) triphenylsulfonium perfluoro-1-

butanesulfonate (PFBS).

All formulas were prepared by dissolving the polymer, PAG in propylene gly-

col monomethyl ether acetate (PGMEA) and double–side polished p-type (100)
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silicon wafers were used as substrate. In order to study deprotection kinetics, re-

sist formulas were prepared with PHOST-PTBA resin and PAG loadings of 1 wt%,

2 wt%, 4 wt% or 10 wt%. The polymer concentration in PGMEA was 10 wt% for

all studies. Deprotection levels quantified by the fraction of deprotected groups

in resist films of thicknesses of 250–300 nm were calculated employing Fourier-

Transform Infrared (IR) Spectroscopy at 70◦C, 80◦C, and 90◦C temperatures as a

function of post-exposure bake time. The deprotection profiles for the mentioned

acid loadings at the three temperatures are shown in Figure 5.1A-C.

5.3 Modeling Methodology

The simulations employed a lattice model with the material divided into cubic

elements of volume of 1 nm3, and an acid molecule represented by a single par-

ticle residing in one of the sites. Simple calculations based on the density of the

resin lead to estimates of 3 HOST and 2 TBA groups in each lattice site. In addi-

tion, the size of the photogenerated ions is estimated in the range of 0.2-0.3 nm3,

which is smaller than the volume of each cell but larger than the polymer groups.

Molecular characteristics such as anion orientation [238] and fluctuations in local

concentration [239] are critical factors in determining the actual distances between

deprotecting groups and acid molecules. It will become evident from the discussion

in the later sections that in our approach such features are implicit to the descrip-

tion employed to model the distribution of time intervals for acid hopping within the

cubic lattice. The model assumes that deprotection reaction, escape of volatile

products, and volume relaxation all are fast events, therefore acid mobility is the

only factor controlling the deprotection rates. Furthermore, when an acid molecule

jumps into a new site, deprotection of the microscopic volume occurs instanta-

neously. Acid molecules randomly distributed at initial locations do not deprotect
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any material – a hopping event must be selected prior to occurrence of a deprotec-

tion event. If acid molecules are allowed to deprotect before a hopping event, it will

produce an instantaneous deprotection level matching the acid concentration. For

low acid concentrations, the difference between these initial conditions is minimal.

With the initial condition that allows deprotection event only after a hopping event

takes place, deprotection profiles for a Fickian model are accelerated in proportion

to acid loading. Furthermore, such an initial condition avoids a situation where

all acid molecules simultaneously deprotect their cells at t = 0 [241]. For the lat-

tice simulations, cubic lattice models with 303 cells were used for the optimization

scheme, while final profiles were generated using cubic lattice containing 503 cells.

The acid hopping events on the lattice were modeled using two different al-

gorithms. The first algorithm reproduces a random walk described by an ergodic

Markov process following a stochastic Kinetic Monte Carlo approach [242, 243].

Similar methods are widely applied in the literature [57–59, 116, 134, 139] and im-

plemented by executing reactions or displacements based on time intervals asso-

ciated with these events drawn from an underlying exponential distribution

ψ(t) =
1

τ
e−

t
τ . (5.1)

In case of spatial displacements, the Green’s function for diffusion is recovered

with a macroscopic diffusion coefficient D. The second algorithm used in this study

employs a non-ergodic non-Markovian description, which is based on a distribution

function for waiting time intervals that follow long-tail kinetics [244] to model anoma-

lous diffusive behavior. Processes following long-tail kinetics are increasingly ob-

served in the problems related to transport in complex systems [240,245–250], and

are supported by a developing theoretical framework [251, 252]. However, these

methods have not been employed to analyze experimental data in acid-catalyzed
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deprotection reactions in previous works. Additional details pertaining to the selec-

tion and implementation of the models are discussed in the Results section.

It should be emphasized that the main aim of this study is to directly test the

effect of acid diffusion on the observed macroscopic deprotection rates. During

the recent years, significant progress in characterizing diffusion in complex ma-

terials is fueled by development of advanced algorithms and new experimental

techniques that are able to probe molecular length-scales [253–257]. In literature,

different types of waiting time distributions have been proposed. In order to incor-

porate simulations as function calls within an optimization scheme [258], selection

of a functional form enabling execution within a short time is imperative. Each

function evaluation proposes a specific value of acid diffusivity D (or γ, τ depend-

ing on the model) followed by creation of a new random distribution of the acid

molecules (remodeled with each evaluation), performing the simulation, and then

comparison of the simulated deprotection profiles against experimental data. (It

should be noted that all data are projected onto the lowest acid concentration 1

wt%, a detail further discussed in the Results section.) The optimization scheme

accepts/rejects proposed changes in the parameter D based on a Metropolis cri-

terion at a “temperature” associated within a specific number of move attempts.

For a specific “temperature,” 20-50 runs are performed and by cycling through low

and high temperatures, a number of profiles and parameters corresponding with

the local minima are generated. Since each of these runs requires hundreds of

function evaluations, a simple and efficient model of anomalous diffusion [240] is

absolutely essential for the success of this approach. Considering the accuracy of

available data, there was no convincing physical basis for introduction of additional

parameters apart from acid-acid interactions at high loadings (acid molecules are

“phantom” particles in our first approach).
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5.4 Results

5.4.1 Macroscopic reaction kinetics

Figure 5.1A-C present the deprotection level with respect to time at 70◦C,

80◦C and 90◦C respectively. A number of features observed in other studies are

evident in the experimental data presented here. The data reported on a linear

timescale appears to depict a self-limiting reaction with a maximum deprotection

level that depends on acid concentration [54, 236, 259, 260]. However, plotting the

same data on logarithmic timescale reveals that the deprotection reaction contin-

ues with an extremely slow rate. A reduction in deprotection rates as the con-

version increases has been discussed by other studies. Often this behavior is

captured with phenomenological models, e.g., volume relaxation or a temporal

acid–trapping through additional reactions [119, 261]. As mentioned earlier, these

models may fail to describe experimental data for different acid loadings with the

same parameters. Before addressing the phenomena that control long-time be-

havior, it is important to discuss the microscopic mechanisms that controls depro-

tection at short-to-intermediate timescales. Data from resists with different acid

concentrations are used to guide this discussion. All of the data discussed here

were acquired from glassy polymer resists, which means that the deprotection tem-

perature is well-below the polymer’s glass transition temperature (Tg − T ≥ 50 K).

Furthermore, unless otherwise stated, the data reviewed from other studies were

also based on glassy polymer resins.

Usually the deprotection reaction is modeled as a first-order reaction with a

very long catalytic chain [57,121]. To quantitatively describe the experimental data,
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a simple analytical differential equation for reaction-limited kinetics

dφ

dt
= k[H+](1 − φ) (5.2)

was used. If [H+] remains constant throughout the reaction, then a new

parameter K = k[H+] that depends linearly on acid concentration can be

employed to formulate the observed deprotection. Therefore, a reduction in the

acid concentration by a factor of 2 should provide a rate of deprotection twice

as slow. Some studies have reported linear dependence of deprotection rate

upon acid concentration [236], which is consistent with the model in Eq. 5.2,

but many examples with the reaction order greater than 1 are available. For

example, Ferguson et al. [259] studied the deprotection of tert-butyloxycarbonyl

(t-BOC) groups in poly(t-BOC-styrene sulfone) resists and reported exponents

in the range of 1.2-1.8. The range of exponents was affected by the variations

in temperature (always below Tg), PAG concentration, and type of PAG.

Recently, Jung et al. [262–264] examined acid-catalyzed deprotection in two

types of polymers: A poly(methyladamantyl methacrylate-co-γ-butyrolactone

methacrylate) (PMAdMA-PGBLMA) resin with adamantyl protecting groups, and a

poly(hydroxylstyrene-co-styrene-co-tertbutyl methacrylate) (PHOST-PS-PTBMA)

resin with tertbutyl methacrylate protecting groups. These studies measured

the resist sensitivity as a function of acid loading (photospeed), which is roughly

proportional to deprotection rates at the reaction temperatures both below

and above Tg. At temperatures below Tg, it was found that reducing the acid

concentration by 1/2 would reduce the MAdMA-PGBLMA and PHOST-PS-PTBMA

photospeeds by factors of 16 and 4, respectively. This result is in disagreement

with first-order deprotection kinetics. In contrast, the same study detected

first-order deprotection kinetics using laser spike annealing (T >> Tg). In
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accordance with the available literature, the chemistry of the deprotection reaction

cannot explain an increased reaction order. Based upon the data from Jung et al.,

it is likely that deprotection rates in polymer-based resists are controlled by the

dynamical properties of the polymer resin [264].

The experimental results in this study provide a macroscopic deprotection

rate exhibiting stronger-than-linear dependence on acid concentration,

K = k[H+]n, n > 1. (5.3)

It was determined that the exponent n was approximately 1.6 at 70◦C, 1.5 at 80◦C,

and 1.5 at 90◦C. To further demonstrate this behavior, Figure 5.1D reports all data

for 70 ◦C on a master curve accounting for the nonlinear dependence of reaction

rate on acid concentration. For example, the data for 10 wt% PAG upon multipli-

cation by 101.6 superimposes those points onto the 1 wt% PAG curve. This finding

indicates that the underlying deprotection mechanism does not vary with acid con-

centration, but a simple linear rate law cannot explain the observed macroscopic

behavior. Figure 5.1D also shows the model curve based on Eq. 5.2 (solid black

line), and supports that an exponential decay of reacting groups does not describe

the reaction kinetics. Apart from the observed slow reaction at very long times,

a faster decrease in TBA groups was observed at short times. Previous studies

of chemically-amplified resists have attributed such type of features to a compet-

ing thermolysis reaction [57, 261]. It should be noted that the PHOST-PTBA resin

used in experimental studies is thermally-stable [229]. Keeping all these factors in

mind, it is believed that a different microscopic model is needed for a quantitative

description of the observed deprotection kinetics.
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5.4.2 Fickian diffusion

For more than 30 years, the acid-catalyzed deprotection of glassy polymer

films has been studied extensively. It is widely accepted that acid diffusion con-

trols the macroscopic reaction rate, but the models based on Fickian diffusion are

unable to adequately describe experimental data [115, 117]. A number of phe-

nomenological diffusion models that reduce the acid transport rates with increasing

extent-of-deprotection were developed. Many studies of acid transport in depro-

tected and protected polymers support this view, where extremely low diffusivity in

the deprotected phase (10−16-10−18 cm2/s) is orders of magnitude less than the dif-

fusivity in protected phase (10−12-10−14 cm2/s) [57,113,124]. One of such models

suggests that volatile reaction products lead to creation of additional free volume

and a subsequent desorption of these molecules with polymer relaxation decays

the free volume to an equilibrium state [119]. While this hypothesis presents a

plausible scenario, the model introduces several parameters that are difficult to es-

timate or measure. Furthermore, experiments reported that desorption is much

faster than deprotection reaction in direct contrast to the volume–relaxation mech-

anism [265]. Some other studies have proposed a simple relationship between

acid diffusivity and extent-of-reaction, such as a linear increase in diffusion rate

with increasing deprotection level [56,118]. Although this view is not supported by

direct measurement of acid transport, such models appear to describe the image

blur in a real photoresist. Owing to the difficulties in determination of an appropri-

ate acid transport model, Fickian diffusion with a constant acid diffusivity is often

employed to interpret experimental data [4, 54, 55]. To summarize, capturing both

short-time and long-time behavior with the models of acid-catalyzed deprotection

faces significant challenges. Therefore, different parameters based upon the aim

of each study are introduced to capture the timescale of interest.
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Figure 5.2: Deprotection profiles using Fickian diffusion model. A-C) Optimal D de-
termined for the superimposed data at 1 wt%, and predicted profiles for
higher acid loadings using the same D. D) Calculated mean-square dis-
placement of acid molecules as a function of time. Reprinted with permis-
sion from Ref. 8. Copyright 2012 American Chemical Society.

In previous studies [57–59, 109, 116, 134], stochastic simulations have been

used to describe reaction kinetics and acid transport in chemically-amplified re-

sists. Using a lattice Kinetic Monte Carlo algorithm [139, 242, 243], a microscopic

model based on an explicit description of acid molecules was defined that per-

forms random walks with Gaussian statistics. In this algorithm, processes and

associated transition probabilities are initialized for all lattice cells based upon the

provided input. The probability to perform process j at lattice site i is given by

pij =
Γij

∑NP
j=1

∑NL
i=1 Γij

=
Γij

∑NL
i=1 Γi,tot

=
Γij

Γtot
, (5.4)
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where Γij is transition probability of process j at site i, Γi,tot is sum of transition

probabilities of all processes at site i and Γtot is sum of transition probabilities of

all processes over all the lattice sites. Calculations of Γtot and Γi,tot are done a

priori i.e. before selecting the lattice cell and process to perform. Such processes

associated with each lattice cell will be presented later in discussion of Figure 5.6.

A lattice cell-process pair (l, p) is selected by using a uniformly generated random

number ζ1 ∈ (0, 1) following

∑(p−1)
j=1

∑l

i=1 Γij

Γtot
< ζ1 ≤

∑p

j=1

∑l

i=1 Γij

Γtot
. (5.5)

Another uniformly generated random number ζ2 ∈ (0, 1) is used for the

stochastic time increment proposed from the distribution

∆t =
ln(ζ2)

Γtot

, (5.6)

which corresponds to the exponential distribution represented by Eq. 5.1. This pro-

cess is repeated until the desired simulation time is reached. Each function call in

the optimization scheme performs one simulation of specified duration. The objec-

tive function defined by the sum of squared differences between experimental data

and deprotection profile calculated from the simulations is minimized by following

an acceptance or rejection based on the Metropolis criterion.

As discussed in the description in the Modeling Methods section, the diffusion

coefficient D was the only adjustable parameter within the optimization scheme.

The master curve described in Figure 5.1D was used for this refinement of D,

rather than the individual data sets, which improved the algorithm’s reliability and

the simulation speed. After extracting the diffusivity D for low acid concentration (1

wt%), deprotection profiles for the higher acid loadings were created independently
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Table 5.1: Parameters extracted for the Fickian diffusion and anomalous diffusion
models. Reprinted with permission from Ref. 8. Copyright 2012 American
Chemical Society.

Model Temperature 70◦C 80◦C 90◦C
Fickian diffusion
D (cm2/sec) 8.4 × 10−18 5.5 × 10−17 3.9 × 10−16

Anomalous diffusion
τ (sec) 4.1×10−1 7.6×10−2 2.3×10−2

γ 0.44 0.46 0.47

Anomalous diffusion with annihilation
τ (sec) 7.8×10−1 2.1×10−1 6.6×10−2

γ 0.53 0.59 0.67

using the same D. The values of D as a function of temperature are reported in

Table 5.1, and Figure 5.2 shows the simulated deprotection levels obtained using

Fickian diffusion against the experimental data. The extracted values of D are

consistent with the acid mobility in deprotected resins reported in other works [121].

There are two aspects of these simulations that require further discussion.

Referring to Figure 5.2, it can be observed that the simulated curve shows an ex-

ponential growth, which is very similar to the analytical model described by Eq. 5.2

and reported in Figure 5.1. Furthermore, the simulated deprotection rate shows

a linear dependence on acid concentration. The apparent first-order dependence

on acid concentration is attributed to independent random walks, where the mean-

square displacement of acid molecules increases linearly with time and reproduces

a Fickian diffusion coefficient as shown in Figure 5.2D. To summarize, while the

simulated profiles are able to capture the correct time scale for deprotection, they

still lack a quantitative agreement with the experimental data. It should be noticed

that with the same D, profiles for different acid loadings are not captured.

102



5.4.3 Anomalous diffusion

As discussed in the previous section, the macroscopic deprotection rate can-

not be captured by a simple microscopic Fickian diffusion mechanism. However,

this discrepancy could be associated with an underlying hopping process that ex-

hibits the features of anomalous diffusion [240,245,247–250]. The deviations from

Fickian diffusion are consistent with the acid-anion hopping described by a wait-

ing time distribution with long-tail kinetics [244]. A stretched exponential behavior

exhibited in such type of dynamic processes resembles to probe diffusion in poly-

mer glasses [141, 253, 266, 267]. A number of models [248, 254–256, 268] have

been proposed to provide a quantitative description of anomalous diffusion in com-

plex materials. For this study, the mathematical formalism of a continuous random

walk, where sub-diffusive behavior originates from acid hopping described by a

broad distribution of waiting times was employed [240, 269]. These waiting times

were selected from the Pareto distribution [252],

ψ(t) =
γ/τ

(1 + t/τ)(1+γ)
, (5.7)

where γ is the anomalous exponent and τ corresponds to the characteristic time.

This probability density function facilitates rapid sampling of waiting times between

successive hopping events, and it satisfies the required long-time asymptotic scal-

ing [245,246,252],

ψ(t) ∝ γ

τ

(

t

τ

)

−1−γ

. (5.8)

This algorithm was implemented following the literature with instantaneous

reaction introduced when an acid translates to a non-deprotected lattice site [241,

252]. Reaction kinetics is solely controlled by acid transport, which is described

with only two parameters, τ and γ. These parameters were determined for the
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Figure 5.3: Deprotection profiles using the anomalous diffusion model. A-C) Optimal
τ and γ determined for the superimposed data at 1 wt%, and predicted
profiles for higher acid loadings using the same parameters. D) Calcu-
lated mean-square displacement of acid molecules as a function of time
for anomalous diffusion compared with the Fickian model. Reprinted with
permission from Ref. 8. Copyright 2012 American Chemical Society.

lowest acid concentration at each temperature, and then the profiles were pre-

dicted for the remaining acid concentrations. Figure 5.3 provides insight into the

microscopic mechanism of the reaction process described by the model. At low

concentrations and short times, the model of anomalous diffusion offers a quantita-

tive description of bulk deprotection data consistent with the observed dependence

on acid concentration. The subdiffusive character of acid transport serves as the

underlying feature that generates this macroscopic behavior with the mean-square

displacement

< ∆r2(t) >ens∝ tγ. (5.9)
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This subdiffusive behavior is depicted in Figure 5.3D for γ < 1. In order to

extract these data, ensemble averaging without time averaging is required; since

the latter could produce inhomogeneous Fickian diffusion [270]. The diffusion co-

efficient in subdiffusive model has a time dependence. However, using fractional

derivatives a constant value can be defined [240]. Within the fractional deriva-

tive description, diffusion coefficient Dγ with values of 3.0 × 10−15, 5.8 × 10−15, and

5.3×10−14 cm2/sec were extracted for 70◦C, 80◦C and 90◦C, respectively [252,271].

It should be noted that the long-tail kinetics leads to a higher value of D, a find-

ing that is similar to models based on Fickian diffusion with an acid-trapping pro-

cess [54]. Nevertheless, it will be shown in the next section that an irreversible

trapping reaction within a local volume is unable to capture the higher-order de-

pendence on acid loading. The subdiffusive framework promotes the short-time

displacements of acid molecules, but long-range diffusion is significantly penal-

ized. These characteristics are required to capture our experimental data. Other

works have also emphasized that models must include short-range fast dynamics

while accounting for the extremely low diffusion coefficient in the deprotected poly-

mer [113]. The chemistry involved in the reaction-diffusion process is not under-

stood completely. However, a unique insight into the underlying physics is provided

by the subdiffusive model, that offers a good description of the process with only

two free parameters. Furthermore, this concept is consistent with the studies of

inert probe diffusion in glasses [141,253,266,267].

5.4.4 Acid-acid interactions

The microscopic view of subdiffusive transport discussed in the previous sec-

tion is consistent with the experimental data for low acid concentrations and short

reaction times. However, for higher acid loadings and longer reaction times, the

subdiffusive model tends to over predict the extent-of-deprotection. It should be
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noted that Fickian diffusion underestimated the deprotection level at short-times

for all acid loadings, which is in contrast to subdiffusive model. While industrial

processes tend to focus on lower acid loadings and short deprotection times, we

sought to identify the cause of such deviations.

It may be hypothesized that acid loss will reduce the deprotection level at long

times. Considering this fact, a selected acid molecule was attempted to be anni-

hilated based on an additional rate in-between hopping intervals [251, 252]. This

approach is similar to the phenomenological acid-trapping models proposed in ear-

lier studies [4,54,55,236,260]. This mechanism was able to provide a quantitative

description of the deprotection rates at low acid loadings (1 wt%), but the same

values for τ , γ, and trapping rate could not capture the data for higher acid load-

ings. Specifically, it was observed that significant deviations between predicted and

measured profiles exist at short times. These results are presented in Figure 5.4A.

It is apparent that the loss mechanism must depend on acid concentration in addi-

tion to time to describe the experimental data quantitatively.

The model employed in this study projects a simplistic picture of acid

molecules translating as “ghost” particles without any explicit interactions. Large

ionic molecules within a volume of 1 nm3 could invalidate this assumption. In

addition, it is possible for reaction products to be present within their immediate

environment. The effect of local composition on the reaction chemistry is unclear.

Owing to these facts, a simple loss mechanism is proposed that does not require

specification of new parameters: an acid molecule is deactivated if it hops into

an already occupied lattice site. This mechanism is equivalent to the following

instantaneous annihilation process,

H+ + H+ → H+. (5.10)
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Figure 5.4: A) Anomalous diffusion model employing a linear acid loss dH+/dt =
−k[H] with τ=0.26 sec, γ = 0.44 and k = 5.5 × 10−5 molecule/sec. B-
D) Anomalous diffusion model with partial deactivation upon acid-acid en-
counters. Reprinted with permission from Ref. 8. Copyright 2012 Ameri-
can Chemical Society.

This process occurs when acid molecules exist within 1 nm of each other, which

is equal to the lattice grid and an implicit feature of this algorithm. Use of this

simple approach can provide quantitatively description of all experimental data at

1, 2 and 4 wt% acid loading with two parameters for the distribution of waiting

times. The results based on instantaneous annihilation mechanism are summa-

rized in Figure 5.4. It should be noted that small deviations persist for the 10 wt%

loading, but this may be attributed to the initial conditions: it is possible to have

non-uniform spatial distribution of the PAG at such high concentrations [58], or it

may be plausible that a plasticizing effect leads to faster deprotection rates at the

highest temperatures [272]. Two data sets for 90◦C exhibit a plateau at long times
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(ca. 1-10 hours). These features are not captured by the acid depletion model.

The reason behind this behavior is unknown. It should be noted that similar trends

have been observed in other studies that incorporated a base quencher [121,273].

While the resist formula in the experiments does not contain base additives, the

possibility of airborne contaminants that were slowly adsorbed onto the surface

of these films and accidentally deactivated the catalyst with a very slow timescale

cannot be denied.

1 min 10 min 30 min

2 h 10 h 24 h

F

A

F

A

Figure 5.5: Snapshots of a 0.05 wt% acid system at 80◦C for the Fickian model (F) and
anomalous diffusion with acid-acid interactions (A). Extracted parameters
are summarized in Table 5.1. Initial acid positions are rendered in red
color, and reacted material is represented in white color. Reprinted with
permission from Ref. 8. Copyright 2012 American Chemical Society.
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The origin of the proposed phenomenological acid depletion is unclear. The

reaction denoted by Eq. 5.10 may capture aggregation (with collective movement

of aggregates) [233], or partial deactivation of catalyst due to shift in reaction equi-

librium caused by an increased local acid concentration [121]. Currently, direct

measurements to support any of these mechanisms do not exist. However, this

model leads to deactivation of most of the catalyst ultimately, and aggregation

alone fails to explain this behavior due to absence of large-scale phase separation

in microscopy measurements of the resist films.

To highlight the differences between the Fickian diffusion model and subdif-

fusive behavior, the system was modeled with a very low initial concentration of

acid (0.05 wt%) to facilitate visualization of the process. It should be noted that

acid-acid interactions are not relevant in this case. The evolution of this system

at 80◦C is illustrated in Figure 5.5, where snapshots from the simulations based

on the best-fit parameters for Fickian and anomalous diffusion (with annihilation)

as reported in Table 5.1 are presented. Within 10 min, the anomalous diffusion

model predicts 3% (volume) of reacted material, while the Fickian model predicts

only 1%. After 2 hours, almost 11% of the material has undergone deprotection

irrespective of the model used. Furthermore, the Fickian model predicts 70% and

anomalous transport model predict 32% conversion after 24 hours.

5.4.5 Interfacial effects in Chemically-Amplified Resists

So far this chapter focused on the development of a model that is able to

predict deprotection kinetics in quantitative agreement with the experimental data.

One of the outstanding challenges in the semiconductor fabrication employing CA

resists arises due to the mechanically unstable narrow features, which can be over-

come by application of the ultrathin films. In the ultrathin films, interfacial effects
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near substrate and free surface become important [50] and significantly affect im-

age formation [52]. Estimation of such effects requires incorporation of existing

knowledge of interfacial phenomena in thin films [60,61] in the simulation schemes

discussed in earlier sections.

It is emphasized that this section is a proof–of–concept to demonstrate that

lattice simulations can incorporate spatially variable parameters, which can be in-

strumental in capturing the features arising in ultrathin film resists. These features

are attributed to film thickness dependent acid diffusion and acid segregation at

the interface. In the previous studies [4,54,55,236,260], acid loss due to trapping

of photoacid by deprotected polymer was used along with reaction and diffusion

processes. Following a similar approach in this section, three types of processes

namely diffusion, reaction and trapping were modeled. The lattice Kinetic Monte

Carlo algorithm discussed in the previous sections was employed. Diffusion prob-

abilities were kept same as experimentally established diffusivity of acid molecules

in polymer film following a Fickian model. As shown in Figure 5.6, deprotection re-

action converts a protected cell (green) to a deprotected cell (white) in presence of

an acid molecule (blue) with a microscopic reaction rate kP. Trapping reaction [119]

occurs at a deprotected non-trapping cell (white), which converts deprotected non-

trapping cell into a deprotected trapping cell (red) with a microscopic rate kT. Acid

molecules transiting to deprotected trapping cell are immobilized instantaneously.

Applicability of the lattice Kinetic Monte Carlo algorithm for modeling CA re-

sists was established by reproducing the time evolution of deprotection profiles dur-

ing post-exposure bake (PEB) of poly(methyladamantyl methacrylate) (PMAdMA)

films with di(tert - butylphenyl) iodonium perfluorooctanesulfonate (DTBPI-PFOS)

photo acid generator (PAG) [4]. A 3D lattice (140 cells × 50 cells × 80 cells) was

used with each cell representing a volume of 1 nm × 1 nm × 1 nm. In Figure 5.7A,

symbols show experimental results of Vogt et al. [4] and solid lines with similar color
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Figure 5.6: Processes used in kinetic Monte Carlo simulations of CA resists.

coding show results from the lattice simulations. Incorporation of acid-diffusion, de-

protection reaction and acid-trapping helps in reproducing self limiting behavior of

reaction-diffusion front in quantitative agreement with the experiments. however, if

different acid loadings are considered, these parameters need to be reoptimized.

It is observed that trapping process is important for achieving self limiting behavior.

It should be noted that previous sections outlined that behavior is not self limiting,

but for this first testing the interfacial effects, this concept is adopted in this section.
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Figure 5.7: A) Deprotection fraction from stochastic simulations and experiments [4].
B) Spatial variation in diffusivity for stochastic simulations.
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For incorporating interfacial effects in ultrathin films, a spatially variable dif-

fusivity profile (Figure 5.7B) was implemented in simulation models. Moreover,

initial acid distribution was generated from a probability distribution obtained by

convolution of a multidimensional Heaviside step function and Gaussian probabil-

ity distribution function.

Figure 5.8: 2D map showing variation in fraction of deprotected polymer at 20s of
PEB. Red color depicts higher levels of deprotection.

The experimental deprotected feature shapes were based upon the experi-

mental data from using poly(hydroxystyrene-co-tert-butyl acrylate) or P(HOSt-co-

tBA) thin films with triphenylsulfonium purfluoro-1-butanosulfonate (TPS-PFBS)

PAG at 90◦C. 2D maps of spatial variation in deprotection levels obtained from

lattice simulations are shown in Figure 5.8. Figure 5.9A shows that for each film

height z, deprotection profile exhibits a decay region, where normalized depro-

tection level varies from 1 to 0. The profiles in decay region were fitted against

exponential function

C(x) = exp

(

−x2

A0

)

, (5.11)

where A0 is a fit parameter and C(x) is normalized deprotection fraction. The
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Figure 5.9: A) Normalized deprotection profiles at three film heights (empty symbols)
and exponential fits (lines) in the decay region. B) Experimental depro-
tected feature shape profiles (dotted lines and filled symbols) and simu-
lated shape profiles (empty symbols).

equideprotection point obtained from these fits was used as a measure of depro-

tected feature width at corresponding film height. The deprotected feature shapes

extracted by following the above methodology are shown in Figure 5.9B.
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Figure 5.10: 2D density map showing spatial variation in deprotection fraction at 15s
PEB upon incorporation of excess surface acid concentration. Red color
depicts higher levels of deprotection.

The simulated feature shapes are in good agreement with the feature shapes

obtained from experimental data. Also, introduction of spatially variable diffusivity
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assists in capturing the narrow feature shape near the substrate and broader fea-

ture shape near the free surface of ultra-thin film. To conclude, lattice simulations

can provide a tool for capturing heterogeneity in diffusion rates arising from the in-

terfacial effects, which enables prediction of the levels of deprotection and shapes

of deprotected features in CA resists in both qualitative and quantitative agreement

with experiments at fine spatial resolution. For testing the effect of segregation of

acid to the free surface, three regions were defined within the thin film: 1) proxi-

mal region within 20 nm of substrate, 2) free surface region within 10 nm of free

surface and 3) remaining bulk region. To study the effect of surface acid excess,

an initial lattice configuration with acid density of 0.25 ×H0, 2.5 ×H0 and H0 (bulk

acid density H0 = 0.04 acid-molecules/nm3) in region 1, 2 and 3 respectively was

used. Such variation in acid density produces linearly increasing feature shape

(Figure 5.10) with nearly constant layer of partial deprotection.

5.5 Conclusions

There is substantial demand for quantitative predictions of resolution limits

in chemically-amplified photoresists. Insight from macroscopic models applied to

nanoscale lithography is often qualitative rather than quantitative in nature. Such

models attempt to predict acid mobility based on the average material composition,

and additional phenomenological processes such as free volume generation, acid

trapping, or thermodynamic equilibria are employed to capture the temporal de-

protection rates. However, glasses are characterized by dynamic heterogeneities,

and incorporation of fluctuations at microscopic length scales into Fickian diffusion

models (or in variants based on local composition) is not straightforward.

In this chapter, the results of acid-catalyzed deprotection of a glassy poly-

mer resin obtained with infrared absorbance spectroscopy were modeled using
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stochastic simulations. The experimental data were interpreted with a model that

explicitly accounts for acid transport and introduces local heterogeneities through a

non-exponential distribution of waiting times between successive hopping events.

A different view that supports the anomalous diffusion behavior is a hopping pro-

cess with binding-unbinding events at energetic or geometric traps [240]. Thus,

this simplified mathematical model provides the foundation for explicit examination

of acid transport without introducing difficult to capture details of the changing en-

vironment at local length scales. It is found that subdiffusive behavior with long-tail

kinetics is able to capture key attributes of the observed deprotection rate and of-

fers a near-quantitative description of macroscopic deprotection rates. Only two

parameters need to be specified to obtain such quantitative description. The same

model parameters can describe the deprotection level for different acid concen-

trations, and their variation with temperature follows the expected behavior. For

high acid loadings, it was found necessary to include acid-acid interactions that

deplete the effective acid concentration. While the exact underlying mechanism of

such acid depletion is unclear, it is to be believed that other factors are of greater

interest for future studies. For example, study of changes in acid-counterion size,

polymer chemistry, resist film thickness, and proximity to Tg would highlight how

the polymer’s dynamical properties affect reaction front propagation.

Finally, proof–of–concept simulations were employed to show the efficacy

of lattice simulations in capturing the interfacial effects in the CA resists. These

simulations coupled with subdiffusive behavior and acid-acid interactions can be

employed to predict the pattern shapes. In future studies, these results will help

in gaining insight about the changes in the rate of reaction due to interfacial phe-

nomena. The next chapter will consider phenomena, where interfacial interactions

can actually determine the size and shape of the growing surface. Specifically,

crystallization/growth rates of zeolites are manipulated by using growth modifying
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molecules, which are hypothesized to have their efficacy due to preferential binding

to a particular crystal surface. This hypothesis is evaluated by employing molecular

simulations.
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Chapter 6 Interactions of Zeolite Growth Modifiers

with Model Surfaces

6.1 Introduction

Zeolites are used in a number of industrial applications, e.g., ion exchange,

separation processes, and catalysis. The specific pore size of the zeolites pro-

vides them shape selectivity for the separation processes. As catalysts, zeolites

have been used in petroleum refineries [274], environmental catalysts [62], and

more recently in the production of bio-fuels. It has been shown that carefully syn-

thesized zeolite catalysts can have significant impact on the yield of fluid catalytic

cracking [274]. On the other hand, irregular pore structure and defects in the zeolite

channels may be attributed to poor shape selectivity and diffusion limitation [62].

Considering these factors, controlling the morphology of zeolites during the syn-

thesis is vital for the optimum performance of these materials.

Zeolite morphology should be tailored to suit the target application. Most of

the times, control of zeolite morphology targets at minimizing diffusion path length,

increasing surface area and adjusting the orientation of the channels. Due to ex-

tensive commercial application, it is important to develop methods of morphology

control, that are cost effective and scalable. In the pursuit of meeting the goal of

affordable morphology control, Lupulescu and Rimer [1] demonstrated that certain

molecules termed as zeolite growth modifiers (ZGM) can be instrumental in altering

the growth of zeolites. In their work, they used molecules such as D-Arginine (D-

Arg), spermine, and triethylenetetramine (TETA) to control the growth of silicalite-1
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zeolites. Control experiments (in absence of any growth modifier) were performed

at 160◦C temperature, autogenous pressure and a pH of 12.7 in presence of struc-

ture directing agent (SDA) tetrapropylammonium (TPA+). Tetraethylorthosilicate

(TEOS) served as the silica source. Normally, silicalite-1 crystals show the fastest

growth along c-axis or [0 0 1] direction followed by [1 0 0] and [0 1 0] directions.

The comparison of silicalite-1 crystals produced by control experiments with the

crystals obtained in the presence of ZGM molecules showed significant alteration

in crystal growth. For example, addition of spermine produced silicalite-1 crystals

with a thickness along the b-axis (along the less tortuous [0 1 0] channels) one third

of the thickness observed in the control experiments. It was also noted that D-Arg

is effective in inhibiting growth in [1 0 1] direction.

It is hypothesized that the growth inhibiting capability of ZGM molecules is

due to their preferential binding to a particular crystal plane, which inhibits the crys-

tal growth perpendicular to the specific crystal plane. The molecular mechanism

and thermodynamic factors that provide ZGM the capability of inhibiting zeolite

growth are unclear. Molecular simulations have been employed in a number of

studies to probe adsorption of molecules in zeolites by using molecular dynamics

(MD) [146–151] or Monte Carlo (MC) simulations [152–159]. Most of these studies

have targeted the adsorption and diffusion of the alkanes and alcohols inside the

zeolite channels, while some studies focusing on the outer surface of zeolites are

also available in literature [151,160–165]. In a recent study, Salvalaglio et al. [170]

employed well-tempered metadynamics [171] to understand the molecular mecha-

nism of urea crystal growth in the presence of additives such as biuret and acetone.

Following a similar approach, the mechanism of ZGM facilitated zeolite synthesis

can be examined by using molecular level information of these systems. In this

chapter, molecular simulations are employed for elucidating the origin of growth
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inhibition and the hypothesis of preferential binding is tested by evaluation of quan-

titative thermodynamic parameters.

6.2 Models and Systems Studied

Silicalite-1 (MFI framework) slabs were employed to study the binding affinity

of D-Arg molecules to specific MFI surfaces. The silicalite-1 slabs (without defects)

were created using an orthorhombic Pnma crystallographic structure by using the

initial atomic positions determined from crystallographic experimental data pub-

lished by van Koningsveld et al. [275]. The crystallographic parameters were a =

20.022 Å b = 19.899 Å and c = 13.383 Å , where b-axis gives the direction of the

straight channels (along [0 1 0] direction).

One of the important consideration in simulation studies of zeolites is whether

a rigid framework should be used or the structure should be allowed to remain

flexible [147, 149, 151, 152, 166–168]. Smirnov [147] studied adsorption and diffu-

sion of methane in silicalite-1 by MD simulations considering both rigid and flexible

frameworks and concluded that framework flexibility does not alter methane ad-

sorption significantly. Similar results were showed for the adsorption of Argon in

silicalite-1 [167]. On the other hand, Hughes et al. [168] probed desalination of

water using zeolites. The study focused on thermodynamics of salt rejection by

accessing the interactions of chloride ions with zeolite environment. They empha-

sized that framework flexibility is critical to the studies involving small molecules in

zeolite channels. Despite such claims, it was noted that flexible frameworks may

overestimate diffusion coefficients for small molecules, worse than the predictions

obtained from rigid framework [166]. Considering the size of ZGM molecule of in-

terest (D-Arg, ≈ 1 nm), it was deemed appropriate to use a rigid framework. The

silicalite-1 surfaces were prepared using the crystallographic coordinates and their
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Figure 6.1: Snapshots presenting zeolite surfaces considered in this chapter.

consistency with the experimentally observed stable crystal surfaces [169] was val-

idated. Figure 6.1 shows the snapshots of the silicalite-1 surfaces studied in this

chapter.

All surface silicon atoms were saturated by adding oxygens to satisfy their

valency. It should be noted that silanol groups have a reported pKa value of ≈

9 [276]. For the synthesis pH of 12.7, this translates to one undissociated silanol

group in every 5,000 surface silanols. Considering this, it was assumed that all

surface silanols on silicalite-1 surface are dissociated. The non-bonded interac-

tion parameters for the Si and O atoms were adopted from the force field pre-

scribed by Nicholas et al. [277]. The interactions of ZGM molecule (D-Arg) were

modeled by GROMOS53A6 forcefield (Figure 6.2A) [278], whereas a simple point

charge (SPC) model was used for modeling the interactions of water [279]. For the

D-Arg molecule, the protonation states of the carboxylic group (pKa = 2.17 [276]),

α-amino group (pKa = 9.04 [276]) and guanidinium group (pKa = 12.48 [276]) were

found to be dominated by deprotonated states. The simulation systems contained

a single D-Arg molecule in ≈ 3,000 water molecules. The water layer extended ≈

5 nm from the zeolite surface (represented by surface oxygen atoms). This width

of water layer was sufficient to observe reasonable span of bulk-like water density

(Figure 6.2B). The charge neutrality of the systems was maintained by introducing

Na+ ions as performed in previous work [280]. The simulation system was large
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Figure 6.2: A) Snapshot of a D-Arginine molecule. B) Density of water and Na+ ions
in MFI (1 0 1) system as function of distance from the surface oxygen
atoms, and C) snapshot of a representative simulation box.

enough along the axis perpendicular to the zeolite surface in order to avoid finite

size effects. In addition, a repulsive wall was introduced at z = 0 to avoid any water

escaping from the lower end of the zeolite framework (Figure 6.2C).

6.3 Simulation Methodology

6.3.1 Standard Molecular Dynamics Simulations

Atomistic NVT MD simulations for 200 ns employing the simulation setup

discussed in the previous section were performed using Gromacs v4.5.5 [204].

The non-bonded interactions were smoothly switched to zero between 1.0 nm and

1.2 nm. Electrostatic interactions were treated by Particle Mesh Ewald (PME)
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method [281] with a correction for slab geometry [282]. The real-space part of

the Ewald sum was also smoothly switched to zero between 1.0 nm and 1.2 nm.

All bonds were constrained by the LINCS algorithm [283] and a timestep of 2 fs

was used for integrating the equations of motion. Temperature was maintained at

298 K by applying the velocity-rescaling temperature coupling with a time constant

of 1 ps [223]. The results obtained from the analysis of the MD simulations are

discussed in the later section.

6.3.2 Well-Tempered Metadynamics

Quantitative insight of the binding affinity between the ZGM and zeolite sur-

faces can be obtained by free energy calculations. For accurate estimate of free

energy, rigorous sampling of an order parameter or collective variable (CV) is re-

quired. Standard molecular dynamics simulations require extensive simulation

times to accomplish such sampling, which is not within reach of current compu-

tational power. To alleviate such challenges is metadynamics [284], in which the

system evolution is biased by a history dependent potential. This potential is con-

structed as the sum of Gaussian functions deposited along the simulation trajec-

tory in the CVs space. Convergence of the free energy profile may not be achieved

within standard metadynamics [171]. To address such issues present in the meta-

dynamics method, Barducci et al. [171] proposed well-tempered metadynamics.

For a system described by a set of microscopic coordinates q, free energy surface

(FES) as a function of a set of CV s(q) can be written as

F (s) = −T lim
t→∞

lnN(s, t), (6.1)
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where N (s, t) is the histogram of variable s obtained from an unbiased simulation.

The sampling can be accelerated by applying a history-dependent potential

V (s, t) = ∆T ln

(

1 +
ωN(s, t)

∆T

)

, (6.2)

where ω has dimensions of energy rate, ∆T is temperature and N (s, t) are his-

tograms accumulated from simulations. The bias potential given in Eq. 6.2 disfa-

vors the more frequently visited configuration and enhances the sampling of config-

urations, which have not been visited during the course of simulation. In practice,

the FES can be estimated by using Eq. 6.2 as

F̃ (s, t) = −(T + ∆T ) ln

(

1 +
ωN(s, t)

∆T

)

. (6.3)

For the limit ∆T → ∞, Eq. 6.3 yields F̃ (s, t) = -V (s, t) and the standard metady-

namics algorithm is recovered. The Gaussian height w is calculated by

w = ω exp

(

−V (s, t)

∆T

)

τG, (6.4)

where τG is the time interval at which the Gaussians are deposited. For the sim-

ulation to converge, the Gaussian height has to reach zero. A reweighing algo-

rithm [285] available in the literature can be used for estimating the FES. The well-

tempered metadynamics algorithm is implemented in PLUMED [286], which is freely

available as a plug-in to Gromacs. For the simulations performed in this chapter,

PLUMED v1.3.0 was used with Gromacs v4.5.5. The simulation conditions and

interactions in the well-tempered metadynamics simulations were kept as in the

standard MD simulations. The simulation time for each system exceeded 150 ns.

The results from these simulations are discussed in the later section.
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6.4 Results and Discussion

6.4.1 Standard Molecular Dynamics Simulations

The simulation trajectories obtained from MD simulations were analyzed to

find possible clues of affinity between the the growth inhibitor molecule D-Arg

and silicalite-1 surfaces. The first attempt in this direction was the estimation of

the residence time of the molecules at the crystal surface. To characterize D-

Arg molecules “interacting” with the zeolite surface, the distance of molecule COM

along z-axis from the zeolite surface oxygen atoms, dARGN-COM was calculated (Fig-

ure 6.3A). Any molecule with dARGN-COM < 1 nm was considered to be interacting

with the crystal surface. Figure 6.3B shows evolution of dARGN-COM with the sim-

ulation time for the three systems studied. For the MFI (1 0 1) and MFI (0 1 0)

surfaces, inhibitor molecule finds suitable binding locations and remains on the

crystal surface for the rest of the simulation trajectory. For the MFI (1 0 0) surface,

the D-Arg molecule approaches and departs the surface a number of time. How-

ever, the condition dARGN-COM < 1 nm is satisfied very few times during the 200 ns

simulation duration. While it may be tempting to derive a conclusion that MFI (1 0

0) surface is not favorable for binding, surface residence alone should not be taken

as a sole indicator of binding affinity as will be discussed later in this section.

In addition to surface residence, the number of hydrogen bonds formed by the

inhibitor molecule with the surface oxygen atoms were also calculated as a func-

tion of time. A hydrogen bond is defined using a conventional distance criteria of

0.35 nm and 30◦ angle. As can be clearly seen from Figure 6.3C, inhibitor molecule

interacting with the MFI (1 0 1) forms on an average ∼ 3 hydrogen bonds. A closer

comparison of Figure 6.3B and 6.3C reveals that between 80 ns to 120 ns, this

average shifts closer to ∼ 4 hydrogen bonds. At the same time dARGN-COM ≈ 0.3 nm
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Figure 6.3: A) Schematics depicting the D-Arginine COM distance from the surface
oxygen atoms dARGN-COM, B) position of D-Arginine COM as a function of
time during standard MD simulations, and C) number of hydrogen bonds
formed between D-Arginine molecule and zeolite surfaces.

and significantly smaller amplitude of fluctuations in dARGN-COM are observed. In

contrast to this for the MFI (0 1 0) surface, average number of the hydrogen bonds

remains close to 2 and dARGN-COM ≈ 0.35 nm with almost consistent fluctuations in
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the dARGN-COM values. Unfortunately, for the MFI (1 0 0) surface, no such informa-

tion can be obtained due to very limited statistics. Based upon these observations

two things can be hypothesized. First, D-Arg at the MFI (1 0 1) surface appears to

interact with the surface stronger between the 80 ns and 120 ns of the simulation

trajectory. In this duration, molecule is able to form 4 (at times 5) hydrogen bonds,

which indicates that D-Arg at the MFI (1 0 1) surface exhibits two preferable bind-

ing conformations. One of these conformations shows stronger affinity indicated by

smaller fluctuations and more number of hydrogen bonds. Second, there appears

to be one favorable binding conformation with 2 hydrogen bonds for the MFI (0 1

0) surface.
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Figure 6.4: A) Schematics depicting the D-Arginine orientation, and B) orientation of
D-Arginine as a function of dARGN-COM during standard MD simulations.

In order to further investigate the difference in the number of hydrogen bonds

formed by the inhibitor molecule, the orientation of molecules in the proximity of

zeolite surfaces was investigated. The orientation of D-Arg molecule was defined
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by the angle between a vector joining the nitrogen atoms of the NH2 of α-amino

group and guanidinium group with the z-axis (depicted by θ in Figure 6.4A). The

second Legendre polynomial is subsequently defined by

P2(cos θ) = (3 < cos2 θ > −1)/2. (6.5)

P2(cos θ) values of -0.5, 0 and 1 represent parallel, random and normal to surface

orientations respectively. It can be observed from Figure 6.4B that the molecule

orients parallel to the MFI (1 0 1) surface at dARGN-COM ≈ 0.3 nm. This parallel

to surface orientation enables D-Arg to form 3-5 hydrogen bonds with the surface

at this COM separation. At larger separations, the orientation of D-Arg molecule

at the MFI (1 0 1) surface first becomes random and then a tendency of close

to normal orientation is observed at dARGN-COM ≈ 0.6 nm. Thus fewer hydrogen

bonds can be formed at larger separations. This finding about D-Arg orientation is

consistent with the observations made in Figure 6.3C. On the other hand, at the

MFI (0 1 0) surface, a parallel orientation is observed at dARGN-COM ≈ 0.2 nm and

then a gradual transition to random orientation occurs at the distance of dARGN-COM

≈ 0.35 nm. This random orientation of D-Arg at the MFI (0 1 0) surface is consistent

with ≈ 2 hydrogen bonds observed in Figure 6.3C. No such observations were

possible for the MFI (1 0 0) system due to limited statistics.

While above observations provide an initial explanation of the stronger affin-

ity between D-Arg and the MFI (1 0 1) surface and provide some support to the

hypothesis of preferential binding, the extent of sampling remains questionable.

To probe sampling along the lateral surface of zeolite, 2-dimensional probability

density maps of inhibitor atom locations were prepared from the MD simulation

trajectories. It can be observed from the maps shown in Figure 6.5 (top) that D-Arg

shows very high probability of visiting a particular binding site for the MFI (1 0 1)
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Figure 6.5: Two dimensional maps constructed from standard MD simulations show-
ing the probability density of finding a D-Arginine atoms along the lateral
positions on the zeolite surface for dARGN-COM < 1 nm. Red color depicts
higher probability.

and MFI (0 1 0) surfaces. Furthermore, these maps help identify the preferential

binding locations on the surface. As can be seen from the snapshots of the ze-

olite surfaces in Figure 6.5 (bottom) that the topographic arrangement of surface

oxygen atoms for MFI (1 0 1) and MFI (0 1 0) preferential binding sites differs

significantly. The topography of surface oxygen sites on the MFI (1 0 1) surface

is more approachable for D-Arg α-amino group and guanidinium group in parallel

orientation. Also, the results from the standard MD simulations are based upon

one highly favorable interaction site. On the other hand, for the MFI (1 0 0) sur-

face, D-Arg interacts with the whole surface almost uniformly, but an indication of

preferential binding with the surface is absent. These findings raise concern that

standard MD alone is not sufficient for rigorous sampling of all the binding sites

on the zeolite surfaces. Furthermore, a quantitative understanding of the thermo-

dynamic parameters defining the binding affinity lacks from these simulations. To

address these concerns, well-tempered metadynamics simulations [171] of these

systems were performed as discussed previously.
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6.4.2 Well-Tempered Metadynamics Simulations

The trajectories from the well-tempered metadynamics simulations were sub-

jected to similar analysis to track the location of the D-Arg molecules COM location

along z-axis. Figure 6.6A shows the dARGN-COM as the function of simulation time. It

can be observed that the molecule samples separations between the surface and

dARGN-COM ≈ 2 nm extensively. This assists sampling along the z-axis as well as

the lateral crystal plane (Figure 6.6B (top)). It can be noted that D-Arg molecules

explore more than one preferred binding locations for all the three surfaces studied.

Furthermore, more than one binding sites with specific topographic arrangement

of surface oxygen atoms can be identified for the MFI (1 0 1) surface as shown in

Figure 6.6B (bottom).

The enhanced sampling of conformations helps in estimation of free energy

profiles [285] as a function of dARGN-COM. The free energy profiles and orientation

of D-Arg on the three zeolite surfaces are shown in Figure 6.7, which provide es-

timates of free energy difference between the bulk and zeolite surface. For MFI (1

0 1) surface, two free energy minima are observed at dARGN-COM ≈ 0.27 nm (-33

kJ/mol) and 0.40 nm (-41kJ/mol). Corresponding values of P2(cos θ) at these COM

distances are ≈ -0.35 and 0.0 respectively. This indicates that the free energy min-

ima closer to the MFI (1 0 1) surface has a preference for parallel orientation of

D-Arg molecule, whereas the minima slightly far away from the surface indicates

a random orientation based on the average value of P2(cos θ). These observa-

tions about the orientation are somewhat consistent with the observations from the

standard MD simulations, where parallel orientation was observed at dARGN-COM ≈

0.3 nm. For the MFI (0 1 0) surface, a very deep free energy minima (-60 kJ/mol)

was observed at dARGN-COM ≈ 0.4 nm and P2(cos θ) ≈ 0.2 at this distance indicated

preferred non-parallel orientation. In addition, for MFI the (1 0 0) surface a free
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Figure 6.6: A) Position of D-Arginine COM as a function of time during well-tempered
metadynamics simulations. B) Two dimensional maps constructed from
well-tempered metadynamics simulations showing the probability density
of finding a D-Arginine atoms along the lateral positions on the zeolite
surface for dARGN-COM < 1 nm. Red color depicts higher probability.

energy well of -45 kJ/mol was observed at a relatively closer distance of 0.2 nm

from the surface with P2(cos θ) ≈ -0.15 indicating slight preference for parallel ori-

entation.

Since the average values of P2(cos θ) do not provide information about the

distribution of orientations of the molecules, the 2-dimensional probability maps

of angle θ (as defined in Figure 6.4A) were constructed. Since θ is defined as
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the angle formed with x-axis, θ = 90◦ represents molecules oriented parallel to

the zeolite surface. For the MFI (1 0 1) surface (Figure 6.7B), distribution shows

strongly favored close to parallel orientation (very small population for θ < 50◦) near
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dARGN-COM ≈ 0.27 nm. At the location of second free energy minima dARGN-COM ≈

0.4 nm, θ values are concentrated in the range 60◦ > θ > 30◦ indicating tendency

of non-parallel orientation.

For the MFI (0 1 0) surface (Figure 6.7D) near dARGN-COM ≈ 0.4 nm, θ values

are distributed over a broad range with significantly higher probability at θ ≈ 90◦

and θ ≈ 20◦. This distribution indicates a combination of parallel and normal orien-

tation of inhibitor molecule at the MFI (0 1 0) surface. Finally, Figure 6.7C shows

preference for near parallel orientation with diminishing probability of observing

normal orientation at dARGN-COM ≈ 0.2 nm for the MFI (1 0 0) surface.

To summarize above observations, D-Arg binds preferentially at the sites with

specific topographic arrangement of surface oxygens at the MFI (1 0 1) surface.

The free energy minima close to the MFI (1 0 1) surface is accompanied by pre-

ferred parallel orientation of the inhibitor molecule. This enables higher surface

coverage per inhibitor molecule and blocks more precursor molecules from inter-

acting with the crystal surface. For the MFI (0 1 0) surface, non-parallel orientation

near the free energy minima results in relatively lower surface coverage, which

hinders fewer precursor molecules approaching the surface.

Finally, for the MFI (1 0 0) surface, the free energy minima is found to be

very close to the surface. Despite a preference to near parallel orientation, part

of inhibitor molecule may enter the sinusoidal pores at these separations offering

lower surface coverage. It should be noted that binding of inhibitor molecule to

the surface causes release of sodium ions from the zeolite surface to bulk water.

The release of ions results in entropic gain [287, 288]. The inhibitor molecule in

parallel orientation will release more ions, which will lead to entropically favorable

configuration.

It is acknowledged that providing a complete picture of growth inhibition
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mechanism requires consideration of a finite concentration of inhibitor molecules,

which is beyond the scope of current study. However, these results indicate that

on a per inhibitor molecule basis, D-Arg provides a higher surface coverage at the

MFI (1 0 1) surface and offers higher growth inhibition by blocking more precursor

molecules.

6.5 Conclusions

In this chapter, molecular simulations were employed to study the mech-

anism and thermodynamic factors behind the growth inhibiting action of D-Arg

molecules in synthesis of silicalite-1 zeolites. Both standard MD simulations and

well-tempered metadynamics [171] were employed to gain insight of the underlying

mechanism of growth inhibition. It was observed that MD simulations offer limited

sampling. Well-tempered metadynamics method was found to be effective in sam-

pling the D-Arg conformation and provided quantitative insight into thermodynamic

origins of growth inhibition.

This chapter highlights that the binding affinity estimated from the free energy

minima alone can not predict the growth inhibition offered by the molecules. It was

found that the location of the free energy minima and the orientation of inhibitor

molecule in this minima play vital role in determining the efficacy as a growth in-

hibitor. Experiments [1] have shown that D-Arg is the most effective for inhibiting

the growth perpendicular to MFI (1 0 1) crystal surface. In this study, it was found

that the free energy minima near the MFI (1 0 1) surface favors parallel orienta-

tion of the D-Arg molecule and facilitates larger surface coverage, thereby blocking

more precursor molecules from attaching to the surface per inhibitor molecule. Fur-

thermore, despite the deeper free energy minima near the MFI (0 1 0) surface, a

preference for non-parallel orientation was attributed to the lesser surface coverage
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per inhibitor molecule. It is important to acknowledge that these simulation results

are limited to quantifying the interactions of a single molecule with the surface.

Further investigation to reaffirm the findings of this study is required by considering

finite concentration of the molecules. Such an approach will account for the many-

body interactions between growth inhibitor molecules, which is beyond the reach

of current study considering surface interactions of a single molecule.
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Chapter 7 Summary and Future Directions

7.1 Summary

This dissertation focused on computer simulations of interfacial phenomena.

Three different applications of interfacial phenomena namely polymer bound lay-

ers in the proximity of nanoparticles, polymer thin films at a substrate and zeolite

growth modifiers were studied by developing new simulation algorithms [6,8] or by

applying existing techniques.

The study of polymer-nanoparticle systems with specific focus on the interfa-

cial polymer layer was accomplished by employing a novel Monte Carlo simulation

methodology. This methodology coupled connectivity-altering algorithms [2, 69]

with preferential sampling [183] for the first time. In addition development of a new

Monte Carlo move involving shrinking/growing of inner segment coupled with a

growing/shrinking of a randomly selected end [6] was implemented enabling mass

transfer from the surface to bulk polymer. As a result of these developments,

rapid equilibration of polymer conformations in the proximity of silica surfaces was

achieved. The simulations were directed at probing the effect of curvature on the

conformation of bound layer. It was found to play important role in determina-

tion of the bound layer characteristic. These effects become more pronounced

as the size of nanoparticle becomes comparable to the polymer Kuhn segment

length. The origin was traced to the entropic penalty associated with the formation

of longer contacts at highly curved nanoparticle surfaces. As the consequences,

the extent of polymer bound layer in the proximity of nanoparticles also exhibited a

decrease. Furthermore, the elusive origin of curvature dependence of bound layer
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thickness was explained beyond geometric arguments [186–188]. It was acknowl-

edged that even these improved simulation algorithms cannot render the simula-

tions of long polymer chains feasible. To extend this study further, coarse-grained

(CG) polymer models were developed. Following a hierarchical approach similar

to previous work [225], CG models accounting for local stiffness of a polymer (cis-

1,4 Polyisoprene) were developed by employing the Iterative Boltzmann Inversion

(IBI) method [7]. Furthermore, interaction potentials between cis-1,4 Polyisoprene

and silica surfaces were derived. Using a method available in literature [227], po-

tentials for particles of arbitrary curvature were calculated with significantly lower

computational efforts than the existing methods [83, 84]. For the first time it was

demonstrated that the derived CG potentials faithfully reproduce conformation of

the polymer bound layers and fluctuations of train segment lengths.

The reaction-diffusion phenomena in the chemically-amplified resists was

modeled using stochastic simulations. For the first time, a unified framework was

presented that is able to describe deprotection rates at different acid loading with

the same set of parameters. The diffusion of acid molecules in the glassy thin

films was modeled as anomalous diffusion [240, 269] to achieve sub-diffusive be-

havior. It was observed that anomalous diffusion alone was not able to capture the

experimental results for acid catalyzed deprotection in resists. A new mechanism

of acid annihilation was proposed, and it was shown that the proposed mecha-

nism was able to capture the experimental deprotection profiles with the help of

only two adjustable parameters for a wide range of acid loadings. On a related

topic, the effects of substrate-induced depth dependent diffusion rates were stud-

ied. The lattice simulations employed depth dependent diffusivity in conjunction

with the deprotection model available in literature [54]. Proof–of–concept simula-

tions demonstrated that interfacial effects e.g. narrowing of features near substrate

and broader feature size near the free surface can be modeled by incorporating
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depth dependent diffusion rates in simulation model.

Finally, the thermodynamic origin of zeolite growth modifier molecules was

probed by molecular simulations. The effect of D-Arginine on silicalite-1 growth

were shown to depend upon the binding affinity and preferred orientation at the

preferential binding sites. It was demonstrated that D-Arginine provides highest

surface coverage per growth inhibitor molecule for the MFI (1 0 1) surface due to

parallel orientation at the free energy minima close to zeolite surface. Therefore,

on a per molecule basis, D-Arginine blocks more precursor molecules from attach-

ing at the surface. It was acknowledged that a complete understanding of growth

inhibition mechanism requires finite concentration of growth inhibitors in solution,

which was not considered in the current study.

7.2 Future Directions

7.2.1 Thermodynamic and Structural View of Interacting Bound Layers

Polymer bound layers around particles interact with each other to form a per-

colating network [3], which is at the origin of enhanced mechanical and barrier

properties [13, 14]. Free energy of interaction between two particles in polymer

matrix as a function of their separation [11,85] can define the region where bound

layers interact (Figure 7.1). Individual contributions arising from tail, train and loop

segments requires properly designed efficient simulations. Such information will

further elucidate the extent of interactions between the different segments of bound

layers, which play critical role in understanding the behavior of interfacial layers.

Quantification of polymer-particle and particle-particle interactions and its im-

pact on structure is a driving factor in selection of nanoparticle modifications [289].

Chemistry of polymer and particles both affect the effective interactions. The
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Figure 7.1: Snapshot depicting two nanoparticles with their polymer bound layers in-
teracting with each other.

CG models development methodology applied for cis-1,4 Polyisoprene discussed

in Chapter 4 will be extended to polymers with diverse chemical architecture

and stereo specificity in combination with the surfaces beyond silica such as

graphite [30, 31, 86] and carbon black [290]. These studies will provide the prop-

erties of polymer bound layer for a diverse set of polymers at the surfaces with

varying interaction strengths and chemical details.

CG models used in the simulations studies are able to provide structural prop-

erties in good agreement with the atomistic simulations and experiments, but their

effectiveness in estimating dynamic and mechanical properties remains a topic of

further deliberation [92, 217, 291]. For instance, CG models tend to accelerate or

slow down the dynamics of particle motion in polymer matrix [92,291] whereas me-

chanical properties predicted by CG models for bulk polymer may differ from exper-

imental values by an order of magnitude [217]. One possible avenue of address-

ing these issues is reverse-mapping of CG structure to atomistic structure [292].

Sampling of polymer structures can be performed in CG representation, followed

by reverse-mapping to atomistic details for estimation of dynamic and mechanical

properties of the system. Following this approach will be helpful in estimation of

dynamic and mechanical properties of the polymer-nanoparticle systems.
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Transferability of CG potentials at different temperatures and degree of poly-

merization [293,294] remains another issue to be addressed. Such issues may be

paramount in studies below the glass transition temperature of polymer. Recent

experiments [295] have shown that the conditions for mechanical reinforcement for

glassy nanocomposites are strikingly different from those considered in nanocom-

posite melts. Future modeling efforts on understanding the structure property re-

lationship in the light of polymer-particle interactions should be directed at investi-

gating such effects in glassy polymer nanocomposites. All of the above challenges

present significant future opportunities in the modeling of polymer-nanoparticle in-

teractions and developing clearer understanding of the interfacial phenomena in

polymer nanocomposites.

7.2.2 Interfacial Effects in CA Resists

Quantitative estimation of parameters controlling image formation in thin film

CA resists is successfully achieved by incorporating anomalous diffusion and acid

annihilation mechanism [8]. In Chapter 5, stochastic lattice simulations incorpo-

rating position dependent diffusion rates were shown to produce depth dependent

feature shapes. In future, methodologies employing anomalous diffusion to pro-

duce depth dependent diffusion rates accounting for interfacial effects in ultrathin

films [50, 140–145] will be pursued. Such studied will provide better quantitative

understanding of reaction-diffusion process in ultra-thin films and help in estima-

tion of line edge roughness (LER). In addition, Vogt et al. [4] demonstrated that the

size of photogenerated acid molecule is a critical factor in determination of LER.

Studies considering acid molecules of variable size will help in predicting effects

of size of acid molecules on LER. Another avenue for gaining further insight is

employing coarse-grained simulations as have been performed in previous stud-

ies [135]. Such kind of mesoscale simulations can be helpful in estimation of the
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diffusion rates in near substrate regions and help further in predicting the depro-

tected feature shapes.

7.2.3 Control of Zeolite Morphology

Adsorption on a solid interface is a topic of wide interest. In this dissertation,

current efforts were focused on validating the hypothesis that preferential adsorp-

tion of growth modifiers controls resulting zeolite morphology. The free energy

simulations of atomistic models of small molecules on zeolite surface were able

to provide quantitative insight about the interactions between a single molecule

and model surface. However, complete explanation of the mechanism will require

consideration of a finite concentration of growth inhibitor molecules in solution at

synthesis conditions (160◦C temperature and autogenous pressure).

Figure 7.2: Schematics of different zeolite growth modifier molecules with the mean
distance of the terminal Nitrogen atoms.

It is observed in experimental studies that changes in the chemical architec-

ture of the inhibitor molecules 7.2 have profound effect on the zeolite morphology.

For instance, spermine effectively inhibits growth of the MFI (0 1 0) surface, but tri-

ethylenetetramine does not show similar effect despite the similar number of amine

groups. Simulations will analyze details such as mechanism of adsorption and con-

formational arrangement of growth modifiers on the zeolite surfaces, which may not
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be directly measurable from experimental techniques. Ultimate aim of the simula-

tions, rational design of growth modifier will be performed by using simulations as

a tool to achieve the final aim of optimal design of zeolite structures.
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Appendix A Interactions for Particles of Arbitrary

Curvature

Figure A.1: A) Schematics for calculating effective interaction potential from volume
integral. Integration is performed by considering B) dz1 elements in radial
direction, which have a thickness C) dx along the line joining the centers
of polymer bead and nanoparticle.

Let, S and B depict the center of the nanoparticle and polymer bead respec-

tively (Figure A.1). Radius of the nanoparticle is Rs and nonbonded interactions

are truncated at the cut-off distance Rc. B is located at a distance r from the

particle surface. LN represents the common chord for the 2D projections of the
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nanoparticle and cut-off sphere. Let, intersection of the center-to-center line SB

and common chord LN be given by M, which is at a distance rint from the polymer

bead, whereas SB = d = Rs + r. Also, it is assumed that the half length of the

common chord MN = zint. From geometry,

SM =
d2 −R2

c +R2
s

2d
. (A.1)

Substituting d = Rs + r in Eq. A.1,

SM =
2R2

s + 2RRs −R2
c + r2

2(Rs + r)
, (A.2)

which leads to,

rint =
2R2

c + r2 + 2RRs

2(Rs + r)
. (A.3)

In order to calculate the interaction potential between polymer bead and

nanoparticle (UNP), single site potential u(x) should be integrated over the vol-

ume of nanoparticle from distance x = r to x = rint, and over the volume of cut-off

sphere from the distance x = rint to x = Rc. It should be noted that for the smaller

nanoparticles satisfying the condition r+ 2Rs ≤ Rc, integration over the nanoparti-

cle volume will suffice. The integration is performed over an element of thickness

dx at a distance x from the polymer bead B (Figure A.1C). Interaction sites are as-

sumed to be distributed uniformly over the nanoparticle volume (number density ρ).

The total interaction between the polymer bead and the nanoparticle arise from in-

teraction sites contained within a disc of thickness dx and radius z. Ring elements

dz1 are considered at radial distance z1 from the center of the disc (Figure A.1B).

Each interaction site on this ring element is at a distance x1 =
√
x2 + z2

1 from the
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polymer bead B, and total interaction potential due to the ring element is given by,

uring(z1, x) = 2πz1ρu(x1)dxdz1, (A.4)

which can be integrated to evaluate the effective interaction potential between the

polymer bead and the nanoparticle at a distance x as,

UNP(x) =

∫ z

0

uring(z1, x)dz1. (A.5)

183


