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ABSTRACT 

An iterative solution process is fundamental in seismic inversion, such as in full-

waveform inversions and inverse scattering methods. However, the convergence 

process could be slow or even divergent depending on the initial model used in the 

iteration. We propose to apply Shanks transformation (ST for short) to accelerate the 

convergence of the iterative solution. ST is a local nonlinear transformation, which 

transforms a series locally into another series with improved convergence property. ST 

separates the smooth background trend called the secular term versus the oscillatory 

transient term and then accelerates the convergence of the secular term. Because the 

transformation is local, we do not need to know all the terms in the original series and 

this is very important in the numerical application of ST. I propose to apply the ST in 

the context of both the forward Born series and the inverse scattering series (ISS). I 

test the performance of the ST in accelerating the convergence using several numerical 

examples, including three examples of forward modeling using the Born series and 

two examples of velocity inversion based on ISS. We observe that ST is very helpful 

in accelerating the convergence and it can achieve convergence even for a weakly 

divergent scattering series. As such, it provides us a useful technique to invert for a 

large-contrast medium perturbation in seismic inversion. The method developed in this 

dissertation can also be used in other fields such as in electromagnetics, quantum 

mechanics, and possibility medical imaging.  
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Chapter 1  

Introduction and background 

In this Chapter, I will briefly discuss about the general seismic exploration including 

the forward scattering series (using the Born series), inverse scattering series (ISS), 

and also applying the Shanks transformation (ST for short) on the both forward and 

inverse scattering series. An overview of the dissertation is provided at the end of this 

chapter. 

 

1.1 Challenges in waveform inversion in seismic 

exploration 

Seismic waves are commonly used to investigate the Earth’s interior structures and 

properties. Using the seismic data recorded by receivers, we can estimate the 

subsurface structure of earth using various kinds of waveform inversion methods (e.g., 

Tarantola 2005). Seismic waves are commonly used to remotely investigate the 

Earth’s interior structure and properties. In seismic waveform inversion (e.g., 

Tarantola 2005, Tarantola 1984), the goal is to find a subsurface model such that the 

data misfit, between the observed data and the modeled data using this model is 
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acceptable, measured by some norm. The functional dependence between the data 

misfit and the model misfit determines the inversion scheme and such dependence is 

nonlinear (Wu and Zheng 2014). The nonlinear inversion problem is usually linearized 

and the true model could be readily obtained when the initial model and the true model 

is close. Seismic full waveform inversion of the Earth interior structure usually is a 

nonlinear inverse problem that is challenging to solve. The scattering theory is the 

basis to tackle this difficulty. The scattering theory describes seismic wave interaction 

with structures (e.g., Wu and Aki 1988, Weglein et al. 2003, Taylor 2012, Newton 

2013, Zuberi and Alkhalifah 2014a, b, Alkhalifah 2010). Using the scattered wavefield, 

we can invert for structure. Traditionally, the nonlinear inversion problem is usually 

linearized using the single-scattering approximation and the correct model could be 

obtained when the perturbation between the initial model and the true model is weak 

(Weglein et al. 2003, Cohen and Bleistein 1977, Stolt and Weglein 1985). In the 

scattering theory, the wavefield in an inhomogeneous medium can be represented as a 

perturbation wavefield plus a reference wavefield. The wavefield satisfies the 

Lippmann-Schwinger equation that can be expanded to generate an infinite series 

called the scattering series. One fundamental type of series is the Born series (Matson 

1996). In seismic forward modeling, the Born series is known to be divergent in 

general for large-scale strong perturbations (Wu 1994). Sams and Kouri (1969) solved 
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this problem by converting the Fredholm integral into a Volterra form (see also Yao et 

al. 2016) and proved the absolute convergence with arbitrary perturbation strength of 

the medium. However, for the inverse scattering series (ISS), Weglein et al. (1997) 

proposed to use the sub series approach to accomplish certain seismic tasks using the 

Fredholm form. The ISS can be used in to predict internal multiples, perform depth 

imaging and velocity inversion (Wang and Hung 2014, Arthur B. Weglein et al. 2012, 

Luo et al. 2011, Weglein et al. 2009, Weglein 2013, 2017). Using the Volterra form of 

the Lippmann-Schwinger equation, Yao et al. (2014b) proposed the Volterra inverse 

scattering series (VISS) formulation, but it still suffered the convergence issue (Yao et 

al. 2014a, Chou, Yao, and Kouri 2017, Yao et al. 2014b). To solve this divergence 

problem, Yao et al. (2014b) proposed to use the Cesàro summation to accelerate the 

VISS but with limited success. 

 

1.2 Proposed solution: Convergence acceleration 

using Shanks transform 

In this dissertation, I consider the convergence problem for both the Born series in the 

forward modeling and the inverse scattering series (ISS for short). The goal of forward 

modeling using the Born series is to model the wavefield excited by a source and 

propagated in an inhomogeneous model represented by a reference medium and 
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scatters. ISS is to estimate the velocity structure from the observed waveform data 

with an initial velocity model. Both the forward Born series and the ISS are nonlinear 

processes with respect to model parameters where the solution takes the form of an 

infinite series.  

 I propose to employ the Shanks transformation (ST), proposed by Shanks (1955), 

to accelerate the convergence of scattering series. ST is a nonlinear transformation, 

which transforms one sequence into another sequence with improved convergence 

properties. ST has been studied to accelerate the convergence of slow convergent 

sequences and even divergent sequences (e.g., Weniger 1989, Smith and Ford 1979, 

Levin 1972, Shanks 1955, Brezinski 1982). In many fields, ST was adopted to 

improve the series convergence in the calculation of electromagnetic Green’s function 

in periodic structures (e.g., Singh et al. 1990, Singh and Singh 1991, Erricolo 2003) 

and the computational chemeical and physical studies (e.g., Weniger, Grotendorst, and 

Steinborn 1985, Grotendorst and Steinborn 1986). In seismic studies, ST has not been 

widely used except in a few cases where the ST was used to solve the dispersion 

equation in anisotropy media and optimize the wavefield extrapolation (e.g., 

Alkhalifah 2000, Stovas and Alkhalifah 2012, Alkhalifah 2013b, a). Here, I propose to 

apply ST on both the forward and inverse problems. I first revise the theory of ST and 

the applications of ST on the forward modeling using the Born series and velocity 
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inversion based on the ISS. Then I show the performance of these two applications of 

ST by several numerical examples. In this dissertation, I consider the convergence 

problem for both the Born series in forward modeling and the inverse scattering series 

(ISS for short) in the velocity inversion. 

 The goal of forward modeling using the Born series is to model the wavefield 

excited by a source and propagated in an inhomogeneous model constructed by a 

reference media and scatters. The velocity inversion based on the ISS is to estimate the 

velocity structure from the observed waveform data with an initial velocity model. 

Both the forward scattering series and the ISS are nonlinear processes where the 

solution takes the form of an infinite series. 

 

1.3 Dissertation structure 

This dissertation investigates several examples of applying the ST on the forward 

scattering series and inverse scattering.  

 In the forward scattering series, our goal is to calculate the wavefield in an 

inhomogeneous medium based on the Lippmann-Schwinger equation. This equation 

can be expanded into an infinite series called the Born series. This series is a nonlinear 

series in which its convergence process could be slow or even divergent. The radius of 
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convergence of the Born series depends on the initial model used in the iteration and 

perturbation. Applying ST on the Born series can accelerate the rate of convergence in 

summing up the series.  

 In the inverse scattering (IS), our goal is to find the velocity of the Earth’s 

subsurface using recorded data on the Earth surface. Inverse scattering is a nonlinear 

process where the solution can also take the form of an infinite series called inverse 

scattering series (ISS). From ISS iterations to be discussed in this dissertation, we can 

calculate the model perturbation with respect to some known reference model. Once 

we obtain the model perturbation via ISS, we can recover the velocity based on the 

reference velocity (known). Usually, the model perturbation is solved in an iterative 

fashion. When a sequence of the velocity models are available, we can apply ST on 

this sequence (like in a series) to accelerate the solution process.  

 This dissertation is divided in to five chapters. The following gives a snapshot 

of the content in each chapter. 

 Chapter 1 (this chapter) gives an introduction and background review of 

seismic exploration. The problem of determining Earth material properties from 

seismic reflection data is an inverse scattering problem.  

 In Chapter 2, I introduce the Shanks transformation and its properties. In this 

chapter I will show the capability of the ST on improving the rate of convergence of 
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some series through examples. These examples can help us gain intuitive 

understanding of ST. 

 Chapter 3 discusses about the forward modeling using the Born series. Before 

we solve the inverse problem, we need to gain insight from modeling the forward 

series. In this chapter, three modeling examples using the Born series will be discussed. 

These examples include rapidly convergent, slowly convergent, and divergent Born 

series. I show that ST can be effective to speed up the convergence on these three 

different types of series.  

 Chapter 4 discusses about the inverse scattering series (ISS). Using only 

reflected waveforms recorded on the surface, we can recover medium properties of a 

layered medium. Most seismic imaging uses only primary reflection where the wave 

interacts with the layer interfaces/boundaries once. Waves that have interacted with 

boundaries more than once are called multiples. Multiple data is usually considered as 

noise. In this chapter, I use all types of data (primary & multiple) in the inverse 

scattering. Because removal of the multiple is a daunting task, the approach in Chapter 

4 is very attractive in real applications. In this chapter, I will show examples using 

different layered models. We can see after applying ST on these examples, the 

convergence of inverse series is more rapid than the convergence without ST.  

Chapter 5 provides the conclusions and findings of this dissertation. 
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1.4 Impact of the thesis work 

In this dissertation, I am mainly concerned with the forward and inverse scattering 

problems in the context of one-dimensional layered media. Two- and three-

dimensional media are not considered explicitly.  

In spite of this limitation, the proposed approach can be immediately useful for 

imaging the tight oil/gas reservoirs because the geological layering in these 

unconventional settings is mostly horizontally layered.  

Furthermore, there is no need to remove the multiples in the data before 

applying the proposed approach to image the subsurface. This is an added benefit 

because in the traditional imaging one has to identify and remove the multiples in the 

data. Removal of the multiples can be a challenging task.  
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Chapter 2  

Introduction of Shanks Transformation 

2.1 Introduction 

Scattering theory is a form of perturbation analysis that is used in both forward and 

inverse problems. If the perturbation is weak, the series converges rapidly and, 

summing first several terms can give a good approximation to the exact solution. 

However, when the perturbation is large, the series may converge slowly or even 

diverge. Shanks method can accelerate convergence of a series. 

 

2.2 Shanks Transformation 

The Shanks transformation is a nonlinear method to improve the convergence property 

of a sequence of partial sums (or any sequence). Suppose we want to sum up the 

following series  𝐴 = ∑ 𝑢𝑘
∞
𝑘=0 , where uk  is the k-th term of scattered wave in the 

Born series in our study. The partial sum 𝐴𝑛 can be represented as 

 
0

n

n k

k

A u


   (2.1) 
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𝐴𝑛 will approach to the limit 𝐴 when 𝑛 → ∞ if the series is convergent. As shown by 

Bender and Orszag (1978), the n-th term in the sequence can take an asymptotic form 

when n is large 

 n

nA A q  .  (2.2) 

Here 𝛼𝑞𝑛  is the transient part which fluctuates around the limit value 𝐴 and 𝛼 is a 

constant. We can use three terms, 𝐴𝑛−1 = 𝐴 + 𝛼𝑞𝑛−1, 𝐴𝑛 = 𝐴 + 𝛼𝑞𝑛and 𝐴𝑛+1 = 𝐴 +

𝛼𝑞𝑛+1 to estimate 𝐴 in equation (2.2). The ST of the sequence {𝐴𝑛}, is a nonlinear 

local transformation represented as (Shanks 1955):  

  
2

1 1 1
0 1

1 1

( )
[ ]

2

n n n
n k n

n n n

A A A
S A

A A A

 
  

 




 
, (2.3) 

where  1nS  is the new sequence of ST which often converges faster than the original 

sequence {𝐴𝑛}. The ST can be also applied again to the new sequence 
  

S
n

1{ }  to obtain 

the second order ST, as
  

S
n

2{ }, to accelerate the convergence even further.  

In this research, I propose the application of ST on different examples which will be 

discussed in this chapter and also in Chapters 3 and 4 on the Born series and the ISS. 
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2.3 Application of Shanks transformation for an 

infinite series 

For a sequence a
m{ } , the partial sum 𝐴𝑛 (expanded form) is defined; 

 
0 1 2 3

0

n

n m n

m

A a a a a a a


       .  (2.4) 

The new sequence {𝐴𝑛} is defined as 

 

 

1 0

2 0 1

3 0 1 2

4 0 1 2 3

0 1 2 3 1n n

A a

A a a

A a a a

A a a a a

A a a a a a 



 

  

   

    

. (2.5) 
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Figure 1. Different orders of shanks transformation. The first column corresponds to 

the number of terms used (n). The second column is ( )nA . The third column 

corresponds to the sequences from 1
st
 order 1{ }nS  of ST after applying on ( )nA . The 

fourth and the fifth columns are the 2
nd

 and 3
rd

 orders ST, respectively. 

  



13 

 

2.4 Taylor series and its Shanks transformation 

One of the slowly converging series is the Taylor series for the function:  

 
1

( ) .
( 1)( 2)

A z
z z


 

 (2.6) 

The n-th partial sum of the Taylor series is 

 

1
0

1
1

1
( ) ( 1) (1 )

2

( )
1 ( ) 2

( 1)( 2) 1 2

n
n k

n k
k

n
n

A z z

z
z

z z z z







  




  
   



. (2.7) 

The poles of 𝐴(𝑧) at 𝑧 = −1 and 𝑧 =  −2 affect the rate of convergence of 𝐴𝑛(𝑧) 

to  𝐴(𝑧) . More than 1500 terms of this series are necessary to evaluate 𝐴(0.99) 

accurate to 6 decimal places.  

ST may be applied to the sequence (2.7). From numerical result of 𝐴𝑛(𝑧) and 

its ST shown in Figure 2, there is a considerable difference between the result of 

convergence driven without ST and after applying ST. Figure 2 represents the 

diagrams of sequence {𝐴𝑛} and its 1
st
, 2

nd
 and 3

rd
 orders of ST. The sequence {𝐴𝑛} 

converges so slowly; however with applying several orders of ST, the rate of 

convergence will noticeably accelerate. 
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Figure 2. Convergence for different orders of ST. Comparison of ( )nA z  with its 1
st
; 

2
nd

 and 3
rd

 orders ST.  

 

2.5 Summary on Shanks transform 

In this chapter, I have presented the introduction and definition of Shanks 

transformation theoretically and analytically. I also applied ST on a well-known 

Taylor series and showed the effect of this special transformation property to speed up 
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the convergence of that slowly convergent series. Ultimately I could approach the 

faster convergence of series in higher order of ST. In other words, convergence has 

been more rapid after applying ST on the series compare to the convergence of Taylor 

series without ST. This method is applicable to any sequence. Using higher order ST 

on the sequence, we can even get faster convergence with fewer terms. As an 

advantage of ST; since it is a local transformation, we do not need to know all terms of 

the series to compute ST.  
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Chapter 3  

Forward scattering series and its Shanks 

transformation 

3.1 Introduction 

Scattering theory provides a theoretical framework to describe the seismic wave 

interaction with the medium. Using this approach, the wavefield in an inhomogeneous 

medium is represented as a perturbation field on a reference wavefield. This chapter 

introduces the forward Born scattering series. The goal of the forward problem is to 

calculate the wavefield which emanates from a localized source and propagates 

through a prescribed model. For simple models, the total wavefield contains various 

types of reflected and transmitted waves. I will show how scattering theory can be 

used to generate the same results. 

Following the work of Weglein et al. (2003), I begin with the one dimensional (but 

with constant density) acoustic wave equation 

2 2

2 2 2

1
[( ) ] ( , ; ) ( ) ( )

( )
s sG z z t z z t

z c z t
 

   
    

   
, (3.1) 
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where the scalar 𝐺(𝑧, 𝑧𝑠; 𝑡) represents the Green’s function at point 𝑧 and time 𝑡 due to 

a source at point 𝑧𝑠  and time 𝑡 = 0 . The spatially varying velocity 𝑐(𝑧)  can be 

characterized by a constant reference velocity 𝑐0 and a perturbation 𝛼(𝑧) so that 

 
2 2

0

1 1
[1 ( )]

( )
z

c z c
  , (3.2) 

or 

 
2

0

2
( ) 1

( )

c
z

c z
   . (3.3) 

Fourier transforming equation (3.1) with respect to time and substituting equation (3.2) 

into equation (3.1) gives 

2 2 2

2 2 2

0 0

[( ) ( )] ( , ; ) ( ) ( ) ( ) ( , ; )s s sG z z k z z z G z z k
z c c

 
 


   


, (3.4) 

where �̃�  is the Fourier transform of 𝐺  with respect to 𝑡, 𝑘0 =
𝜔

𝑐0
 is the reference 

wavenumber, and 𝜔 is the temporal frequency. To find a solution to equation (3.4), 

consider the causal free space Green’s function �̃�0(𝑧, 𝑧𝑠; 𝑘)  which satisfies the 

equation 

 
2

2

0 0 02
[( ) ( )] ( , ; ) ( )s sk G z z k z z

z



  


. (3.5) 
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Using this Green’s function as a reference wavefield, an integral equation 

corresponding to equation (3.4) and its physical boundary conditions (Weglein et al. 

2003) leads us to derive the forward Born series in the following section. 

 

3.2 The Born series and its Shanks transformation 

For acoustic wave propagation in an inhomogeneous medium of constant density with 

source located at 𝑧𝑠 and receiver located at 𝑧𝑔, the Green’s function 𝐺(𝑧𝑔, 𝜔; 𝑧𝑠) in the 

frequency 𝜔  domain can be represented as the Lippmann-Schwinger equation 

(Clayton and Stolt 1981):  

            



    0 0 0

2, , , , , , , , 'g s g s g sG z z G z z k G z z V z G z z dz , (3.6) 

where the scattering potential is defined with respect to the background velocity in an 

acoustic isotropic 

  
 

2

2

01
c

V z
c z

 
   

 
, (3.7) 

in which 
00 /k c  is the wavenumber in the background (reference) medium. 𝑐0(𝑧), 

and 𝑐(𝑧)  are the reference velocity and the true velocity at depth z, respectively; 
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𝐺0(𝑧𝑔, 𝜔; 𝑧𝑠) is the Green’s function in the reference velocity 𝑐0 from the source 𝑧𝑠 to 

the receiver 𝑧𝑔 and 𝐺(𝑧𝑔, 𝜔; 𝑧𝑠) is the Green’s function for the true medium 𝑐(𝑧). 

We can also write equation (3.6) in symbolic form as (also see Appendix A) 

 0 0G=G +G VG . (3.8) 

Here, operator V contains a k 2
 term where  𝑘 =

𝜔

𝑐0
. Iterating equation (3.8) can 

generate a scattering series, called the Born series, 

. (3.9) 

In an inhomogeneous medium, for a given source at sz , the waveform recorded by the 

receiver at  𝑧𝑔 , can be approximated with the n-th order of Born approximation, 

represented as: 

 
1

0

n

n i
i

P p




  , (3.10) 

where 𝑝𝑖 is the i-th term of the Born series corresponding to the right hand side of 

equation (3.9). 

After applying the ST on the sequence of  kP  we can obtain the first order ST:  



20 

 

  
2

1 1 1
0

1

1

1

( )

2

n n n
n

n n n

k n

P P P
S P

P P P




 

 
 

    
, (3.11) 

where 
  
S

n

1 P
0£k£n+1{ }é

ë
ù
û  represents the n-th term of the first order ST of the sequence 

Pk{ }. 

 Furthermore, we can apply the ST on the new sequence   1

0 1n k nS P       to 

obtain the second order ST form. To obtain the second order ST of 𝑃𝑘 , we can 

implement the following:  

  
1 1 1 2

2 1 1

1 1 10 2

1 1

( )

2

n n n

n

k nn

n n

S S S
S P

S S S

 











    

. (3.12) 

Similarly, the m-th order ST can be obtained using the terms in the (m-1)-th order ST. 

 

3.3 Benchmark modeling using propagator matrix 

method 

Previously I mentioned that the acoustic wave equation and the wavefield can be 

obtained from the Born series. To benchmark the Born result, we use the propagating 

matrix (PM) method (Haskell 1953, Aki and Richards 2002) (see Appendix B). We 
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start with a simple three-layered model. In the Figure 3, an inhomogeneous medium 

located in a homogeneous medium. 

 

 

Figure 3. Reflected and transmitted waves in the medium. The terms 0ik z
e  and 0Re

ik z
 

are the incident and reflected waves respectively in the reference medium. 1

ik zAe


 and 

2

ik zA e
  are waves in the second layer (anomaly) and the 0ik z

Te  is the transmitted wave 

in the reference medium. 

  



22 

 

In the PM method (Figure 3), the wavefield in each layer can be written as 

0 0

1 Re
ik z ik z

P e


   in Layer 1,  (3.13) 

1 1

2 1 2 eik z ik zP Ae A    in Layer 2,  (3.14) 

0

3

ik z
P Te  in Layer 3,  (3.15) 

where 𝑘0 =
𝜔

𝐶0
 and 𝑘1 =

𝜔

𝑐1
 are the wave numbers of the reference and anomaly layers 

respectively; 𝑐0 and 𝑐1 are velocities of reference and anomalous medium, respectively. 

We need to find coefficients 𝑅, 𝐴1, 𝐴2 and T by ensuring boundary conditions. 

On each boundary, the pressure is continuous and the normal component of the 

particle velocity is continuous (see Appendix B). These boundary conditions allow us 

to find the coefficients. Once we get the reflection and transmission coefficients then 

we can calculate the total pressure wavefield.  

 

3.4 Numerical examples 

To demonstrate the ST performance in accelerating the convergence of the iterative 

process, we test ST on several examples in the context of forward modeling using the 

Born series and velocity inversion based on ISS. In those forward modeling examples, 
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first we apply ST on a model corresponding to the data with a frequency of 0.1 Hz. In 

this case, the size of anomaly is half of the wavelength in the reference medium and 

the Born series is supposed to converge rapidly. Then using the same model, we test 

ST at a higher frequency of 0.14 Hz and the anomaly-size-to-wavelength ratio is 0.7. 

In this case, the Born series converges slowly. In the third forward modeling example, 

we use another model with an anomaly size larger than the wavelength (anomaly-size-

to-wavelength ratio as 1.2) where the Born series would diverge. For examples of 

velocity inversion based on the ISS, we first test the ST in recovering a simple three-

layered velocity model and then apply the ST on a more complex velocity model with 

seven layers.  

 

3.5 Application of ST on a convergent Born series 

In the first example, we use a three-layered model (Figure 4). We set a low velocity 

layer (P-wave velocity as 0.75 km/s) with depth from 5 km to 10 km as the anomaly in 

a reference medium (1 km/s). We use the frequency at 0.1 Hz and the reference 

velocity of 1 km/s for calculating the Born waveform 𝑃𝑛 recorded at the receiver using 

the Born series (Figure 5). The ratio anomaly-size-to-wavelength ratio is 0.5 (5 km 

anomaly-size and 10 km wavelength in the background medium). Then we apply the 
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ST on  nP  to construct the first-order ST of {𝑃𝑛} , symbolized as  𝑆𝑛
1[𝑃𝑛] . If the 

updates is less than 1% of the current term of series, we determinate the series has 

converged. In this case, {𝑃𝑛} (without ST) becomes convergent at the 35-th term while 

{𝑆𝑛
1[𝑃𝑛]}  (with ST) converges at the 6-th term (Figure 6). We can calculate the depth 

wavefield of 𝑃𝑛  recorded by receivers at each depth, called as the Born wavefield. We 

construct the wavefield corresponding to the 6-th term of the first order ST of the Born 

wavefield and the 6-th term of Born wavefield without ST (Figure 7). We also 

calculated the theoretical complex-valued wavefield using the propagator matrix 

method at 0.1 Hz. The 6-th
 
term of the first order ST of the Born wavefield matches 

well with the theoretical wavefield both in the real and imaginary parts (Figure 8). The 

6-th term of the Born wavefield without ST is different with the theoretical wavefield. 

From this example, we can see that ST can accelerate the convergence of the Born 

series from the 35-th term to the 6-th term where the anomaly-size-to-wavelength ratio 

is 0.5.  
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Figure 4. Three- layered velocity model, source and receiver are deployed at depth 0 

km and 15 km, marked by the red star and blue triangle, respectively. 

 

The fast convergence of the Born series is observed (Figure 5) at the low frequency 

0.1 Hz. The convergence is reached after ~35 iterations both in real and imaginary 

parts. 
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Figure 5. The sequence of complex-valued wavefield of the fast convergent { }nP  at 

0.1 Hz. Blue and red lines with circles corresponds to the real and imaginary parts of 

{ }nP  respectively. 

 

In order to obtain convergence, we need about 35 iterations without ST for both real 

and imaginary part. After applying ST on the sequence of {𝑃𝑛} represented in Figure 6, 

the number of terms used to achieve convergence is reduced (Figure 6). In the first 

order ST, the sequence converges after three iterations. 
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Figure 6. Comparison of complex-valued wavefield of { }nP  with and without ST at 

0.1 Hz. Blue and red lines with circles correspond to the real and imaginary parts of 

{ }nP  (denoted as “Born Re” and “Born Im” in the legend), respectively. Black circles 

correspond to the real and imaginary parts of 1{ [ ]}n nS P  (denoted as “Shanks Re” and 

“Shanks Im” in the legend), respectively. 

 

We can also place receivers at different depths in the model. In Figure 7, the real and 

imaginary parts of the 6-th term of the Born wavefield without ST is still far from the 

theoretical wavefield (PM) while after applying ST, the Born wavefield will converge 

to the PM results. We focused the complete convergence consequence in Figure 8.  
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Figure 7. Comparison of the theoretical wavefield calculated by PM method and the 

6-th term of the 1
st
 order ST of the Born wavefield and the 6-th term of the Born 

wavefield without ST. Blue and red solid lines correspond to the real and imaginary 

parts of theoretical wavefield (denoted as “PM Re” and “PM Im” in the legend), 

respectively. Blue and red circles correspond to the real and imaginary parts of the 6-

th term of the 1
st
 order ST of the Born wavefield. Green and purple lines correspond to 

the real and imaginary parts of the 6-th term of the Born wavefield without ST. 
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Figure 8. Comparison of the theoretical wavefield calculated by PM method and the 

6-th term of the 1
st
 order ST of the Born wavefield. Blue and red solid lines 

correspond to the real and imaginary parts of theoretical wavefield (denoted as “PM 

Re” and “PM Im” in the legend), respectively. Blue and red circles correspond to the 

real and imaginary parts of the 6-th term of the first order ST of the Born wavefield. 
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3.6 Application of ST on a slowly convergent Born 

series 

In the second example, we use the same model as in the previous example (Figure 9). 

We changed the frequency from 0.1 Hz to 0.14 Hz to make the anomaly-size-to-

wavelength ratio as 0.7. The Born waveform 𝑃𝑛 converges slowly after about the 70-th 

term (Figure 10) while its third order ST converges at only the 8-th term (Figure 11). 

Similar to the previous example, we construct the 8-th term of the third order ST of the 

Born wavefield and 8-th term of the Born wavefield without ST. The Born wavefield 

without ST does not match with the theoretical wavefield by PM both in the real and 

imaginary parts (Figure 12) while the Born wavefield with ST matches well with the 

theoretical one both in real and imaginary parts (Figure 13). From this example, we 

can see that the ST is very helpful on accelerating the convergence of a slowly 

convergent Born series. 
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Figure 9. One-dimensional model with three interfaces. The source and receiver are 

deployed at x=0 and x=15 the red star and blue triangle illustrate source and receiver 

respectively. This model is the same as the model shown in Figure 4.  
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Figure 10. The sequence of complex-valued wavefield of the slowly convergent{ }nP  

at 0.14 Hz. Blue and red lines with circles corresponds to the real and imaginary parts 

of { }nP  , respectively. 
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Figure 11. Comparison of the complex-valued Born wavefield nP  and its 3
rd

 order ST 

at 0.14 Hz for the model in Figure 9. Blue and red lines with circles correspond to the 

real and imaginary parts of nP  , respectively. Black circle corresponds to the real and 

imaginary parts of  3{ [ ]}n nS P , respectively.  
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Figure 12. Comparison of the theoretical wavefield calculated by PM method, the 8-th 

term of the 3
rd

 ST of the Born wavefield and 8-th term of Born wavefield without ST. 

Blue and red solid lines correspond to the real and imaginary parts of theoretical 

wavefield, respectively. Blue and red circles correspond to the real and imaginary 

parts of the 8-th term of the 3
rd

 order ST of the Born wavefield. Green and purple lines 

correspond to the real and imaginary parts of the 8-th term of the Born wavefield 

without ST. 
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Figure 13. Comparison of the theoretical wavefield calculated by PM method and the 

20-th term of the 3
rd

 order ST of the Born wavefield. Blue and red solid lines 

correspond to the real and imaginary parts of theoretical wavefield, respectively. Blue 

and red circles correspond to the real and imaginary parts of the 20-th term of 3
rd

 order 

ST of the Born wavefield. 
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3.7 Application of ST on a divergent Born series 

In the third forward modeling example, we use a different model. However, the 

anomaly-size-to-wavelength ratio is 1.2 with frequency at 25 Hz and reference 

velocity at 2500 m/s. In this model, we set one high velocity (4000 m/s) layer with 

thickness of 120 m in a reference medium with velocity of 2500 m/s (Figure 14). This 

velocity contrast is similar to the case for a salt body in the sedimentary rock. In this 

case, the Born waveform 𝑃𝑛 is divergent for n >10 (Figure 15). Compared with the 

synthetic wavefield using PM, the Born wavefield diverges around the 10-th term both 

in the real and imaginary parts (Figure 16). The divergent Born series gradually 

converges to the theoretical solution in 5-th order of ST (Figure 17). On the other hand, 

the 20-th term of the 5-th order ST of the Born wavefield converges to the theoretical 

wavefield both in the real and imaginary parts (Figure 18). In this example, we can see 

that the ST can improve the convergence property of series, even for a divergent series. 
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Figure 14. Three-layered model with source (star) and receiver (triangle) located at 

depth 0 m and 1100 m, respectively. The thickness of anomaly of this model is 120 m. 
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Figure 15. Complex valued of divergent wavefield of nP  .Blue and red lines with 

circles correspond to the real and imaginary parts of nP  respectively. 
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Figure 16. Comparison of the theoretical depth wavefield using PM and the divergent 

Born wavefield at the 10-th term. Blue and red lines show the real and imaginary parts 

of the theoretical wavefield, respectively. Green and purple lines correspond to the 

real and imaginary parts of the divergent Born wavefield, respectively. 
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Figure 17. Comparison of the PM wavefield and the 20-th term of the 1
st
, 2

nd
 and 3

rd
 

orders ST of the Born series.  
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Figure 18. Comparison of the theoretical wavefield using PM and the 20-th term of 

the 5-th order ST of the Born wavefield.  

 

3.8 Summary 

In this chapter, using forward Born scattering series, we found ST could be very useful 

to speed up the convergence for convergent, slowly convergent, and event divergent 

series. We can always check if the convergent field is the true field by substituting the 

field into the wave equation.  
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Chapter 4  

Inverse scattering and Shanks 

Transformation 

4.1 Background of seismic exploration 

The primary goal of seismic exploration is to produce an accurate map of reflectors 

below the Earth’s surface. This structural map is important to the oil and gas industry 

because it plays a key role in determining where to drill for hydrocarbon reserves. 

Weglein et al. (2003) have proposed using the inverse scattering series, a 

multidimensional direct inversion procedure, to derive a velocity-independent imaging 

algorithm. 

 In seismic exploration, a man-made energy source (such as explosion, air gun, 

hammer, or vibrators) sends an incident wave into the Earth. Rapid changes in Earth 

properties will cause the incident wave to reflect or diffract and some energy of the 

reflected wave will return to the surface where it will be recorded by groups of 

receivers. (A seismic receiver is a device that detects ground motion or a pressure 

wave in fluid). The reflected wave contains information about the source that created 

it, the medium that the wave has traveled through, and the inhomogeneity (or 
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reflectors) that caused part of the incident wave to return to the surface. The recorded 

seismic data are processed to reveal information about the Earth’s subsurface. To 

produce a seismic image is to generate a subsurface model that can produce the data 

recorded on the measurement surface. Seismic data in general is a function of source 

and receiver position and time (t). In order to know where an unknown reflector is 

located in the Earth, we need to do time-to-depth conversion.  

 Inverse scattering is a powerful way to image the Earth’s subsurface. The 

solution to the inverse problem is an infinite series, which is called the inverse 

scattering series (ISS). The reference medium (usually not the true medium), and the 

source and receiver locations are known in the inverse scattering problems. The 

subsurface velocities (i.e., the model; we ignore density and other elastic constants for 

simplicity) are usually different from the reference medium. The difference in seismic 

velocity between the reference medium and the actual medium is called model 

perturbation, which is unknown. Finding the velocity perturbation through solving 

scattering series, we can find the subsurface velocity based on the known reference 

model.  

 The recorded data contains many kinds of distinct arrivals of seismic energy, 

each having a different propagation history from the source to the receiver. Such a 

distinct arrival of the seismic energy is called a seismic event. It is useful to catalog 



44 

 

and separate these events based on the type and complexity of the interactions they 

have experienced. Basically, seismic reflection events are catalogued as primary or 

multiple depending on whether the energy arriving at the receiver has experienced one 

or more upward reflections, respectively (Figure 19). Multiples can be further 

classified as free-surface multiples and internal multiples according to whether or not 

they have been reflected by the free surface or not.  

 Traditional seismic imaging algorithms assume all acquired seismic events are 

primary reflections. Multiple data is mapped to wrong location to cause imaging 

artifacts. Therefore, most imaging methods require the removal of multiples before 

imaging. The multiple removal is a challenging task. Hence, the new algorithm 

discussed in this chapter is attractive in application because it does not require 

multiple removal. Figure 19 represents seismic waves that are studied by scientist to 

interpret the composition, fluid content, extent and geometry of rocks in the 

subsurface. 
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Figure 19. Example of marine case: source (star) and receivers (triangles) are located 

within the water column. Energy arrivals produced by a single reflection are called 

primaries. Energy arrivals produced by multiple reverberations are called multiples 
(From Ramirez (2007)). 
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4.2 Inverse scattering series introduction 

The inverse scattering theory takes the recorded data,  , ,g sG z z , to invert for the 

scattering potential (perturbation)  V z . Here we follow the formulation of 

Schlottmann (2006). We start from the Lippmann-Schwinger equation (3.6) and iterate 

the equation back to itself once and get 

         

         

   

  

 





 

0 0 0 0

0 0 0

2

2 2
0

, , , , ' , ', ' ', ,

'' , '', '' ' '', ', ' ', ,

g s g s g s

g s

G z z G z z k dz G z z V z G z z

dz G z z k V z dz G z z k V z G z z
, (4.1) 

where the left hand side of equation (4.1) is the recorded data. In this dissertation, we 

let z g = z s = 0 and z ' > 0 . In the symbolic form, we can have  

        
RS RS RSRS 0 0 0 0 0G G G VG G VG VG , (4.2) 

where the subscript ‘RS’ stands for ‘recording surface’ and it refers to a particular 

source-receiver geometry; V  is the operator symbol corresponding to the scattering 

potential  V z  at each depth; G  is the operator symbol for the 1D Green’s function G. 

Note that the 1D Green’s function takes a simple form 

  
 

 
0

0

0

, ,
2

ik z z
e

G z z
ik

. (4.3) 
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In equation (4.2), the entire wavefield ( RSG ) can be separated into three terms: 

background wavefield ( 0G ), singly-scattered wavefield ( 0 0G VG ) and multiply-

scattered wavefield ( 0 0G VG VG ). The goal of ISS is to find V that solves equation 

(4.2). Let us solve this in an iterative fashion from a starting perturbation model 0V . 

We hope to obtain a sequence of perturbation models nV  such that they converge to 

the true perturbation model V that can satisfy equation (4.2) or equation (4.1) as  

 . (4.4) 

To accomplish this, let us inspect equation (4.2) in the frequency domain. If we take 

the inverse Fourier transform of equation (4.2) from the frequency   domain to the 

time t domain, we can further convert the inverted perturbation from the t domain into 

depth z domain based on the velocity model:  

     
0

24 ikz

RS
U z V z e d

c










   0 0

G VG VG , (4.5) 

where  

    
0

24 ikz

RS
U

c
z e d









  0

G -G  (4.6) 

is the migration operation using the recorded scattered field and  
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     2
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0

4 ikz
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V

c
z e d









  0

G VG  (4.7) 

is the migration operation acting on a singly scattered wavefield.  

Equation (4.5) actually provides a way to update the scattering potential using the 

residual (multiply-scattered) wavefield: 
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1

4 n ikz

n
RS

U V
c

z z e d









  
  0 n 0 n
G V G V G , (4.8) 

where 
 n

G  is the exact Green’s function in the model ( )nV z .  

 In equation (4.8), to obtain the updated scattering potential  1nV z
, the 

unknown term is the multiply-scattered wavefield. However, directly solution of 

multiply-scattered wavefield is time consuming. Let us inspect the Lippmann-

Schwinger equation (3.8) (after one iteration) again, we find  

    
,

n n
  

0 0 n 0 0 n 0 n
G G G V G G V G V G  (4.9) 

which is an exact (no approximation) equation of the velocity model nV  (vector 

symbol of 𝑉𝑛(𝑧)). Consequently, we can plug equation (4.9) into equation (4.8) and 

get  

        1n n nV z U z U z V z    , (4.10) 
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where  
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  G G  (4.11) 

is the migration operation using the calculated scattered field in model nV  and  

    
0
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  0 n 0

G V G . (4.12) 

Equation (4.10) is the iterative ISS inversion scheme. We can initialize the iterative 

sequence as 

    1V z U z . (4.13) 

Based on 1( )V z , we can compute 1( )U z  using equation (4.11) and we can obtain 

2 ( )V z  from equation (4.10). This iteration can generate ( )nV z  (Appendix C).  

Once we obtain the perturbation ( )nV z , we can recover the velocity 𝑐𝑛(𝑧) based on the 

reference velocity (known) 𝑐0(𝑧) in equation (3.7). When the sequence of 𝑐𝑛(𝑧) is 

available, we can apply the ST:  
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where 𝑆𝑛
1[𝑐𝑛] is the n-th term of the first order ST of  ( )nc z . We can also construct 

higher order ST by applying ST more times on the inverted velocity sequence ( )nc z .  

 

4.3 Numerical example 

4.3.1 Three-layered velocity model 

In the first velocity inversion example, we use a three-layered model (Figure 20) 

containing a high velocity layer (1.4 km/s) in a reference velocity (1 km/s). The 

velocity contrast is 40% with respect to the reference velocity. We modeled the 

waveform observed at the surface receiver using the PM method using the true model, 

shown in Figure 21. This modeled data is taken as the observed data. In the observed 

waveform, we can see not only the primary reflections but also the internal multiples. 

This observed waveform and the reference velocity (1 km/s) are the inputs to the 

velocity inversion based on the ISS. In the velocity inversion, we use a Gaussian 

wavelet with a nominal width of 1 s. We can iteratively solve the velocity based on the 

ISS discussed in the previous section. Several inverted velocity models are shown in 

Figure 22 and Figure 23, including results at the 1
st
, 2

nd
, 10-th and 30-th iterations 

(without ST). For this three–layered model, the ISS needs 30 iterations to generate a 

good inverted velocity model (Figure 23). After we obtain a sequence of the inverted 
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velocity model sequence ({𝑐𝑛 }), we can apply the ST on {𝑐𝑛 }. We show the inverted 

velocity model at 10-th term of the first order ST of {𝑐𝑛} (Figure 24) and the synthetic 

waveform produced based on this model Figure 25. We can see that the inverted 

velocity with the first order ST after 10 iterations can provide a good recovered 

velocity model. In Figure 26, we show the convergence rate of waveform residuals for 

velocity inversion without ST and with ST. We can see that the velocity inversion 

without ST converges at about 30-th iteration while with the first order ST at 10-th 

iteration. 
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Figure 20: A three-layered velocity model (two interfaces) with both the source (red 

star) and receiver (blue triangle) deployed on the surface with depth at 0 m. The high-

velocity layer (1.4 km/s) has 40% of higher velocity than the reference velocity (1 

km/s). 
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Figure 21. The observed waveform by the receiver at surface (depth at 0 m). The 

source wavelet is a Gaussian wavelet with a width of 1 s. There are two reflections 

from the 1
st
 and 2

nd
 interfaces and one internal multiples bounced between those two 

interfaces. 
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Figure 22. Inverted velocity models based on the ISS ( )nc  for the three-layered model 

(Figure 20) at the (a) 1
st
, (b) 2

nd
, iteration (without ST), respectively. 
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Figure 23. Inverted velocity models based on the ISS ( )nc  for the three-layered model 

(Figure 20) at the (c) 10-th, (d) 30-th, iteration (without ST), respectively. 
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Figure 24. Comparison of the inverted velocity model using ISS with 1
st
 order of ST 

at 10-th iteration (red line) and inverted velocity model without ST at 30-th iteration 

(blue line). 
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Figure 25. Comparison of the observed waveform (black line) and the modeled 

waveform using the inverted velocity with the 1
st
 order ST at 10-th term. The modeled 

waveform matches the observed waveform well. 

 

 

 

 

 



58 

 

 

 

 

Figure 26. The convergences of the waveform residual between the observed and the 

modeled waveform. The black line and blue line represent the waveform residual 

without ST and with the 1
st
 order ST, respectively. 
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4.3.2 Seven-layered velocity model 

In the second example of velocity inversion, we use a more complex model with seven 

layers Figure 27. We show the observed waveform using PM method in Figure 28. In 

the inversion process, we set the initial reference velocity of 1 km/s. Similar to the 

previous example; we iteratively determine the velocity models based on ISS and then 

compare the inverted velocity models and their ST. We show some of the inverted 

velocity models at the 1
st
, 2

nd
, 7-th, and 12-th iteration in Figure 29 and Figure 30. For 

this seven-layered model, ISS needs 12 iterations to generate a velocity model that 

close to the true velocity model Figure 30. Then we apply the ST on the sequence of 

inverted velocity models. We can see that the first order ST can produce a good 

inverted velocity model after 7 iterations (Figure 31) while the ISS without ST needs 

12 iterations to obtain a similar inverted velocity model. From these examples, we can 

see the ST is effective to accelerate the convergence of iterative velocity inversion 

based on the ISS for a model with high velocity contrast and multiple layers. 
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Figure 27. A seven-layered velocity model (6 interfaces) with the source and receiver 

on the surface at depth 0 m. There are three high-velocity layers and two low-velocity 

layers with different velocities and thicknesses embedded in the reference medium. 
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Figure 28. The observed waveform by the receiver at surface. The source wavelet is a 

Gaussian wavelet with a width of 1 s. There are six reflections from the 1
st
 to the 6-th 

interfaces and several internal multiples bounced between those interfaces. 
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Figure 29. Inverted velocities based on the ISS ( )nc  for the seven-layered model 

(Figure 27) t the (a) 1
st
, and (b) 2

nd
, iteration, respectively. Blue lines show the 

inverted velocity model nc  and black lines show the true velocity. 
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Figure 30. Inverted velocities based on the ISS ( )nc  for the seven-layered model 

(Figure 27) at the (c) 7-th and (d) 12-th iteration, respectively. Blue lines show the 

inverted velocity model nc  and black lines show the true velocity. 
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Figure 31. Comparison of the inverted velocity model without ST at the 12-th 

iteration (blue line) and the inverted model at 7-th term of the first order ST (red line). 
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Figure 32. Comparison of the observed waveform (black line) and the modeled 

waveform using the inverted model (red line) using the inverted velocity at 7-th term 

of the 1
st
 order ST. The modeled waveform well matches the observed waveform for 

both primary reflections and multiples. 
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Chapter 5  

Conclusions and future work 

The scattering series is commonly used for solving the forward and inverse problem in 

the seismic applications. Shanks Transformation (ST) is an effective method to 

improve the convergence of the scattering series. ST separates the series into a secular 

trend and an oscillatory transient term and emphasizes the convergence of the secular 

term. In this regard, the ST is suitable to sum up the scattering series. ST is a nonlinear 

local operation, which means we do not need to pre-compute all terms in the scattering 

series before we can produce an output. We showed that the ST could accelerate the 

convergence of the forward modeling using the Born series for three examples, 

including summing up a divergent series to obtain the correct wavefield. In the 

velocity inversion based on ISS, we showed that ST could again speed up the 

convergence for a model with large velocity contrasts and multiple layers. Since in 

seismic inversion problems, the iterative process, such as full-waveform-inversion 

(FWI), is used frequently, applying the ST may greatly facilitate the computation in 

both detecting the limit and actually finding the limit fast. Therefore, ST provides a 

useful tool for inverting large-contrast medium perturbation in seismic inversion 

problems. 
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These examples in this dissertation are layered models. In unconventional 

oil/gas exploration and development, most of the geological structures are simple and 

layered. Therefore, the approach laid out in this thesis can be immediately used. It is 

not clear whether Shanks method in complex models can still be as powerful as for 

layered cases. However, given the success achieve in the thesis, developing of ST 

application on the real dataset in 2D and 3D models can be addressed as a new 

challenge for future studies. 
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APPENDICES 

A. Forward modeling using the Born series 

For acoustic waves propagating in an inhomogeneous media of constant density with 

source located at 𝑧𝑠 and receiver located at 𝑧𝑔, the Green’s function 𝐺(𝑧𝑔, 𝜔; 𝑧𝑠) in the 

frequency 𝜔 domain can be represented as (Clayton and Stolt 1981):  

2

0 02

0

( , ; ) ( , ; ) ( , ; ) ( ) ( , ; )g s g s g sG z z G z z dz G z z V z G z z
c


   




      , (A-1) 

where 
0

k
c


  is the wavenumber in the background (reference) medium;  

  
 

2

0

2
1

c
V z

c z
   (A-2) 

is the scattering potential (perturbation) at depth 𝑧; 𝑐0(𝑧) and 𝑐(𝑧) are the reference 

velocity and the true velocity in depth z  domain, respectively; 𝐺0(𝑧𝑔, 𝜔; 𝑧𝑠) is the 

Green’s function in the reference velocity 𝑐0 from the source 𝑧𝑠 to the receiver 𝑧𝑔 and 

𝐺(𝑧𝑔, 𝜔; 𝑧𝑠) is the Green’s function for the true medium 𝑐(𝑧). Equation (A-1) is also 

called as Lippmann-Schwinger equation. Iterating equation (A-1) back to itself 

generate the Born series  
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Equation (A-3) is the first order Born approximation, 𝑝0  and 𝑝1  are the first and 

second terms of the Born Series .The Green’s function with second order Born 

approximation can be obtained by replacing 𝐺 in the equation (A-3) into the right hand 

side of equation (A-1) and get  
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. (A-4) 

Let 0P , 1P  and 2P  denote the three terms in the above equation, then  2 , ;g sG z z  can 

be written as 

   22 0 1, ;g sG z z p p p    . (A-5) 

We can iteratively calculate the 𝐺 as  
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     , (A-6) 

where 𝐺𝑛 indicates the Green’s function with n-th order Born approximation; 𝑝𝑖 is the 

i-th term of Born series. 
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B. Derivation of reflection and transmission 

coefficient from PM method 

For a simple three-layered model which is shown in chapter three, our goal is to find 

the pressure wavefield in the actual medium as following.  

Pressure wavefield for each layer will be defined as: 

0 0

1

ik z ik z
P e Re


  , First layer (B-1) 

1 1

2 1 2

ik z ik zP Ae A e  , Second layer (B-2) 

0

3

ik z
P Te . Third layer (B-3) 

The total wavefield 𝑃 = 𝑃1 + 𝑃2 + 𝑃3 , and in order to find 𝑅, 𝐴1, 𝐴2 and T, all of the 

above equations and their derivatives should be continuous at the boundaries  𝑧1, 𝑧2. 

Therefore we have continuity at the first barrier 𝑧 = 𝑧1 as  

  1 2P P  at 1z z ,  (B-4) 

0 1 0 1 1 1 1 1

1 2

ik z ik z ik z ik ze Re Ae A e
   

,  (B-5) 

0 1 0 11 1 1 1

1 2

ik z ik zik z ik zRe Ae A e e
     ,  (B-6) 

where 
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For the second interface at the barrier 𝑧 = 𝑧2, we have 

2 3P P  at 2z z ,  (B-8) 
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The derivative of the equations (B-1) and (B-2) should be continuous at boundaries as 

well. Therefore 

1 2P P

z z

 


 
 at 1z z .  (B-11) 

The derivative of equation (B-5) will be 

0 1 0 1 1 1 1 1
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The derivative of equations (B-2) and (B-3) for second barrier should satisfy equation 

(B-15) 
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Now we have four equations with four unknowns, equations (B-17) to (B-20) are the 

equations that we need to solve 
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1 0 21 2 2
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We can rewrite the above equations in Matrix format as  
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Thus we can solve the coefficients 
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. (B-22) 

Once we get 𝑅, 𝐴1, 𝐴2 and T from equation (B-22), then we can compute the equations 

(B-1) to (B-3) and finally the total pressure wavefield will be found. We can use the 

similar method for models with more interferes  
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C. Velocity inversion from inverse scattering series 

In the seismic inversion, sources and receivers are usually deployed on the surface. 

For simplicity, we can set 𝑧𝑔 =  𝑧0 = 0 and define some helpful notations (similar to 

those by Weglein,2003Schlottmann (2006, 36)):  
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where the subscript RS indicates a given source/receiver geometry. From equation (A-

1) we can get: 

     0 0 0 0 00, ;0 0, ;0 ( )RSRS
G G   G VG G VG VG  , (C-3) 

where 𝐺0(0, 𝜔; 0) is the wavefield from source to receiver in the reference model and 

𝐺(0, 𝜔; 0) is the Green’s function in the true model and is recorded by the receiver at 

surface with the source at surface.  

 In the 1-D case, we can calculate the Green’s function 𝐺0  in the reference 

model (with a constant velocity 𝑐0) between two arbitrary points 𝑧1 and 𝑧2:  

   1 2 0/0
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G z z e







 . (C-4) 
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Using equation (C-4) and 𝑉(𝑧 < 0) = 0, we can rewrite equation (C-1) as 
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To invert 𝑉(𝑧), we can apply the inverse Fourier transform on equation (C-5):   
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 Assuming the source signal is a Dirac delta function, the data residual between 

the recorded data and the modeled data in the reference model can be represented as:  

      0 00, ,0 0, ,0resiD G G    . (C-7) 

 We can convert the data residual into a reflectivity image update using the 

depth migration in the reference medium:  
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   .  (C-8) 

According to equations (C-6) and (C-8), we can apply the inverse Fourier transform 

and rearrange the equation (C-3) as:  
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   G VG VG . (C-9) 
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In equation (C-9), 𝑉(𝑧) is the variable we want to obtain. However, equation (C-9) is 

implicit. We can iteratively solve 𝑉(𝑧) as follows:  

    1V z U z , (C-10) 
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   G V G V G , (C-11) 
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   G V G V G , (C-12) 

where 𝑉𝑛(𝑧)  is the perturbation after n-th iteration; 𝑮𝑛−1  indicates the Green’s 

function in a medium with perturbation 𝑉𝑛−1(𝑧).  

 Herein, to further simplify the calculation of equation (C-12), we can again 

utilize the equation(C-1):  
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  (C-13) 

where  
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   G V G , (C-15) 

      1 1 00, ,0 0, ,0resi

n nD G G     . (C-16) 

𝑈𝑛−1(𝑧)  is the migration of data residuals 𝐷𝑛−1
𝑟𝑒𝑠𝑖(𝜔) between the (n-1)-th iteration 

modeled data and the recoded data in the reference velocity. 𝑉𝑛−1(𝑧)  is the (n-1)-th 

iterated perturbation. 

 Inserting equation (C-13) into equation (C-12), we can obtain 

        1 1n n nV z U z U z V z    . (C-17) 

Consequently, we can summary the iterative solution of perturbation 𝑉(𝑧) as follows: 
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Initialization: 

 Giving a reference median 𝑐0; 

 Calculating the data residual 𝐷0
𝑟𝑒𝑠𝑖 between the observed data and the modeled 

data in the reference medium (equation (C-7)); 

 Calculating the initial perturbation 𝑉1 = 𝑈 by migrating the data residual 𝐷0
𝑟𝑒𝑠𝑖 

(equation (C-8)). 

For the n-th iteration: 

 Calculate the 𝐺𝑛−1 based on the previous perturbation 𝑉𝑛−1; 

 Calculating the data residual 𝐷𝑛−1
𝑟𝑒𝑠𝑖 between 𝐺𝑛−1 and 𝐺0; 

 Calculating the 𝑈𝑛−1by migrating 𝐷𝑛−1
𝑟𝑒𝑠𝑖 (equation (C-14)); 

 Updating the 𝑉𝑛 based on 𝑈, 𝑈𝑛−1 and 𝑉𝑛−1 (equation (C-17)). 
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